
Automated Discovery of Valid Test Strings from the Web using
Dynamic Regular Expressions Collation and Natural Language Processing

Muzammil Shahbaz, Phil McMinn, Mark Stevenson
University of Sheffield, UK

{m.shahbaz, p.mcminn, m.stevenson}@sheffield.ac.uk

Abstract—Classic approaches to test input generation – such
as dynamic symbolic execution and search-based testing – are
commonly driven by a test adequacy criterion such as branch
coverage. However, there is no guarantee that these techniques
will generate meaningful and realistic inputs, particularly in
the case of string test data. Also, these techniques have trouble
handling path conditions involving string operations that are
inherently complex in nature.

This paper presents a novel approach of finding valid
values by collating suitable regular expressions dynamically
that validate the format of the string values, such as an email
address. The regular expressions are found using web searches
that are driven by the identifiers appearing in the program, for
example a string parameter called emailAddress. The iden-
tifier names are processed through natural language processing
techniques to tailor the web queries. Once a regular expression
has been found, a secondary web search is performed for
strings matching the regular expression.

An empirical study is performed on case studies involving
String input validation code from 10 open source projects.
Compared to other approaches, the precision of generating
valid strings is significantly improved by employing regular
expressions and natural language processing techniques.

Keywords-test data generation; string inputs; valid inputs;
web queries; regular expressions; natural language processing

I. INTRODUCTION

There has been much work in the literature of late
devoted to automated test input generation, for example
dynamic symbolic execution (DSE) [16], [22] and search-
based testing (SBT) [17]. These approaches are driven by a
test adequacy criterion such as structural coverage. However,
by concentrating only on structural information, they ignore
the problem of generating meaningful and realistic inputs.
Of particular concern are string values. The problems are
two-fold:

1) While it is important to test programs with invalid
inputs, it is also important to test them with valid
values. The input generation in DSE and SBT is mostly
governed by some branch or path coverage criteria, but
they tend not to generate valid values. As an example,
the Java method in Figure 1, from the open source
project TMG1, validates a given input as a month name:
January — December. However, full coverage of

1http://tmgerman.sf.net

boolean isMonth(String month) {

// months is a set containing month names

return months.contains(month);

}

Figure 1. Example of a method whose full coverage can be achieved by
an invalid String value.

this method does not imply the generation of a valid
input (i.e., 12 month names). This is confirmed by
EclEmma tool V2.1.1 [30], which reported 100% cov-
erage of this method on an empty string input. This
results in a program being tested in largely unrealistic
scenarios for the application concerned.

2) Automatically generated test inputs are hard to read and
understand by human testers. Since a formal specifica-
tion is frequently unavailable, a tester often assumes
the role of an oracle and thus serves as a human
oracle [23], determining whether the right outputs were
produced for the generated inputs. This task is made
harder when test inputs are not meaningful or realistic.
For instance, it is hard to distinguish between arbi-
trary email addresses: "b\2@3#t"@s3t (valid) and
"b\2@3#"t@s3t (invalid2), but instantly-readable
values: bob@mail.com (valid) and bob@mailcom.
(invalid3) are easily distinguishable.

One promising approach to obtain test values is to perform
Internet searches. In our previous work [24], the idea was
presented with the objective to enhance structural coverage
in SBT. In that approach, identifiers in the program under
test were split into constituent words which are then used
to construct web queries. The queries were performed using
a search engine and the web pages returned in the search
results were tokenized. All unique string tokens were then
used as test values for the program. While the approach
was found to increase coverage in a number of cases, the
precision of the approach – i.e., the proportion of strings
that were valid for the program under test (such as a month
name or a well-formed email address) – was very low.

2quotes must be dot separated, or the outer characters of the local-part.
3dot must not be last in the domain-part.

Process Identifier Names

Obtain
Regular Expressions

Generate
Web Queries

Identify Values

identifier names

Extract Identifiers

Perform
Web Queries

.java file

processed identifier names

web queries regular expressions

downloaded
resulting

web pages
values

Figure 2. Overview of the Approach

This paper presents a novel approach that combines Nat-
ural Language Processing (NLP) techniques and dynamic
regular expressions collation for finding valid String values
on the Internet. The NLP techniques help tailoring the web
queries that are made up of identifier names to collate appro-
priate regular expressions from the web. Then, a secondary
web search is performed for strings matching the collated
regular expressions. The intuition behind the approach is
that regular expressions can be used to help target only
valid values on the web, and NLP techniques can harness
the web queries to search for such regular expressions. The
contributions of this paper are therefore as follows:

1) An approach for finding valid string inputs on the web,
that involves a) natural language processing of iden-
tifier names, and b) searching for appropriate regular
expressions to identify valid values.

2) An empirical study on 24 open source case studies and
comparison with the previous approach [24].

3) An analysis of the proposed approach against two
contemporary test data generation tools in DSE and
SBT techniques.

The rest of this paper is organized as follows. Section
II presents the approach. Section III evaluates the approach.
Section IV discusses the potential threats to validity. Section
V presents the related work. Section VI concludes the paper.

II. APPROACH

Figure 2 presents the overview of the approach that takes
a (Java) program source as input. First the information
about the program identifiers is extracted from the source
code. This information is refined by processing the identifier
names in order to infer the format of the targeted String type.
The processed identifier names are used to 1) obtain regular
expressions dynamically, and 2) generate web queries. The

web queries are then sent to a search engine. Finally, the
textual contents of the URLs produced in the search results
are downloaded, from which the values are identified using
regular expressions obtained previously.

