
Test Flimsiness: Characterizing Flakiness Induced by Mutation to
the Code Under Test

Owain Parry

University of Sheffield

Sheffield, UK

Gregory M. Kapfhammer

Allegheny College

Meadville, USA

Michael Hilton

Carnegie Mellon University

Pittsburgh, USA

Phil McMinn

University of Sheffield

Sheffield, UK

Abstract
Flaky tests, which fail non-deterministically against the same ver-

sion of code, pose a well-established challenge to software devel-

opers. In this paper, we characterize the overlooked phenomenon

of test FLIMsiness: FLakiness Induced byMutations to the code

under test. These mutations are generated by the same operators

found in standard mutation testing tools. Flimsiness has profound

implications for software testing researchers. Previous studies quan-

tified the impact of pre-existing flaky tests on mutation testing, but

we reveal that mutations themselves can induce flakiness, exposing

a previously neglected threat. This has serious effects beyond mu-

tation testing, calling into question the reliability of any technique

that relies on deterministic test outcomes in response to mutations.

On the other hand, flimsiness presents an opportunity to surface

potential flakiness that may otherwise remain hidden. Prior work

perturbed the execution environment to augment rerunning-based

detection and the test code to support benchmarking. We advance

these efforts by perturbing a third major source of flakiness: the

code under test. We conducted an empirical study on over half a

million test suite executions across 28 Python projects. Our statisti-

cal analysis on over 30 million mutant-test pairs unveiled flimsiness

in 54% of projects. We found that extending the standard rerunning

flaky test detection strategy with code-under-test mutations detects

a substantially larger number of flaky tests (median 740 vs. 163)

and uncovers many that the standard strategy is unlikely to detect.

CCS Concepts
• Software and its engineering→ Software testing and debug-
ging.

Keywords
Software Testing, Mutation Testing, Flaky Tests.

ACM Reference Format:
Owain Parry, Gregory M. Kapfhammer, Michael Hilton, and Phil McMinn.

2026. Test Flimsiness: Characterizing Flakiness Induced by Mutation to the

Code Under Test. In 2026 IEEE/ACM 48th International Conference on Software
Engineering (ICSE ’26), April 12–18, 2026, Rio de Janeiro, Brazil . ACM, New

York, NY, USA, 12 pages. https://doi.org/10.1145/3744916.3773125

This work is licensed under a Creative Commons Attribution 4.0 International License.

ICSE ’26, Rio de Janeiro, Brazil
© 2026 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-2025-3/26/04

https://doi.org/10.1145/3744916.3773125

1 Introduction
Flaky tests, which are test cases that fail non-deterministically

against the same version of code [37], represent a persistent chal-

lenge in software development [18, 22, 42]. This issue is alarmingly

widespread, with survey data revealing that 59% of software devel-

opers grapple with flaky tests on a monthly, weekly, or even daily

basis [39]. For developers, the challenge of flaky tests is profound:

they erode trust in test suites, lead to wasted time debugging spuri-

ous failures that are not indicative of genuine bugs, and cause false

alarms that hold up continuous integration pipelines [17, 20, 25].

Flaky tests also pose challenges for researchers, including the risk

of invalidating determinism assumptions made by automated tech-

niques. The limitations of standard detection approaches and exist-

ing datasets also hinder the benchmarking of mitigation strategies

and the assessment of the wider impact of flaky tests.

Challenge 1: The Hidden Hazard of Mutation-Induced
Flakiness. Flaky tests threaten the validity of techniques that as-

sume deterministic test behavior, including fault localization [53],

automatic test suite generation [23], and mutation testing. Prior

work [8, 48] showed how flaky tests compromise mutation testing,

but their focus was limited to pre-existing flakiness, leaving open

the question of whether new flakiness might arise during analysis.

This leaves a critical gap: if mutation operators applied to the code

under test can trigger flakiness in stable tests, then mutation testing

may be subject to unaccounted-for sources of uncertainty. This con-

cern is not limited to mutation testing. Many techniques driven by

mutants, including within the fields of fault localization [36, 55, 56],

regression testing [19], performance testing [45], and web test-

ing [32], assume deterministic test outcomes. If standard mutation

operators can induce flakiness, then the reliability of conclusions

drawn from mutant-driven techniques may be compromised—a

possibility that, despite its risk, remains largely unexplored.

Challenge 2: Inadequate Detection, Incomplete Datasets.
At the same time, detecting flaky tests remains a fundamental issue.

Rerunning test suites to observe inconsistent failures is a popular

strategy [7, 21, 40, 41], but often fails to expose flaky tests that

fail only under specific conditions. To address this, prior work has

altered the execution environment to increase the likelihood of

failures, such as by scheduling competing stressor tasks [51] or re-

stricting resource allocations [50]. Another problem is the scarcity

and poor reproducibility of real-world flaky test datasets, which

hampers the evaluation of mitigation strategies and the study of the

broader impact of flakiness on techniques including mutation test-

ing. To overcome this, researchers have injected artificial flakiness

https://doi.org/10.1145/3744916.3773125
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3744916.3773125

ICSE ’26, April 12–18, 2026 , Rio de Janeiro, Brazil Owain Parry, Gregory M. Kapfhammer, Michael Hilton, and Phil McMinn

def parse_chunked(self , unreader):

(size , rest) = self.parse_chunk_size(unreader)

while size > 0:

- while size > len(rest):

+ while size < len(rest):

size -= len(rest)

yield rest

rest = unreader.read()

if not rest:

raise NoMoreData ()

(a) An excerpt from the mutant diff. Lines prefixed with - indicate
removed code, while those prefixed with + indicate added code.

@pytest.mark.parametrize("fname", httpfiles)

def test_http_parser(fname):

env = treq.load_py(os.path.splitext(fname)[0] + ".py")

expect = env["request"]

cfg = env["cfg"]

req = treq.badrequest(fname)

with pytest.raises(expect):

req.check(cfg)

(b) The test case source code.

Figure 1: An example of a flimsy mutant-test pair from the gunicorn project. Based on our own inspection of the code, we
reasoned that changing the loop condition to while size < len(rest) causes the parser to consume data even when it already
has enough, subtracting too much and potentially sending size negative. This would misalign chunk boundaries and could
raise NoMoreData. Assuming that the amount of data returned by read() varies depending on factors like buffering or timing,
this change exposes the test case to input/output-related flakiness, an established category in the literature [18, 33, 37].

into test code, either by instrumenting bytecode to probabilistically

raise exceptions [15], or by applying custom mutation operators

that introduce flaky anti-patterns [13]. While existing work has ex-

plored perturbing the environment and test code, flakiness has been

shown to arise from a third source: the code under test [18, 22, 33].

This opens up a complementary opportunity: rather than viewing

mutation as a source of noise, we might treat it as a lens that reveals

potential flakiness that conventional rerunning fails to detect.