The rest of the section provides details for each part of
the approach.

A. Extracting Identifiers

The key idea behind the approach is to extract important
information from program identifiers and use them to gen-
erate web queries that are likely to return results containing
examples of valid values for the identifiers. For example,
an identifier name including the string “email” is a strong
indicator that its value is expected to be an email address.
A web query containing “email” can be used to retrieve
example email addresses from the Internet.

The approach considers three types of identifiers and
aims to identify input values for them: 1) The method
parameter identifier, 2) The method identifier, and 3) The
class identifier. The names of these identifiers are an obvious
source of information about the types of values they expect.

The implementation uses Java 6.0 Compiler API to extract
the information about the identifiers in the Java source code.

B. Processing Identifier Names

Once the identifiers are extracted, their names are pro-
cessed using the following NLP techniques.

1) Tokenisation: Identifier names are often formed
from concatenations of words and need to be split into
separate words (or tokens) before they can be used
in web queries. Conventions for concatenating strings
are to separate tokens using camel casing and under-
scores [12]. Identifiers are split into tokens by replac-
ing underscores with whitespace and adding a whitespace
before each sequence of upper case letters. For exam-
ple, “an_Email_Address_Str” becomes “an email

address str” and “parseEmailAddressStr” be-
comes “parse email address str”. Finally, all
characters are converted to lowercase.

2) PoS Tagging: Identifier names often contain words
such as articles (“a”, “and”, “the”) and prepositions (“to”,
“at” etc.) that are not useful when included in web queries.
In addition, method names often contain verbs as a pre-
fix to describe the action they are intended to perform.
For example, “parseEmailAddressStr” is supposed to
parse an email address. The key information for the input
value is contained in the noun “email address”, rather
than the verb “parse”. The part-of-speech category in the
identifier names can be identified using a NLP tool called
Part-of-Speech (PoS) tagger [18], and thereby removing any
non-noun tokens. Thus, “an email address str” and
“parse email address str” both become “email
address str”.

The implementation uses Stanford Log-linear Part-Of-
Speech Tagger Version 3.0.4 [29] to perform PoS tagging.
The default options are used including the pre-trained bidi-
rectional model [26] for English language.

3) Removal of Non-Words: Identifier names may include
non-words which can reduce the quality of search results.
Therefore, names are filtered so that the web query should
entirely consist of meaningful words. This is done by
removing any word in the processed identifier name that
is not a dictionary word. For example, “email address

str” becomes “email address”, since “str” is not a
dictionary word.

The implementation uses an edited version of SCOWL
word lists [8] that consists of 573,120 English language
words and common abbreviations. A modified version of
the Jazzy tool [3] is used to carry out the word lookup.

C. Obtaining Regular Expressions

The regular expressions for the identifiers are obtained
dynamically from two ways: 1) RegExLib Search, and 2)
Web Search. The methods are explained in the following.

1) RegExLib: RegExLib [6] is an online regular expres-
sion library that is currently indexing around 3300 expres-
sions for different types (e.g., email, URL, postcode) and
scientific notations. It provides an interface to search for a
regular expression using keywords. The search can also be
filtered by ratings on the expressions that have been given
by the online users of the library according to their quality.

The approach accesses the search interface by generating
HTTP requests on-the-fly for a processed identifier name.
The regular expressions are then collected from the search
results (in the HTTP response). Only the expressions having
highest ratings in the results are selected.

2) Web Search: When RegExLib is unable to pro-
duce regular expressions, the approach performs a simple
web search. The search query is formulated by prefixing
the processed identifier names with the string “regular
expression”. For example, the regular expressions for
“email address” are searched by applying the query
“"regular expression" email address”.

The first 50 URLs returned in the search results are then
downloaded and parsed using the JSoup parser [4]. The
regular expressions are collected by identifying any string
that starts with ^ and ends with $ symbols. These regular
expressions are further filtered with the Pattern.compile()
method from Java 6 that helps in discarding any malformed
expressions in the search results.

D. Generating Web Queries

Once the regular expressions are obtained, valid val-
ues can be generated automatically, e.g., using automaton.
However, the objective here is to generate not only valid
values but also realistic and meaningful values. Therefore,

a secondary web search is performed to identify values on
the Internet matching the regular expressions.

This section explains the generation of web queries for the
secondary search to identify valid values. The web queries
include different versions of pluralised and quoting styles
explained in the following.

1) Pluralization: The approach generates pluralised ver-
sions of the processed identifier names by pluralising the last
word according to the grammar rules. For example, “email
address” becomes “email addresses”. The Mode-
Shape library [5] is used in the implementation to achieve
grammar based pluralisation.

2) Quoting: The approach generates queries with or
without quotes. The former style enforces the search engine
to target web pages that contain all words in the query as a
complete phrase. The latter style is a general search to target
web pages that contain the words in the query.

In total, 4 queries are generated for each identifier
name that represent all combinations of pluralisation and
quoting styles. For a processed identifier name “email
address”, the generated web queries are: email

address, email addresses, "email address",
"email addresses".

E. Performing Web Queries
The web queries are performed using Microsoft’s Bing

[1] – the only major Internet search engine providing free
API access at the time this research was conducted. The
implementation uses version 2.0 of Bing’s API [2] to retrieve
search engine results. The localisation is set to “en-GB”,
with URL results of a non-HTML content type (e.g., PDFs,
Word document files) to be ignored. The API limits the
results to the first 50 web pages for each query. The textual
contents of the web pages are then downloaded.