We set out to explore these risks and opportunities by charac-

terizing a previously overlooked phenomenon that we refer to as

test flimsiness, defined as FLakiness Induced byMutations to the

code under test (FLIMsiness). Unlike prior work that used special-

ized mutation operators targeting test code [13], these mutations

are automatically generated by the same standard operators found

in out-of-the-box mutation testing tools [29, 43]. We conducted a

large-scale empirical study across 28 Python projects, comprising

over half a million test suite executions. These projects span diverse

domains from web development and data science to networking,

cryptography, and scientific computing. Using robust statistical

analysis on more than 30 million mutant-test pairs (a mutation and

a test case, evaluated together to detect behavioral changes), we

reliably identified transitions from stability to flakiness triggered by

mutations to the code under test. See Figure 1 for a concrete exam-

ple of a flimsymutant-test pair from the gunicorn project, one of the

28 Python projects used in this paper’s empirical study. Ultimately,

we found flimsiness to be prevalent, affecting 15 out of 28 projects,

highlighting the extent to which mutant-driven techniques can

induce flakiness and undermine their own reliability.

We investigated whether specific mutation operators are more

likely to induce flakiness and found that the mutants from one par-

ticular operator have over 3 times higher odds of inducing flakiness

compared to others. This suggests that selecting mutation operators

more strategically could improve the efficiency of approaches that

use mutants to expose flakiness. We applied a simulation-based

methodology to compare the standard rerunning flaky test detec-

tion strategy to an alternative mutation-based strategy. We found

that the mutation-based approach detects a substantially larger

number of flaky tests (median 740 vs. 163) and uncovers many that

the standard strategy is unlikely to detect. Although we do not

assert that this induced flakiness fully reflects naturally occurring

flakiness, these results emphasize the potential of mutations to the

code under test as an augmentation to rerunning, and reinforces

our interpretation of flimsiness as a distinct form of flakiness. Fi-

nally, we evaluated the predictive value of pre-mutation coverage

of the mutated line with respect to predicting the occurrence of

flimsiness. In particular, we found that whether a test case non-

deterministically covered the mutated source code line prior to

mutation does not reliably predict whether the mutant will induce

flakiness (precision: 0.16, recall: 0.1). This suggests that the causes

of flimsiness are more nuanced than simply surfacing unstable

coverage, despite previous studies that highlight the issue [27, 48].

Taken together, our findings highlight a previously understud-

ied threat to mutant-driven techniques while also revealing a new

avenue for surfacing flaky behavior through code-under-test muta-

tion. In summary, this paper makes the following key contributions:

1. Definition and characterization of test flimsiness.We ad-

dress a crucial gap in flakiness research by empirically analyzing

test flimsiness, a phenomenon in which stable test cases become

flaky in response to mutations applied to the code under test.

2. Extensive empirical evaluation. Our large-scale study, con-
ducted across a diverse set of 28 real-world Python projects, reveals

that test flimsiness occurs in 54% of projects, among other timely

insights into this heretofore overlooked phenomenon.

3. Comprehensive public dataset.We release a rich dataset [5]

comprising over half a million test suite runs and 30 million mutant-

test pairs, annotated with test outcome reports, coverage data, and

other metadata to support future research in this area.

2 Methodology
This section describes our methodology for answering this paper’s

four research questions regarding test flimsiness:

RQ1: Prevalence. How prevalent is mutation-induced flakiness

among otherwise stable test cases?

RQ2: Operators. Which mutation operators are the most likely to

produce mutants that induce test flakiness?

RQ3: Detection. Towhat extent do test suite runs with andwithout
mutations detect the same flaky tests?

RQ4: Coverage. How well does pre-mutation coverage of the

mutated line predict whether the mutant induces test flakiness?

Test Flimsiness: Characterizing Flakiness Induced by Mutation to the Code Under Test ICSE ’26, April 12–18, 2026 , Rio de Janeiro, Brazil

We developed Python scripts and a custom pytest plugin to

automate the empirical study. These are available in the replication

package [5] alongside our dataset and evaluation results.

2.1 Dataset
We selected 30 active Python projects to use as subjects in our

study of test flimsiness. These projects are all hosted on GitHub

and appear on a larger list of projects that the Open Source Security

Foundation recognizes as influential and important [4]. This gener-

ated list ranks repositories according to metrics such as contributor

activity, project maturity, release frequency, and dependency us-

age, highlighting those that are most essential to the open-source

ecosystem. We also selected some projects because prior flaky test

studies used them as subjects [38, 40, 41], and we randomly sam-

pled others from the influential projects list. For each candidate

subject, we spent up to 30 minutes attempting to set it up and run

its test suite. We used the commit associated with the latest release

or tag when available, and otherwise the latest commit on the main

branch. If we could not complete setup within this time limit, we

excluded the project. For this study, we dropped two projects due

to persistent technical issues, including frequent crashes and time-

outs that disrupted the experiment pipeline. Following this process

ultimately yielded a final dataset of 28 diverse subjects.

For each subject, our scripts executed the test suite 20 times with

line coverage measurement, referred to as the coverage runs, and
12,000 times without, referred to as the standard runs. We used

Coverage.py [2], a mature and widely used Python coverage tool,

and saved coverage data as SQLite3 databases. Our scripts gener-

ated 300 mutated versions of each subject by applying a randomly

selected mutation operator to a randomly selected line in the code

under test, entirely excluding test code, using Cosmic Ray [1]. To

ensure test code (including the source files of tests and support code

such as fixture definitions) was excluded from mutation, we defined

filename patterns using wildcards for each subject. We chose Cos-

mic Ray for its active maintenance and modular design suitable for

our study. We excluded two of Cosmic Ray’s mutation operators

(ExceptionReplacer and RemoveDecorator) due to persistent issues,

including frequent generation of unexecutable mutants. For the

first 100 mutants of each subject, our scripts executed the test suite

100 times, and for the remaining 200, our scripts executed the test

suite 10 times; all such runs are collectively referred to as the mu-
tant runs. Since we could not know in advance how many runs per

mutant would be appropriate, we followed this approach to strike

a balance between exploration and exploitation. The 12,000 mutant

runs (100 × 100 + 200 × 10) matches the number of standard runs.

For each test suite run, our scripts used a Docker [3] container

and saved the test report in JUnit XML format. Docker containers

ensure a fresh filesystem for each test suite run, among other isola-

tion features, mitigating any potential dependencies between runs.

JUnit XML is a standard format for the results of test suite runs that

includes test case outcomes, tracebacks, and any captured output.