F. Identifying Values
Finally, the collated regular expressions and the down-

loaded web pages are used to identify valid values. For
each web page, the HTML tags are stripped out and the
regular expressions are matched on the remaining text one
by one. All unique matches are then identified as potential
valid String values.

III. EMPIRICAL EVALUATION

The evaluation was performed in the light of the following
research questions.

RQ1. Does the use of regular expressions and web queries
formulated by the knowledge extracted from the program
identifiers result in producing valid string values? If yes,
what is the precision?

This is a basic question about the validity of the approach.
It seems intuitively plausible that regular expressions can be
used to help identify valid values. However, it is important
to analyse the practicality of the approach when the regular

Table I
DETAILS OF THE CASE STUDIES WITH CLASS, METHOD AND PARAMETER NAMES

Project Class Method Parameter String data type validated
Chemeval CASNumber isValid casNumber CAS registry numbers
Conzilla MIMEType MIMEType ntype MIME types

PathURN PathURN nuri Path URNs
ResourceURL ResourceURL nuri Resource URLs
URI URI nuri URIs
URN URN nurn URNs

Efisto Util parse_ddmmyyyy_Date date_string Dates in format ‘dd.MM.yyyy’
parseDate date_string Dates in format ‘EEE, dd MMM yyyy

HH:mm:ss zzz’
GSV05 TimeChecker TimeChecker time 24 hour format
JXPFW CLocale toLocale locale POSIX locale identifiers

InternationalBank
AccountNumber

checkBasicBankAccount
Number

bban Bank Identifier Codes (BICs)

isValidIBAN iban International Bank Account Numbers (IBANs)
checkCountry country ISO 3166 country codes

LGOL DateFormatValidator isValid str Dates in format ‘dd/MM/yyyy’
NumericValidator isValid str Strings that represent Integers
PostCodeValidator isValid str UK postcodes

Open Validator checkEmail email Email Address
Symphony checkSsn ssn US Social Security Number (SSNs)
PuzzleBazar Validation validateEmail text Email Address
TMG Isbn Isbn isbn International Standard Book Numbers (ISBNs)

Month isMonth month Month names
Year Year year Four digit year

WIFE BIC BIC bic Bank Identifier Codes (BICs)
IBAN IBAN iban International Bank Account Numbers (IBANs)

expressions and the web queries are generated dynamically
using the information from the program identifiers. More
specifically, the question is about measuring the strength of
the approach by computing the average precision of valid
values from the generated values.

RQ2. Which web search strategies are significant in
finding valid string values?

This question is related to the different processing meth-
ods for the identifier names. In other words, which NLP
techniques (tokenisation, PoS-tagging and Non-Word Re-
moval) are significant in finding valid values. For regular
expressions, how effective is the approach when using only
RegExLib versus using both RegExLib and the web search?

RQ3. How effective is the approach compared to the other
test data generation techniques for strings?

It is important to study the approach in view of the other
test data generation techniques for String types. Does the
approach outperform the other techniques on average? If
yes, by how much?

A. Case Studies

The research questions have been addressed on the case
studies drawn from 10 Java open source projects. They
mainly include input validation routines that are integrated
in interactive applications to check inputs entered by an end
user. These routines perform relatively complex operations
on strings, for which generating valid values is a challenging
task, and thus are ideal for evaluation.

There were 20 Java classes selected which contained 24

different input validation routines for various types of string,
comprised of 2833 lines of code. Many of these routines
were non-monolithic programs, i.e., there existed several
calls to sub-routines. Table I provides details of the case
studies including the names of class, method and String
parameters validated. The details for each case study is
provided in the following.
Chemeval (chemeval.sf.net) is a chemical evaluation
framework to assist hazard assessment in a molecular
structure. One class was selected that validates unique
identifiers, called Chemical Abstracts Service (CAS)
numbers which are assigned to every chemical substance
described in the open scientific literature. A CAS Number
is separated by hyphens into three parts, the first consisting
of up to 7 digits, the second consisting of 2 digits,
and the third consisting of a single digit serving as a
checksum. CAS numbers begin at “50-0-0”, the number
for formaldehyde, and end at “1346599-09-4”, the
number for naphthalenol.
Conzilla (www.conzilla.org) is a knowledge management
tool that is designed to allow users to peruse related concepts
in a browser interface. Six classes were selected, including
one validates MIME types, whilst the other five are respon-
sible for validating different types of URI.
Efisto (efisto.sf.net) is a tool for web file sharing. One class
was selected that validates two types of Date formats.
GSV05 (gsv05.sf.net) is a mobile attendance recorder two-
tier J2ME application. One class was selected that validates
24 hour time format supplied as strings.

Table II
STRATEGIES FOR IDENTIFYING VALID VALUES

Strategy Regular Expression Method NLP Method
RegExLib Web Search POS-Tagging Remove Non-Words

S0 7 7 7 7
S1 X 7 7 7
S2 X 7 X 7
S3 X 7 X X
S4 X X 7 7
S5 X X X 7
S6 X X X X

JXPFW (jxpw.sf.net) stands for ‘Java eXPerience Frame-
Work’, a utility library used in commercial applications.
Two classes were selected, which validate POSIX locale
identifiers, Bank Identifier Codes (BICs) and International
Banking Account Numbers (IBANs).
LGOL (lgol.sf.net) is a framework for building Java appli-
cations for local governments in the UK. Three classes were
selected, which validate a date format, integer numbers and
UK postcodes.
OpenSymphony (www.opensymphony.com) is a web de-
velopment framework. One class was selected for validating
email addresses and US Social Security Numbers (SSNs).
PuzzleBazar (code.google.com/p/puzzlebazar) is a
GWT based framework for the development of web-based
puzzles. One class was selected to validate email addresses.
TMG (tmgerman.sf.net) stands for ‘Text Mining for Ger-
man documents’ aiming for scientific/engineering text pro-
cessing tasks. Four classes were selected, involving the
validation of International Standard Book Numbers (ISBNs),
month names and a year number format.
WIFE (wife.sf.net) is a framework for SWIFT messages
parsing, writing and processing between international banks.
Two classes were selected, involving the validation of BICs
and IBANs.

B. Answers to Research Questions

In order to answer the research questions, different strate-
gies were explored for processing identifier names and ob-
taining regular expressions dynamically. In total, 7 strategies
were experimented which are described in the following.

The first strategy S0 is the simplest in which no regular
expressions were sought and the identifier names were
processed only through tokenisation. The web queries were
generated from the processed identifier names and performed
using the search engine. The search results were processed
by first downloading the contents of each URL and stripping
out HTML tags. The remaining text was then tokenised ac-
cording to whitespace, and placed into a list of unique tokens
as potential String values. This strategy was proposed in our
previous work [24] aiming to enhance branch coverage in the
SBT technique. In this paper, this strategy is used to compare
with the current approach to analyse the generation of valid
values using NLP techniques and regular expressions.

The remaining strategies S1-S6 can be divided into
two groups. From S1 to S3, only RegExLib was sought
for obtaining regular expressions. From S4 to S6, first
RegExLib was sought, then web search method was applied
if no regular expressions could be found by RegExLib. Each
group of strategies used different NLP methods for process-
ing identifier names. Tokenisation is a basic technique for
determining the words that make up an identifier. Therefore,
all strategies performed tokensiation as a first step. Then,
a combination of PoS tagging and Non-Word Removing
techniques were applied. Table II provides the summary of
the strategies S0-S6.

The remaining of the section details the empirical evalu-
ation and addresses the research questions.

RQ1. Does the use of regular expressions and web queries
formulated by the knowledge extracted from the program
identifiers result in producing valid string values? If yes,
what is the precision?

To answer this question, the values generated by each
strategy were run through the validation routines in each
project, and the percentage of valid values for each type
was computed. Table III records this percentage for each
strategy for the 24 String types and their average.

The strategy S0 produced valid values in all cases, except
in Resource URL (Conzilla) and one of the Date (Efisto)
types. The strategies using regular expressions and NLP
techniques, i.e., S1-S6, produced higher number of valid
values compared to S0 on average. However, there are three
cases where no values could be produced by strategies S1-
S6. The analysis of each one of those is given as follows.

The first case was Path URN (Conzilla). There were
no regular expressions generated by RegExLib for this
type, so S1-S3 could not proceed any further. Strategies
S4-S6 applied web search to further explore for regular
expressions. However, Bing did not return any search results.
Consequently none of the strategies were able to produce
valid values for this case.

The second case was Resource URL (Conzilla). No reg-
ular expressions were generated by RegExLib for this type
either. However, many expressions were collected from the
web search method which consequently produced several
values. These values were mainly related to the Internet
resource references (such as URLs). However, no value

Table III
% COMPARISON OF VALID VALUES IN DIFFERENT STRATEGIES WITH AVERAGE PERCENTAGE AND RANK-SUM SCORES

Project String Type S0 S1 S2 S3 S4 S5 S6
Chemeval CAS number 18.48 48.77 95.5 95.51 46.95 95.5 95.5
Conzilla MIME type 7.22 0.62 0 0 0.78 68.29 100

Path URN < 0.01 0 0 0 0 0 0
Resource URL 0 0 0 0 0 0 0
URI 5.94 1.86 2.25 2.33 2.05 2.17 1.99
URN 0.05 0.1 0.12 0.13 0.08 0.13 0.11

Efisto Date (dd.MM.yyyy) 1.79 0 0 0.13 0 0 0.17
Date (EEE, dd MMM yyyy HH:mm:ss zzz) 0 0 0 0 0 0 0

GSV05 24 hour time 1.19 6.88 6.03 5.01 6 5.16 5.51
JXPFW BBAN 8.48 52.63 95.11 94.92 66.67 94.87 94.87

POSIX locale identifier 1.76 0 0 0 5.93 3.2 2.21
2 letter country code 0.30 0.06 0.14 0.11 0.05 0.14 0.09
IBAN 0.21 15.52 3.9 3.86 4.66 3.75 3.75

LGOL Date (dd/mm/yyyy) 0.15 0.02 0.02 7.12 0.07 0.12 7.69
Integer 1.76 3.79 3.45 0 2.76 4.34 0
UK Postcode < 0.01 0.01 0.01 100 0.07 0.37 100

OpenSymphony Email address 6.35 70.9 56.71 97.62 22.5 58.7 99.16
SSN 17.96 4.9 4.63 100 5.56 5.59 100

PuzzleBazar Email address 0.37 0.32 0.11 0.11 0.39 0.1 0.12
TMG ISBN 6.37 75.39 81.29 81.29 62.33 81.29 81.29

Month 0.04 0.57 0.63 0.68 0.65 0.68 0.68
Year 8.29 93.35 92.16 93.01 91.97 92.53 91.88

WIFE BIC 7.74 100 100 100 100 100 100
IBAN 0.07 80.43 83.58 83.58 20.44 83.58 83.58

Average 3.94 23.17 26.07 36.06 18.33 29.19 40.36
Rank-Sum scores 76 85.5 92 112 86.5 108.5 111.5

corresponded to the required type of the URL that is prefixed
with “res://” – a rare representation. Therefore, the count
for valid values in all cases remained zero.