We scheduled standard and mutant runs concurrently and random-

ized their order to mitigate infrastructure flakiness [22], ensuring

any such noise affected both run types evenly and prevented spuri-

ous conclusions about mutant effects. Finally, our scripts recorded

detailed metadata for each mutant, including the mutation oper-

ator, the target line, and diffs with extended context (using git

diff –unified=15). Our minimal pytest plugin automatically col-

lects coverage data, resource metrics, and test source code during

execution without interfering with test outcomes or performance.

2.2 Methodology for RQ1: Prevalence
For each mutant-test pair (each combination of mutant and test

case within a subject), we set out to evaluate the composite null

hypothesis: “no difference in failure rate between standard and

mutant runs or the flimsiness condition 𝐶 is false”. Where 𝑓𝑠 is

the number of standard runs where the test case failed, 𝑓𝑚 is the

number of mutant runs where it failed, and 𝑟𝑚 is the total number of

mutant runs (either 10 or 100), the flimsiness condition, 𝐶 ≡ (𝑓𝑠 =
0) ∧ (0 < 𝑓𝑚 < 𝑟𝑚), defines possible cases of mutation-induced

flakiness. Including the flimsiness condition here enables us to

focus on relevant pairs, as opposed to all pairs where there was

a significant change in failure rate (e.g., when a test case kills a

mutant). It avoids circular reasoning because the condition is pre-

specified using raw failure counts and is independent of p-values.

Our scripts calculated p-values for each pair-level hypothesis.

For pairs where 𝐶 is true, our scripts calculated the p-value using

a two-tailed Boschloo’s exact test [12]. We selected this statisti-

cal test because it is optimal for highly unbalanced contingency

tables (12,000 standard vs. 10/100 mutant runs) and is more pow-

erful than Fisher’s exact test [34]. For pairs where 𝐶 is false, our

scripts set the p-value to 1. When 𝐶 is false, the composite null is

automatically true, and setting the p-value to 1 is a conservative

approach. Our scripts adjusted the raw p-values for each pair by

applying the Benjamini-Yekutieli (BY) correction [10] to control

the false discovery rate (FDR) at the pair level. Significant pairs

(adjusted p-value ≤ 𝛼) provide FDR-controlled evidence that the

mutant caused a change in failure rate and the test case transi-

tioned from stable to flaky. This implies that the mutant induced

flakiness in the test case. We selected the BY correction because

it is valid under arbitrary dependence. In the context of our study,

such dependence could arise from systemic flakiness [42].

For each mutant, we evaluated the global null hypothesis: “for

all pairs associated with this mutant the pair-level composite null

hypothesis is true”. To do so, our scripts calculated family p-values

for each mutant-level hypothesis using Bonferroni correction [11]

over the raw individual p-values for each associated pair (before BY

correction). We selected Bonferroni correction because it is valid

under arbitrary dependence. At this level, dependence could arise

from the fact that the mutations were applied to the same codebase.

Our scripts adjusted the raw family p-values for each mutant using

BY correction to control the FDR at the mutant level. Significant

mutants (adjusted family p-value ≤ 𝛼) provide evidence that the

mutant induced flakiness in at least one test case.

For each test case, we evaluated the global null hypothesis: “for

all pairs associated with this test case the pair-level composite null

hypothesis is true”. Our scripts adhered to the same procedure of

applying Bonferroni correction to produce the raw family p-values

followed by the BY correction to control the FDR at the test case

level. Significant test cases provide evidence that at least onemutant

induced flakiness in the test case. For each subject and in total, our

scripts counted the number of significant pairs, mutants, and test

cases, setting the significance threshold at 𝛼 = 0.01.

ICSE ’26, April 12–18, 2026 , Rio de Janeiro, Brazil Owain Parry, Gregory M. Kapfhammer, Michael Hilton, and Phil McMinn

2.3 Methodology for RQ2: Operators
Our goal was to identify specific mutation operators that are sig-

nificantly more or less likely than others to produce mutants that

induce test flakiness. For each mutation operator that we used in

our study, the scripts counted the number of significant and non-

significant mutants (as per our RQ1 methodology) produced by that

operator across all subjects. From these counts, they created a 2× 2

contingency table for each operator comparing these counts to the

corresponding counts for all the other operators combined. For each

table, our scripts used the two-tailed Boschloo’s test to calculate a

p-value for the null hypothesis that the corresponding operator is as

likely to produce mutants that induce flakiness as any other opera-

tor. They also applied the BY correction to these p-values to control

the FDR and calculated the natural logarithm of the odds ratio with

Haldane-Anscombe correction [31] to quantify the magnitude and

direction of any effect. The odds ratio itself quantifies how many

times greater or smaller the odds (the ratio of the probability of

an event occurring to that of it not occurring) are that mutants

from a specific operator induce test flakiness versus others. We

used the logarithm because it produces a more interpretable effect

size centered around zero, where negative values indicate that an

operator is less likely to produce such mutants and positive values

indicate the opposite. We used the Haldane-Anscombe correction,

which involves adding 0.5 to each cell, to avoid invalid values.

We repeated this analysis with respect to the number of mutants

produced by each operator that are deterministically killed by at

least one test case. For a given mutant-test pair, the mutant is killed

by the test case if and only if (𝑓𝑠 = 0) ∧ (𝑓𝑚 = 𝑟𝑚). We compared the

effect sizes for both criteria to establish if any operator effects are

unique to inducing flakiness or just reflective of general disruption

to the code under test. To do so, our scripts performed Spearman’s

rank-order correlation analysis [52] between the two sets of effect

sizes, producing a p-value for the null hypothesis of no correlation,

and a correlation coefficient 𝜌 . The coefficient ranges from -1 to

1, indicating perfect negative or positive correlations respectively.

We used Spearman’s rank-order because it captures monotonic

relationships without assuming linearity or normality [47].

2.4 Methodology for RQ3: Detection
We aimed to assess how the standard flaky test detection strategy

of repeatedly executing the test suite (without mutations applied to

the code under test) to observe inconsistent failures differs from an

alternative mutation-based strategy. The mutation-based rerunning

strategy is to randomly apply mutation operators to the code under

test and repeatedly execute the test suite against each mutant to

observe inconsistent failures with respect to the same mutant (not

between mutants). Our approach was to compare the agreement of
both strategies in terms of the number of flaky tests they detect in

common to the consistency of both strategies in terms of the number

of flaky tests each detects reliably across repeated invocations. This

enables us to establish if a low agreement is genuinely reflective of

a fundamental difference between the two strategies or is simply an

artifact of low consistency (high variability) within either strategy.