The last case was Date (EEE, dd MMM yyyy HH:mm:ss
zzz) (Efisto). In this case, RegExLib generated a number
of regular expressions, however, none corresponded to this
precise format. Hence, no valid values were produced for
this case in any strategy.

All strategies produced a high number of valid values on
average when compared to S0. In some cases 100% of the
generated values were found to be valid, including MIME-
Type (Conzilla), UK Postcode (LGOL) and BIC (WIFE).
There are few cases where the precision fell below 1%.
There were various causes for such performance that are
discussed in the following.

Inappropriate regular expressions
In some cases, the regular expressions obtained were not
suitable for the required values. This was mainly due to the
RegExLib search mechanism that generates expressions not
particularly related to the search query. For example, the
search query “URN” generates expressions related to date
formats, XML tags, postal address etc. Thus, a large set of
values generated by these expressions could not be validated
as a proper URN.
Low informativeness in identifier names
There are cases where a peculiar format is required for the
values to be valid but the identifier names could not guide the
web queries to generate the required format. For example,
the cases related to date and time formats (Efisto, GSV05,

0

10.00

20.00

30.00

40.00

50.00

S0 S1 S2 S3 S4 S5 S6

Figure 3. Comparison of Average Percentage of Valid Values in different
strategies (summary of Table III).

LGOL) and ISO country codes (JXPFW) have produced a
large set of values but few were regarded as valid.
Misguided search due to a general context
There are cases where the identifier names represent a
general context, thereby causing too many values to be
generated of which only few were valid. A good example is
the comparison between Email Address in OpenSymphony
and PuzzleBazar projects, where the former had produced
⇡99% of valid values, but the latter had a marginal success.
The main reason is the identifier names (“Validation”,
“text”) in the PuzzleBazar project that represent a general
context but not particularly related to an email address.

0

10.00

20.00

30.00

40.00

No NLP POS-Tagging POS-Tagging + Non-Word Removal

Figure 4. Aggregated mean comparison for different NLP techniques

0

6.00

12.00

18.00

24.00

30.00

RegExLib RegExLib + Web Search

Figure 5. Aggregated mean comparison for different methods of obtaining
regular expressions

Variations in the validation routines
It is observed that a large set of generated values were indeed
valid in many cases but their validity check failed. The
reason is that these validation routines vary in small details
about which values are considered to be valid. For example,
IBAN (JXPFW) requires the account numbers as a sequence
of characters without space, whereas IBAN (WIFE) accepts
spaces. The majority of IBANs generated by the approach
contained spaces which failed to be regarded as valid in the
former case, and thus produced low percentage compared
to the latter case where a high percentage (⇡83%) was
obtained.

Figure 3 shows the comparison of strategies by their aver-
age performance. A general conclusion can be drawn from
the chart that the use of regular expressions and web queries
can find valid values based on the information extracted from
the program identifier names. The quantitative result is partly
due to finding the correct regular expressions and partly due
to the information contained in the identifier name in order
to form comprehensive web queries. This issue is further
discussed in Section IV.

RQ2. Which web search strategies are significant in
finding valid string values?

The comparison of average percentage of valid values
shown in Figure 3 shows that the strategies using NLP tech-
niques and regular expressions, i.e., S1-S6, outperformed the
strategy S0 where a simplest approach was applied. The
strategies were also analyzed according to the Rank-Sum
test [9] in which each strategy was ranked in ascending
order of their percentage computations for each case, and
then adding all of the ranks together. For example, S0 was
ranked 1 (lowest) and S6 was ranked 7 (highest) in Email
address (OpenSymphony) case. Where tied ranks occurred,
i.e., the same ranks occurred between two or more strategies,
then the average rank was considered from the sum of the
ranks concerned and divided by their number. For example,
all strategies in the Resource URL (Conzilla) case are tied,
thus given an equal rank of 4 = (1+2+3+4+5+6+7)/7. The
rank-sum score was then calculated for each strategy by

simply adding together their respective ranks for all cases.
For simplicity, only the rank-sum scores are given in Table
III, which shows that strategies S1-S6 are ranked higher than
the strategy S0, and strategies S3 and S6 are ranked the
highest by overall performance.

There is also a general trend observed among the strate-
gies S1-S6. This trend can be studied in two further ques-
tions:

RQ 2.1: Which combination of NLP techniques is more
significant for processing identifier names?

To answer this question, the aggregated data from Table
III for strategies S1, S4 (that use no NLP techniques), S2,
S5 (that use PoS-Tagging) and S3, S6 (that use PoS-Tagging
+ Non-Word Removal) is compared in Figure 4. It is seen
that using NLP techniques is useful for identifying more
valid values, with an average difference between no NLP and
PoS-Tagging of ⇡7%, whereas between no NLP and PoS-
Tagging + Non-Word Removal the difference is ⇡17.5% in
the study.

RQ 2.2: Which method for obtaining regular expression is
more significant in finding valid values?

To answer this question, the aggregated data for strategies
S1, S2, S3 (that use only RegExLib) and for strategies S4,
S5, S6 (that use RegExLib + web search) is compared in
Figure 5. It is seen that using both methods helps in finding
more valid values which had an average increase of ⇡12%
in the evaluation study.

In order to test the statistical significant difference be-
tween the strategies on a general population, Wilcoxon
Matched-Pairs Signed-Ranks test [9] was conducted at a
confidence level of 0.95. The p-values were calculated using
R tool [19] for different comparisons shown in Table IV. At
this confidence level, where a p-value < 0.05 indicates signif-
icance, a significant difference was identified for strategies
S3-S6 against strategy S0. To address, RQ 2.1 and RQ 2.2,
the test was conducted on different combination of strategies.
The p-values given in Table V shows a significant difference
between performance obtained using NLP techniques (PoS-
Tagging + Non-Word Removal) and not using them (No

Table IV
p-VALUES FOR WILCOXON MATCHED-PAIRS SIGNED-RANKS TEST FOR ALL STRATEGIES AT CONFIDENCE LEVEL 95%. THE SIGNIFICANT

DIFFERENCE IS GIVEN IN BOLD.

S0 S1 S2 S3 S4 S5 S6
S0 - 0.0605 0.0952 0.0123 0.0312 0.0091 0.0022
S1 0.0605 - 0.9794 0.0949 0.3860 0.1313 0.0290
S2 0.0952 0.9794 - 0.1820 0.3048 0.0736 0.3318
S3 0.0123 0.0949 0.1820 - 0.0500 0.2446 0.4897
S4 0.0312 0.3860 0.3048 0.0500 - 0.0313 0.0594
S5 0.0091 0.1313 0.0736 0.2446 0.0313 - 0.2585
S6 0.0022 0.0290 0.3318 0.4897 0.0594 0.2585 -

Table V
p-VALUES FOR WILCOXON MATCHED-PAIRS SIGNED-RANKS TEST FOR DIFFERENT COMBINATIONS AT CONFIDENCE LEVEL 95%. THE SIGNIFICANT

DIFFERENCE IS GIVEN IN BOLD.

Comparison between p-value
No NLP (S1,S4) PoS-Tagging (S2,S5) 0.1313
No NLP (S1,S4) PoS-Tagging + Non-Word Removal (S3,S6) 0.0458

PoS-Tagging (S2,S5) PoS-Tagging + Non-Word Removal (S3,S6) 0.338
RegExLib (S1,S2,S3) RegExLib + Web Search (S4,S5,S6) 0.6407

NLP). However, no other differences were found to be
significant.

RQ3. How effective is the approach compared to the other
test data generation techniques for strings?

There are no known tools available for generating valid
String values in the same settings as provided in this paper.
The closest techniques are test data generation techniques
that usually aim for code coverage. Two main techniques:
dynamic symbolic execution and search-based testing, were
considered for comparison with the approach. For each
technique, a relevant tool was obtained that could generate
data for String types. Each class from the case studies was
run on these tools that generated several branch-covering test
cases. Then the test data was extracted from the test cases
for the 24 String types to analyse the percentage of valid
values through the validation routines.

For dynamic symbolic execution, Symbolic PathFinder
(SPF) [25] was used that performs symbolic execution of
Java bytecode with model checking and constraint solving.
Default options were used for the decision procedure: Choco
[27], and for the string solving approach: automata. SPF was
run till termination, i.e., either normally (when tests were
generated), or abnormally (due to the tool’s internal error).

For search-based testing, an improved version of
eToc [28], called eToc+ [24] was used. The tool performed
evolutionary searches for 100 generations of randomly-
generated values with a population size of 100 for each
branch. For an uncovered branch, eToc+ continued searching
until there had been no improvement in the best fitness
value found in the last 1000 generations, i.e., the search
had stagnated. This way, each uncovered branch got at least
100,000 fitness evaluations, possibly even more if progress
was being made.

Table VI provides the average percentage of valid val-
ues collected from the test cases generated by both tools.

Table VI
AVERAGE PERCENTAGE OF VALID VALUES IN DIFFERENT TEST

GENERATION TOOLS

eToc+ SPF
Average 10.28 4.17

Evidently, these tools have produced very low number of
valid values on average in comparison with the proposed
approach (cf. Table III). Although these tools are primarily
test case generation tools aiming to achieve a specific type
of coverage, they were used as a baseline comparison to
measure the effectiveness of the proposed approach. Let a
be an approach and s be a String type in the case studies,
the effectiveness function eff of a for s is calculated as

eff(a, s) =
% of valid values for s given by a

Maximum % of valid values for s

Then for each a, average effectiveness was taken for
all s. Figure 6 presents the comparison of the average
effectiveness for all approaches. It reflects the conclusion
from RQ 2 that strategies using regular expressions and NLP
techniques are more effective, where S6 outperformed all
approaches. eToc+ is seen to be almost as effective as the
strategies which employ no NLP techniques (i.e., S1 and
S4). SPF is seen to be the least effective. The main reason
is that String constraint solving in SPF is currently work-in-
progress4, and does not recognize complex object types (e.g.,
java.text.SimpleDateFormat, java.lang.Integer), and throws
runtime exception during test generation.