For each subject, our scripts sampled 1,000 times: a random sub-

set of half the standard runs and, for each mutant, a random subset

of half the mutant runs. For each sample 𝑖 , our scripts constructed

two sets of detected flaky tests: the standard-detected set 𝑆𝑖 , repre-
senting the flaky tests detected by the standard rerunning strategy,

and the mutation-detected set 𝑀𝑖 , representing the flaky tests de-

tected by the mutation-based strategy. Our scripts assigned a test

case to 𝑆𝑖 if and only if 0 < 𝑓 ′𝑠 < 𝑟 ′𝑠 , where 𝑓
′
𝑠 and 𝑟 ′𝑠 are the number

of failed and total sampled standard runs respectively. Our scripts

assigned a test case to 𝑀𝑖 if and only if there exists at least one

mutant such that 0 < 𝑓 ′𝑚 < 𝑟 ′𝑚 , where 𝑓 ′𝑚 and 𝑟 ′𝑚 are the number of

failed and total sampled mutant runs respectively. Over the 1,000

samples, our scripts produced empirical distributions for |𝑆𝑖 |, |𝑀𝑖 |
and |𝑆𝑖 ∩ 𝑀𝑖 | by computing the size of both sets and the size of

their intersection within each sample 𝑖 . The scripts also produced

distributions for |𝑆𝑖 ∩ 𝑆 𝑗 | and |𝑀𝑖 ∩𝑀 𝑗 | by computing intersection

sizes between pairs of standard-detected and mutation-detected

sets across independent samples 𝑖 and 𝑗 .

For each subject, our scripts compared the distribution for |𝑆𝑖 ∩
𝑀𝑖 |, which measures the agreement between the two detection

strategies, to the distributions for |𝑆𝑖 ∩ 𝑆 𝑗 | and |𝑀𝑖 ∩𝑀 𝑗 |, which
measure the consistency of both strategies respectively. To make

both comparisons, our scripts used the two-tailed Mann-Whitney

U test [35]. The null hypothesis is that the distribution for |𝑆𝑖 ∩𝑀𝑖 |
comes from the same population as the distribution for either

|𝑆𝑖 ∩ 𝑆 𝑗 | or |𝑀𝑖 ∩ 𝑀𝑗 |, depending on which comparison is being

performed. We selected the Mann-Whitney U test because it is

a non-parametric method that compares two distributions with-

out assuming normality [54]. Our scripts applied BY correction to

the resultant p-values to control the FDR and also calculated the

rank biserial correlation (RBC) to provide interpretable, direction-

sensitive effect sizes. For either comparison, a negative RBC would

indicate that the agreement tends to be fewer than the consistency,

and a positive RBC would indicate the opposite.

To perform an aggregate-level analysis, we repeated the same

procedure, but instead of analyzing each subject separately, we

merged their results. For each sample, our scripts took the union of

all standard-detected flaky test sets across subjects, and likewise

for the mutation-detected sets. This produced one global standard

set and one global mutant set per sample, over which our scripts

repeated the same agreement and consistency analysis.

2.5 Methodology for RQ4: Coverage
We sought to evaluate the extent to which test flimsiness can be

explained as a manifestation of unstable line coverage, an issue

highlighted by prior studies [27, 48]. That is, whether mutating a

line that was previously executed non-deterministically causes the

test case to fail only when that line happens to be executed post-

mutation, transforming inconsistent coverage into visible flakiness.

For each mutant-test pair, our scripts recorded how many times the

test case passed versus how many it covered the would-be mutated

line during the passing runs, using the results of the subject’s 20

coverage runs (pre-mutation). Using this, our scripts computed two

binary indicators for each pair. The first indicates that the mutated

line was flakily covered, and is true for a given pair if and only if the

test case covered the mutated line at least once during the passing

runs but fewer than the total number of passing runs. Conditioning

on passing runs is more conservative because it avoids spuriously

labelling a line as flakily covered when a test case failed due to

Test Flimsiness: Characterizing Flakiness Induced by Mutation to the Code Under Test ICSE ’26, April 12–18, 2026 , Rio de Janeiro, Brazil

Table 1: For each of the 28 subjects, the counts of mutant-test pairs, mutants, and test cases. These counts are broken down
into overall counts, those that are possible evidence of flimsiness, and those that are significant (Sig.) evidence.

Pairs # Mutants # Tests

Possible Possible Possible

Subject Name Sig. Sig. Sig.

PyCQA/bandit 81900 0 0 300 0 0 273 0 0

mozilla/bleach 134400 0 0 300 0 0 448 0 0

quantumlib/Cirq 5339400 475 359 300 8 5 17798 272 210

cylc/cylc-flow 814500 3 1 300 3 1 2715 3 1

dask/dask 3292500 17 5 300 1 1 10975 17 5

spesmilo/electrum 206400 0 0 300 0 0 688 0 0

eventlet/eventlet 186300 0 0 300 0 0 621 0 0

falconry/falcon 1098900 1 0 300 1 0 3663 1 0

pallets/flask 147300 0 0 300 0 0 491 0 0

benoitc/gunicorn 78000 7 4 300 4 3 260 5 3

ipython/ipython 285000 3 2 300 3 2 950 2 1

apache/libcloud 2454000 7 0 300 7 0 8180 1 0

Delgan/loguru 465300 11 10 300 2 2 1551 11 10

mitmproxy/mitmproxy 546000 25 8 300 9 4 1820 21 8

more-itertools/more-itertools 200700 0 0 300 0 0 669 0 0

networkx/networkx 1412400 5 5 300 3 3 4708 5 5

nltk/nltk 133800 2 0 300 2 0 446 1 0

oauthlib/oauthlib 204000 17 16 300 1 1 680 17 16

PrefectHQ/prefect 3534300 232 194 300 24 12 11781 191 162

PyGithub/PyGithub 298500 0 0 300 0 0 995 0 0

pyparsing/pyparsing 561000 0 0 300 0 0 1870 0 0

psf/requests 177000 1 1 300 1 1 590 1 1

saltstack/salt 3759000 79 0 300 6 0 12530 79 0

encode/starlette 267900 4 0 300 4 0 893 2 0

vertexproject/synapse 342600 27 26 300 1 1 1142 27 26

twisted/twisted 2866800 45 31 300 18 16 9556 43 31

urllib3/urllib3 515700 29 17 300 11 4 1719 26 17

xonsh/xonsh 1533600 55 30 300 7 2 5112 53 30

Total 30937200 1045 709 8400 116 58 103124 778 526

flakiness before reaching that line. The second indicates that the

mutated line was simply covered, and is true for a given pair if and

only if the test case covered the mutated line at least once during

passing runs (flakily covered implies simply covered).

The experiment scripts evaluated how well these two indicators

predict whether a mutant-test pair exhibits statistically significant

evidence of flimsiness, as defined in RQ1. To do so, our scripts

calculated the confusion matrix, precision, and recall for both in-

dicators at the level of each subject, and at the aggregate level by

summing the confusion matrix elements across all subjects. In this

context, a mutant-test pair is a true positive (TP) if the indicator

correctly predicts that the pair is significant, a false positive (FP)

if it predicts the pair as significant when it is not, a false negative

(FN) if it misses a significant pair, and a true negative (TN) if it

correctly predicts a non-significant pair. Precision is the proportion

of predicted significant pairs that are truly significant, written as

TP ÷ (TP + FP), while recall is the proportion of actual significant

pairs that were correctly predicted, defined as TP ÷ (TP + FN). We

used the simply-covered indicator as a point of comparison to verify

that any predictive power attributed to being flakily covered is not

solely due to the mutated source code line being covered.

2.6 Threats to Validity
Although our methodology’s design supports the rigorous investi-

gation of test flimsiness, we acknowledge several validity threats.

The generalizability of our findings is inherently limited by our

dataset. Although we mitigated this by selecting a broad range

of open-source Python projects from diverse domains, the results

may not reflect the nature of test flimsiness in other programming

languages. It is possible that the 12,000 standard runs per subject

were insufficient to manifest all pre-mutation flaky tests, partic-

ularly those with very low failure rates, and similarly for the 10

or 100 mutant runs. Likewise, the 20 coverage runs performed per

subject may not have captured all instances of non-deterministic

coverage. As previously highlighted [9, 26], this is a general threat

to any empirical study of flaky tests that cannot be fully eliminated,

ICSE ’26, April 12–18, 2026 , Rio de Janeiro, Brazil Owain Parry, Gregory M. Kapfhammer, Michael Hilton, and Phil McMinn

Table 2: For each mutation operator: the number of mutants that induce flakiness in at least one test case (Pos.), those that do
not (Neg.), the log odds ratio (LOR) of the contingency table, the p-value (P-Val.) of the corresponding null hypothesis, and the
BY-adjusted p-value (Q-Val.). Similarly for being killed by at least onemutant. LOR correlation analysis results: 𝜌 = 0.66, p = 0.02.

Inducing Flakiness Being Killed

Operator Name Pos. Neg. LOR P-Val. Q-Val. Pos. Neg. LOR P-Val. Q-Val.

AddNot 9 823 0.56 0.188 0.266 535 297 0.81 <0.001 <0.001

NumberReplacer 5 1186 -0.48 0.249 0.315 434 757 -0.48 <0.001 <0.001

ReplaceAndWithOr 3 112 1.53 0.070 0.112 69 46 0.55 0.004 0.013

ReplaceBinaryOperator 10 3377 -1.14 <0.001 0.001 1450 1937 -0.25 <0.001 <0.001

ReplaceBreakWithContinue 0 15 1.52 >0.999 >0.999 6 9 -0.24 0.797 0.869

ReplaceComparisonOperator 18 2014 0.36 0.237 0.315 984 1048 0.10 0.042 0.072

ReplaceContinueWithBreak 0 21 1.20 >0.999 >0.999 6 15 -0.73 0.144 0.216

ReplaceFalseWithTrue 0 149 -0.76 0.620 0.744 53 96 -0.46 0.008 0.019

ReplaceOrWithAnd 3 83 1.83 0.032 0.059 58 28 0.87 <0.001 <0.001

ReplaceTrueWithFalse 0 139 -0.69 0.669 0.765 48 91 -0.50 0.005 0.013

ReplaceUnaryOperator 6 280 1.27 0.020 0.044 168 118 0.51 <0.001 <0.001

ZeroIterationForLoop 4 143 1.55 0.028 0.055 92 55 0.66 <0.001 <0.001

but rather mitigated by performing as many test suite runs as re-

sources permit. Performing over 30 million hypothesis tests raises

the risk of false discoveries, even with the BY control. To mitigate

this concern, we used a strict significance threshold of 𝛼 = 0.01.

When analyzing operator effects, the Haldane-Anscombe cor-

rection may bias small-sample effect sizes, though it is necessary

to avoid infinite or undefined values. We mitigated this by supple-

menting odds ratios with Boschloo p-values for greater robustness.

Defects in our scripts could have impacted the evaluation and led

to incorrect conclusions. To reduce this risk, we relied on well-

established, open-source Python libraries, such as SciPy [6], for all

critical statistical analyses. Given their wide adoption and active

maintenance, we are confident that any library-level bugs would

be quickly identified, documented, and patched. Our requirement

that the baseline failure rate be zero (𝑓𝑠 = 0) as part of the flimsi-

ness condition excludes tests with pre-existing flakiness, potentially

omitting mutant-test pairs where the mutation exacerbates rather

than introduces flakiness. While this remains an interesting direc-

tion for future work, we deliberately scoped our study to newly

induced flakiness (stable-to-flaky transitions) to preserve causal

clarity. Infrastructure flakiness [22], such as transient network insta-

bility, may have introduced bursts of flakiness across concurrently

executing test suite runs. Such occurrences could be misattributed

to flimsiness. We mitigated this through randomization of the test

suite run order, interleaving standard and mutant runs, and the use

of Docker-based isolation to reduce environmental variability.

3 Results
3.1 Results for RQ1: Prevalence
For mutant-test pairs, mutants, and test cases, Table 1 gives the

overall count, the count that are possible evidence of test flimsiness,

and the count that are significant evidence (𝛼 = 0.01), for each

subject and in total. A pair is possible evidence if the flimsiness

condition𝐶 is true. A mutant is possible evidence if𝐶 is true for any

of its associated pairs, similarly for test cases. Because the pair-level

composite null hypothesis includes 𝐶 , significant evidence at any

level implies possible evidence.

Test flimsiness is a prevalent phenomenon. It exists in 15

out of 28 subjects (54%). While most significant pairs and test cases

are concentrated among a few subjects (e.g., Cirq and prefect), the

significant mutants are distributed more evenly. This implies that

a single mutant may induce flakiness in many test cases. In total,

0.7% of mutants induced flakiness in at least one test case.

3.2 Results for RQ2: Operators
For both criteria (inducing flakiness in, or being killed by, at least

one test case), Table 2 presents the number of mutants that meet

the condition (positive examples) and those that do not (negative

examples), as produced by each mutation operator. In addition, the

table reports the log odds ratio (LOR) effect size and the p-value

for the null hypothesis that the operator is as likely as any other

operator to produce mutants that meet the condition.

Certain mutation operators are significantly more likely
to produce mutants that induce test flakiness than others.
One such example is ReplaceUnaryOperator, with a small adjusted

p-value of 0.044, we can reject this null hypothesis at the 5% sig-

nificance level. The LOR of 1.27 indicates that mutants from this

operator have over 3 times higher odds of inducing flakiness com-

pared to others (𝑒1.27 ≈ 3.56). Conversely, ReplaceBinaryOperator

has a small p-value but a LOR of -1.14, meaning the odds that a

mutant induces flakiness are about a third of that of other operators.