IV. THREATS TO VALIDITY

One major hypothesis this approach is built on is that the
identifier names include relevant domain knowledge. This

4http://babelfish.arc.nasa.gov/trac/jpf/wiki/projects/jpf-symbc/doc

0

0.10

0.20

0.30

0.40

0.50

0.60

S0 S1 S2 S3 S4 S5 S6 eToc+ SPF

Figure 6. Comparison of Average Effectiveness of different approaches

is investigated by Butler et al. [12] in an empirical study
of 28,000 identifier names drawn from 60 open source Java
projects and concluded that programmers tend to enclose
the domain knowledge in concise names using conventional
styles of camel casing and underscores. In our experiments,
the case studies were obtained from different open source
portals in a variety of domains that contain different levels of
expressiveness. Also in some cases, more than one program
in a similar domain but from different sources were con-
sidered. In general, many valid values were obtained by the
approach using the identifier names in the empirical study.
Arguably, the identifier names that are more expressive have
been more useful in drawing valid values, but evidently,
using NLP processing techniques improved the usefulness
of the identifier names in the web queries.

Another major threat is about obtaining inappropriate
regular expressions. This becomes more sensitive in using
the web search method when the contents of a web page are
presented in a highly unstructured way. The chances can be
reduced by using dedicated libraries such as RegExLib that
provide more formal structure for searching regular expres-
sions. However, RegExLib is not very comprehensive at
present and only provides a basic search engine of limited
effectiveness. Moreover, the approach is currently using a
very simple technique for collating regular expressions from
the web, but more appropriate algorithms can be employed
to check out their relevance with the target String type.

Another threat involves the potential bias in the compari-
son of different strategies. Simple mean calculation showed
that the strategy S6 has outperformed the others in the
evaluation study, however, more rigorous statistical analysis
was required to check whether the results are not due to the
selection of case studies. A common and reliable method is
to perform Wilcoxon Matched-Pairs Signed-Ranks test [9]
– a non-parametric statistical hypothesis test that does not
require any assumptions about the shape of the distribution.
The test was performed to show the significance of strategies
over each other at the 95% confidence level. The test was
repeated several times to increase the probability of the error.

Our previous work [24] showed that the use of valid
values produced by the strategy S0 in search based testing
increased the coverage by 14% on average on the same case
studies. Since many more valid values have been produced
by the current approach (S1-S6), it is likely that the approach
would also be effective in enhancing the coverage.

V. RELATED WORK

There has been significant work on test data generation,
but little of it has addressed the problem of string input
generation in the past. Many of the existing approaches
tackle this problem by limiting the length of the string
value. Even for fixed length, the input space is too large for
the exhaustive testing of all inputs. Alternatively, random
exploration of the input space could be feasible in practice,
but the probability that it can exercise the deep branches
is very low [22] [11]. Elbaum et al. [13] have proposed to
collect input data from previous user sessions. This turns
out to be an effective approach for generating test cases
at a little expense. However, this work is mostly related
to web applications in which users normally leave behind
the footprints of their data. On the contrary, the use of our
approach goes beyond the web applications; moreover, it
searches for input data from scratch without assuming any
historic usage of the application.

Dynamic Symbolic Execution (DSE) is an effective tech-
nique for test generation but most implementations get stuck
at path conditions which include complex input structure
(such as strings). Several approaches have been proposed to
reduce the input space to generate syntactically valid inputs.
Li et al. [21] have proposed Reggae tool based on a DSE
engine for testing .NET programs that transforms the generic
functions to specialized functions which provide the DSE
engine with a smaller exploration space. Majumdar and Xu
[22] have proposed the CESE tool that reduces the input size
for DSE by pre-generating bounded-sized strings from the
symbolic grammar that is abstracted from the concrete input
syntax. A similar approach has been presented by Godefroid
et al. [15] to leverage white-box fuzzing using a custom
grammar based constraint solver. However, these approaches
assume knowledge of the valid input type provided by
some context-free grammar. Contrary to the approach in this
paper, this knowledge is actually inferred from the program
identifier names and formalised with the help of the relevant
regular expressions that are also obtained dynamically.

Further string constraint solvers, e.g., HAMPI [14], are
available but they currently lack support in existing DSE
tools; hence it is not straightforward to compare them with
the approach. Symbolic PathFinder [25] integrates external
string constraint solvers, but it is still at a preliminary stage.

In Search-Based-Testing (SBT), the problem has been
largely ignored treating strings as fixed-length characters
[17] or acquiring specialist generators [28]. Alshraideh and
Bottaci [7] exploited the string literals found in the program

under test and guided the search operators to focus the
search in the region of such string literals. This resulted in
an ameliorative branch coverage in the evolutionary testing
empirically. Bozkurt and Harman [10] studied the valid input
generation for service-oriented software. They proposed
reusing the outputs of the other existing web services as
inputs to the services under test. In contrast to these works,
the proposed approach in this paper uses web queries to find
potentially valid string values that might already exist on
the Internet. Our recent work [24] has actually proposed the
original idea, which is called the strategy S0 in this paper,
to enhance branch coverage in SBT by seeding web values.
However, achieving high coverage does not imply generating
valid values (as suggested by the analysis of S0 in Section
III-B). The current approach uses regular expressions and
NLP techniques with web searches that have appeared to be
more effective compared to the existing approaches.