Operators that produce mutants that are easier for test
cases to kill are often also good at inducing flakiness. This
comes from the results of the Spearman’s rank-order correlation

analysis between the LOR effect sizes of both criteria. The p-value

for the null hypothesis of no correlation is 0.02, indicating that we

can reject it at the 2% significance level and conclude that there

is a correlation. The coefficient 𝜌 is 0.66, indicating a moderately

strong positive relationship. This means that the LOR rankings

across operators are generally aligned: operators ranked higher for

inducing flakiness tend to be ranked higher for being killed.

Test Flimsiness: Characterizing Flakiness Induced by Mutation to the Code Under Test ICSE ’26, April 12–18, 2026 , Rio de Janeiro, Brazil

Table 3: For each subject and at the aggregate level: the median number of flaky tests detected by the standard and mutation-
based strategies; the median number detected in common by both strategies (agreement) and by two independent invocations
of each strategy (standard and mutation consistency); and the RBC effect size, p-value (P-Val.), and BY-adjusted p-value (Q-Val.),
from the comparison of the agreement distribution to each consistency distribution. Excludes subjects without flaky tests.

Median |Si ∩Mi | v |Si ∩ Sj | |Si ∩Mi | v |Mi ∩Mj |
Subject Name |Si | |Mi | |Si ∩Mi | |Si ∩ Sj | |Mi ∩Mj | RBC P-Val. Q-Val. RBC P-Val. Q-Val.

quantumlib/Cirq 1 247 1 1 232 0.06 0.002 0.003 -1.00 <0.001 <0.001

cylc/cylc-flow 2 4 2 2 3 -0.23 <0.001 <0.001 -0.98 <0.001 <0.001

dask/dask 1 13 0 0 9 -0.04 0.079 0.099 -1.00 <0.001 <0.001

eventlet/eventlet 4 4 2 3 3 -0.28 <0.001 <0.001 -0.32 <0.001 <0.001

falconry/falcon 0 1 0 0 1 0.00 >0.999 >0.999 -0.55 <0.001 <0.001

benoitc/gunicorn 0 4 0 0 3 0.00 >0.999 >0.999 -1.00 <0.001 <0.001

ipython/ipython 0 2 0 0 1 0.00 >0.999 >0.999 -1.00 <0.001 <0.001

apache/libcloud 4 5 0 4 1 -0.32 <0.001 <0.001 -0.32 <0.001 <0.001

Delgan/loguru 0 8 0 0 7 0.00 >0.999 >0.999 -1.00 <0.001 <0.001

mitmproxy/mitmproxy 1 16 1 1 13 0.11 <0.001 <0.001 -1.00 <0.001 <0.001

networkx/networkx 0 5 0 0 4 0.00 >0.999 >0.999 -1.00 <0.001 <0.001

nltk/nltk 0 2 0 0 2 0.14 <0.001 <0.001 -0.41 <0.001 <0.001

oauthlib/oauthlib 0 16 0 0 16 0.00 >0.999 >0.999 -1.00 <0.001 <0.001

PrefectHQ/prefect 43 205 31 25 175 -0.04 0.099 0.121 -1.00 <0.001 <0.001

psf/requests 0 1 0 0 1 0.00 >0.999 >0.999 -0.82 <0.001 <0.001

saltstack/salt 13 16 7 8 9 -0.55 <0.001 <0.001 -0.63 <0.001 <0.001

encode/starlette 1 2 0 1 1 -0.53 <0.001 <0.001 -0.79 <0.001 <0.001

vertexproject/synapse 8 28 4 7 26 -0.94 <0.001 <0.001 -1.00 <0.001 <0.001

twisted/twisted 5 38 3 5 33 -0.57 <0.001 <0.001 -1.00 <0.001 <0.001

urllib3/urllib3 10 28 6 8 24 -0.91 <0.001 <0.001 -1.00 <0.001 <0.001

xonsh/xonsh 30 75 28 28 56 0.02 0.333 0.396 -1.00 <0.001 <0.001

Aggregate 163 740 86 106 637 -0.64 <0.001 <0.001 -1.00 <0.001 <0.001

3.3 Results for RQ3: Detection
For each subject and at the aggregate level, Table 3 presents the

median number of flaky tests detected by the standard rerunning

strategy and the mutation-based rerunning strategy. It also reports

the median number of flaky tests detected in common by both

strategies (median agreement), by two independent invocations of

the standard strategy (median standard consistency), and by two

independent invocations of the mutation-based strategy (median

mutation consistency). It also gives the RBC effect sizes and the ad-

justed p-values from the comparisons of the agreement distribution

to the consistency distributions of both strategies.

The two detection strategies detect largely different sets of
flaky tests. This is supported by the small adjusted p-values from

both comparisons at the aggregate level, indicating that we can con-

fidently reject the corresponding null hypotheses, and the fact that

both RBC effect sizes are negative, indicating that the agreement

tends to be lower than the consistency for both strategies.

The flaky tests detected by themutation-based strategy are
especially unlikely to be detected by the standard strategy.
Notably, the RBC effect size is -1 when comparing agreement to

mutation consistency, but only -0.64 when comparing to standard

consistency. This reinforces the interpretation of test flimsiness as a

distinct manifestation of flakiness that standard rerunning, without

mutations to the code under test, is unlikely to detect.

3.4 Results for RQ4: Coverage
For both coverage indicators, Table 4 presents the confusion matrix,

precision, and recall for each subject and at the aggregate level.

Whether a test case non-deterministically covered the mu-
tated line prior to mutation does not reliably predict whether
the mutant will induce flakiness. This can be inferred from the

low precision and recall scores for the flakily covered indicator, for

most subjects and at the aggregate level (0.16 and 0.10, respectively).

This implies that the causes of test flimsiness are more nuanced

than simply manifesting unstable coverage.

Whether a test case covered the mutated line at least once,
even if inconsistently, is entirely uninformative as a predic-
tor of flimsiness.Despite a high recall score of 0.8 at the aggregate
level, the precision score for the simply covered indicator is 0, ren-

dering it totally ineffective, particularly when compared to the

flakily covered indicator, which, although still weak, offers a more

balanced precision-recall trade-off. The high recall aligns with the

intuition that a test case must exercise the mutated line to be af-

fected. However, since it is less than 1, this result shows that a

mutant inducing flakiness does not always imply that the test case

covered the mutated line of source code beforehand.

ICSE ’26, April 12–18, 2026 , Rio de Janeiro, Brazil Owain Parry, Gregory M. Kapfhammer, Michael Hilton, and Phil McMinn

Table 4: For each subject and at the aggregate level: the confusion matrix elements (TP, FP, FN, TN), precision (Pr.), and recall
(Re.) for predicting whether a mutant will induce flakiness in a test case based on whether the test case non-deterministically
covered the mutated line prior to mutation (flakily covered). Similarly for whether the test case covered the mutated line at
least once, even if inconsistently (simply covered). Dashes indicate undefined values resulting from a division by zero.

Flakily Covered Simply Covered

Subject Name TP FP FN TN Pr. Re. TP FP FN TN Pr. Re.

PyCQA/bandit 0 0 0 81900 - - 0 5593 0 76307 0.00 -

mozilla/bleach 0 0 0 134400 - - 0 9934 0 124466 0.00 -

quantumlib/Cirq 44 16 315 5339025 0.73 0.12 359 50878 0 5288163 0.01 1.00

cylc/cylc-flow 0 1 1 814498 0.00 0.00 1 12783 0 801716 0.00 1.00

dask/dask 0 261 5 3292234 0.00 0.00 5 52626 0 3239869 0.00 1.00

spesmilo/electrum 0 1 0 206399 0.00 - 0 2805 0 203595 0.00 -

eventlet/eventlet 0 30 0 186270 0.00 - 0 3753 0 182547 0.00 -

falconry/falcon 0 0 0 1098900 - - 0 7180 0 1091720 0.00 -

pallets/flask 0 0 0 147300 - - 0 6346 0 140954 0.00 -

benoitc/gunicorn 0 9 4 77987 0.00 0.00 4 5139 0 72857 0.00 1.00

ipython/ipython 0 0 2 284998 - 0.00 2 3129 0 281869 0.00 1.00

apache/libcloud 0 0 0 2454000 - - 0 12687 0 2441313 0.00 -

Delgan/loguru 0 0 10 465290 - 0.00 9 23796 1 441494 0.00 0.90

mitmproxy/mitmproxy 1 11 7 545981 0.08 0.12 1 4942 7 541050 0.00 0.12

more-itertools/more-itertools 0 0 0 200700 - - 0 1166 0 199534 0.00 -

networkx/networkx 1 0 4 1412395 1.00 0.20 5 2941 0 1409454 0.00 1.00

nltk/nltk 0 0 0 133800 - - 0 187 0 133613 0.00 -

oauthlib/oauthlib 0 0 16 203984 - 0.00 16 7947 0 196037 0.00 1.00

PrefectHQ/prefect 21 11 173 3534095 0.66 0.11 147 39908 47 3494198 0.00 0.76

PyGithub/PyGithub 0 0 0 298500 - - 0 29494 0 269006 0.00 -

pyparsing/pyparsing 0 0 0 561000 - - 0 39489 0 521511 0.00 -

psf/requests 0 0 1 176999 - 0.00 1 11831 0 165168 0.00 1.00

saltstack/salt 0 0 0 3759000 - - 0 1787 0 3757213 0.00 -

encode/starlette 0 0 0 267900 - - 0 6400 0 261500 0.00 -

vertexproject/synapse 0 0 26 342574 - 0.00 0 62 26 342512 0.00 0.00

twisted/twisted 1 2 30 2866767 0.33 0.03 3 14111 28 2852658 0.00 0.10

urllib3/urllib3 0 3 17 515680 0.00 0.00 16 12545 1 503138 0.00 0.94

xonsh/xonsh 0 1 30 1533569 0.00 0.00 0 12024 30 1521546 0.00 0.00

Aggregate 68 346 641 30936145 0.16 0.10 569 381483 140 30555008 0.00 0.80

4 Discussion
4.1 Causes of Test Flimsiness
Following our empirical analysis, we manually inspected a random

sample of mutant-test pairs that showed statistically significant ev-

idence of test flimsiness. In each case, we looked at the mutant diff,

the source code of the test case, the traceback from a random flaky

failure, and the code under test in the project’s GitHub repository.

Each of the four authors of this paper reviewed up to 30 examples

independently before meeting as a group to discuss findings. As

external researchers rather than project developers, we cannot con-

clusively establish the root causes of specific instances of flimsiness

using the methods presented in this paper. A more systematic root

cause analysis, potentially involving project developers, is left for

future work. Nevertheless, our exploratory investigation revealed

some likely causes, which we discuss in this section (one example

is already given in Figure 1). All analyzed examples are included in

the replication package [5] for further inspection.

Figure 2 shows an example from the cylc-flow project. The test

case checks that a command-line tool lists items (called flows) in

alphabetical order by namewhen sorting is enabled. The code under

test implements natural sorting, which means that numbers within

names are compared numerically (for example, item2 comes before

item10). The mutation changed an equality check (==) to a non-

identity check (is not), causing the sort-key function to mistakenly

remove the final part of some names. This made different names

sometimes produce identical sort keys, so their relative order after

sorting depended on the order in which directory entries were read

from the file system, which is inherently non-deterministic.

Figure 3 shows an example from the cirq project. This test case

checks whether a benchmarking routine produces the expected

error rates when simulating noisy two-qubit quantum circuits. The

mutation changed the numerical range used to generate single-qubit

rotation gates, altering the distribution of randomly constructed cir-

cuits on which the benchmark operates. Even with a fixed random

Test Flimsiness: Characterizing Flakiness Induced by Mutation to the Code Under Test ICSE ’26, April 12–18, 2026 , Rio de Janeiro, Brazil

ret = []

for item in _NAT_SORT_SPLIT.split(key):

for fcn in fcns:

with suppress(TypeError , ValueError):

ret.append(fcn(item))

break

- if ret[-1] == '':

+ if ret[-1] is not '':

ret.pop(-1)

return ret

(a) An excerpt from the mutant diff.

async def test_name_sort(flows , mod_test_dir):

"""It should sort flows by name."""

one stopped flow

opts = ScanOptions(states='all', sort=True)

lines = []

await main(opts , write=lines.append , scan_dir=mod_test_dir)

assert len(lines) == 4

assert '-paused -' in lines [0]

assert '-running -' in lines [1]

assert '-stopped -' in lines [2]

assert 'a/b/c' in lines [3]

(b) The test case source code.

Figure 2: An example of flimsiness from cylc-flow.

rs = value.parse_random_state(random_state)

- exponents = np.linspace(0, 7 / 4, 8)

+ exponents = np.linspace(0, 7 / 5, 8)

single_qubit_gates = [

ops.PhasedXZGate (...)

for a, z in itertools.product(exponents , repeat =2)

]

return [

random_rotations_between_two_qubit_circuit(

...

single_qubit_gates=single_qubit_gates ,

seed=rs,

)

for _ in range(n_library_circuits)

]

(a) An excerpt from the mutant diff.

def test_parallel_two_qubit_xeb (...):

res = cirq.experiments.parallel_two_qubit_xeb(

sampler=sampler ,

qubits=qubits ,

n_repetitions =100,

n_combinations =1,

n_circuits =1,

cycle_depths =[3, 4, 5],

random_state =0,

)

got = [

res.xeb_error (* reversed(pair))

for pair in res.all_qubit_pairs

]

np.testing.assert_allclose(got , 0.1, atol=1e-1)

(b) An excerpt from the test case source code.