VI. CONCLUSION AND FUTURE WORK

This paper has presented an approach for generating
values for String data types by using tailored web searches,
dynamic regular expressions and NLP techniques. The em-
pirical study showed that the valid values can be obtained
using the approach. Another benefit is that the generated
values are also realistic rather than arbitrary-looking – as
often the case with the most automatic test data generation
techniques. This is because the values are obtained from the
Internet which is a rich source of human-recognizable data.
When an automated oracle is non-existent, the test cases
using such values help in reducing human-oracle cost [23]
in terms of time and effort involved in interpreting results.
More empirical evidence is required to hold the claim that
is planned in the future work.

Future work also includes reducing the limitations of the
approach by employing more sophisticated algorithms for
processing identifier names, e.g., name expansion (i.e., con-
verting “str” to “string”) [20]. Moreover, advanced al-
gorithms for obtaining and filtering regular expressions shall
be investigated to improve the precision of valid values.

The use of valid values generated by this approach may
also be useful for a DSE approach instead of using random
concrete values. Also, fitness functions in SBT can benefit
from these values to reduce the time in the evolutionary
searches [24]. Further investigation is planned in these
directions with more empirical studies.

ACKNOWLEDGMENT

This work was funded by the EPSRC project RE-COST
(REducing the Cost of Oracles for Software Testing, grant
no. EP/F065825), http://recost.group.shef.ac.uk.

REFERENCES

[1] Bing search engine. http://www.bing.com.
[2] Introducing Bing API Version 2.0.

http://www.bing.com/developers/s/APIBasics.html.

[3] Jazzy. http://sourceforge.net/projects/jazzy.
[4] JSoup. http://www.jsoup.org.
[5] ModeShape library. http://www.jboss.org/modeshape.
[6] RegExLib: Regular Expression Library. http://regexlib.com/.
[7] M. Alshraideh and L. Bottaci. Search-based software test

data generation for string data using program-specific search
operators. STVR, 2006.

[8] K. Atkinson. Spell Checking Oriented Word Lists (SCOWL).
http://wordlist.sourceforge.net/.

[9] S. Boslaugh and P. A. Watters. Statistics in a nutshell - a
desktop quick reference. O’Reilly, 2008.

[10] Mustafa Bozkurt and Mark Harman. Automatically generat-
ing realistic test input from web services. In SOSE, 2011.

[11] J. Burnim and K. Sen. Heuristics for scalable dynamic test
generation. In ASE. IEEE Computer Society, 2008.

[12] S. Butler, M. Wermelinger, Y. Yu, and H. Sharp. Improving
the tokenisation of identifier names. In ECOOP, 2011.

[13] S. Elbaum, S. Karre, and G. Rothermel. Improving web
application testing with user session data. In ICSE, 2003.

[14] V. Ganesh, A. Kiezun, S. Artzi, P. Guo, P. Hooimeijer, and
M. Ernst. Hampi: A string solver for testing, analysis and
vulnerability detection. In CAV, pages 1–19, 2011.

[15] P. Godefroid, A. Kiezun, and M. Levin. Grammar-based
whitebox fuzzing. In PLDI, pages 206–215. ACM, 2008.

[16] P. Godefroid, N. Klarlund, and K. Sen. DART: Directed Auto-
mated Random Testing. ACM SIGPLAN Notices, 40(6):213–
223, June 2005.

[17] M. Harman and P. McMinn. A theoretical and empirical study
of search-based testing: Local, global and hybrid search. IEEE
Transactions on Software Engineering, 36:226–247, 2010.

[18] D. Jurafsky and J.H. Martin. Speech and Language Process-
ing. Prentice Hall, 2 edition, 2008.

[19] P. Kuhnert and W. N. Venables. An Introduction to R:
Software for Statistical Modelling & Computing. CSIRO,
Canberra, Australia, 2005.

[20] D. Lawrie and D. Binkley. Expanding identifiers to normalize
source code vocabulary. In ICSM, pages 113–122, 2011.

[21] N. Li, T. Xie, N. Tillmann, J. de Halleux, and W. Schulte.
Reggae: Automated test generation for programs using com-
plex regular expressions. In ASE, 2009.

[22] R. Majumdar and R. Xu. Directed test generation using
symbolic grammars. In ASE, 2007.

[23] Aditya P. Mathur. Foundations of Software Testing. Addison-
Wesley Professional, 1st edition, 2008.

[24] P. McMinn, M. Shahbaz, and M. Stevenson. Search-based
test input generation for string data types using the results of
web queries. In ICST, pages 141–150, 2012.

[25] C. Pǎsǎreanu, P. Mehlitz, D. Bushnell, K. Gundy-Burlet,
M. Lowry, S. Person, and M. Pape. Combining unit-level
symbolic execution and system-level concrete execution for
testing nasa software. In ISSTA, pages 15–26. ACM, 2008.

[26] L. Shen, G. Satta, and A. Joshi. Guided Learning for
Bidirectional Sequence Classification. In ACL, 2007.

[27] CHOCO Team. choco: an open source java constraint
programming library. Research report 10-02-INFO, Ecole des
Mines de Nantes, 2010.

[28] P. Tonella. Evolutionary testing of classes. In ISSTA, 2004.
[29] K. Toutanova, D. Klein, C. D. Manning, and Y. Singer.

Feature-rich part-of-speech tagging with a cyclic dependency
network. In NAACL ’03, pages 173–180, 2003.

[30] L. Williams, B. Smith, and S. Heckman. Test Coverage with
EclEmma. North Carolina State University, March 2009.