Figure 3: An example of flimsiness from cirq.

seed, these changes affect the statistical properties of the simulated

results, leading to variations in the estimated error rates. Because

the test case asserts that these rates must be close to 0.1 within a

tight tolerance, some runs now exceed that threshold.

4.2 Predicting Flimsiness from Code Context
We examined whether experts and large language models (LLMs)

with software engineering knowledge can predict if a mutation

will induce flimsiness based solely on the change and its surround-

ing code context. Since practicing software engineers commonly

use LLMs in their work [28], this task was conceived of as an ex-

ploratory probe to contextualize the findings of Section 3, rather

than a human-to-LLM comparison. From each subject, we ran-

domly sampled one mutant that induced test flakiness in at least

one test case and one that did not, excluding any previously in-

spected mutants, yielding 18 in total. With no prior knowledge

of which mutants induced flakiness, the four authors of this pa-

per independently reviewed each mutant’s diff and responded with

“true,” “false,” or “unsure” to the prompt: “I think this mutation could

induce flakiness in a previously stable test case in this project.” Each

author also provided a short justification. We further instructed

OpenAI’s GPT-4.1 to perform the same independent classification

as an additional rater to support the qualitative analysis, rather than

as a comparison benchmark for human performance. To increase

determinism, we set the model’s temperature to 0 and further saved

all the responses in the replication package [5] for transparency.

Table 5 presents the results from this exploration. We treated

rater responses as predicted labels and compared themwith the true

labels from RQ1, aggregating predictions by majority vote while

excluding “unsure” responses; ties were assigned “unsure.” This

yielded definitive outcomes for 17 of the 18 mutants, of which 12

were correctly classified (71%). These results suggest that predicting

flimsiness from code context alone is difficult and that its causes are

often subtle and dependent on broader factors not visible in the diff

of the mutated program’s source code. This reinforces our interpre-

tation of the RQ4 results, namely that the causes of flimsiness are

nuanced. Closer inspection of individual cases in Figure 4 illustrates

this variety. For Sampled Mutant #5, all raters correctly predicted

induced flakiness, citing a concurrency or multiprocessing con-

text, which is commonly associated with flakiness [18, 33, 37]. For

Sampled Mutant #9, all raters correctly judged the mutation as

non-flimsy, noting that it would trigger a TypeError in a __repr__
method, which is unlikely to execute non-deterministically. In con-

trast, for Sampled Mutant #12, all human raters overlooked that the

change could induce flakiness by sharing mutable state between

tests, whereas GPT-4.1 recognized this possibility.

4.3 Implications and Future Directions
This paper’s study is the first to characterize test flimsiness. Its

findings have major implications for developers and researchers,

and therefore open a multitude of avenues for future work.

Impact on Mutant-Driven Techniques. In 54% of the stud-

ied subjects, our statistical analysis reliably identified instances

where code-under-test mutations induced flakiness in previously

stable test cases. This phenomenon poses a previously unrecognized

challenge to techniques that rely on mutation operators, such as

fault localization [36, 55, 56], regression testing [19], performance

testing [45], and web testing [32]. Prior work has considered the in-

fluence of pre-existing flaky tests [8, 48], but has not addressed the

risk of mutation-induced flakiness introduced during analysis. To

our knowledge, this is the first study to systematically characterize

ICSE ’26, April 12–18, 2026 , Rio de Janeiro, Brazil Owain Parry, Gregory M. Kapfhammer, Michael Hilton, and Phil McMinn

Table 5: The four authors and GPT-4.1 classified 18 mutants
using the prompt: “I think this mutation could induce flaki-
ness in a previously stable test case.” Responses (T: True, F:
False, U: Unsure) were treated as predicted labels and com-
pared with the true labels from RQ1 (True). The table shows
individual responses, majority vote, and the true labels.

Sampled Mutant ID

Labels 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Auth. 1 F T F F U T T T F F F T F T U F F F

Auth. 2 F T F T F T F F T F F F F T T F F T

Auth. 3 F T T F F T F F F F F T F T F F T T

Auth. 4 T F F F F T F F F F T T F T F F F F

GPT-4.1 F F T T T T F T T F T F T T T F F T

Vote F T F F F T F F F F F T F T U F F T

True F T F T F T F T T F F T T T T F F F

with self._core.lock:

handlers = self._core.handlers.copy()

- for handler in handlers.values ():

+ for handler in []:

handler.complete_queue ()

tasks.extend(handler.tasks_to_complete ())

(a) Sampled Mutant #5 (All voted True; true label was True.)

def __repr__(self):

- return "(id=%r, name=%r)" % (self.id, self.name)

+ return "(id=%r, name=%r)" / (self.id, self.name)

(b) Sampled Mutant #9 (All voted False; true label was False.)

def __init__(self , shell , outputs=None):

self.shell = shell

- if outputs is None:

+ if not outputs is None:

outputs = []

self.outputs = outputs

(c) Sampled Mutant #12 (Authors voted False; true label was True.)

Figure 4: Code diff excerpts from three sampled mutants.

such flakiness. Future work should assess its practical consequences

within each mutant-driven technique’s specific evaluation frame-

work, where it may distort established measures of effectiveness.

Risk of Overlooked Bugs. For developers, flakiness is known
to complicate bug detection by obscuring fault signals [39]. A dan-

gerous consequence is that developers may begin to ignore flaky

test failures and subsequently miss real bugs [44]. Since test flim-

siness is a form of flakiness triggered by mutations, which are

expected to be coupled with real bugs [29, 43], it could potentially

arise precisely when a bug is introduced. Given that developers may

disregard flaky test failures [25], this could increase the likelihood

of bugs being overlooked. While our study does not evaluate this

risk directly, it exposes an important and urgent need for future

work to determine whether test flimsiness heightens the likelihood

of real bugs being overlooked in practice.

Implications for Flakiness Detection. We found that the flaky

tests detected by the mutation-based rerunning strategy are espe-

cially unlikely to be detected by the standard strategy. As shown in

Table 3, its median yield is also far higher: 740 flaky tests versus

163. Prior work has perturbed the execution environment to aug-

ment rerunning [50, 51], or the test code to support benchmarking

in the face of limited real-world datasets [13, 15]. Mutation-based

rerunning complements these efforts by perturbing a third major

source of flakiness: the code under test [18, 22, 33]. Crucially, this

strategy uses standard, off-the-shelf mutation tools, requiring no

custom operators or special instrumentation, making it easy to

adopt in existing workflows. While we do not claim the resulting

flakiness fully mirrors that seen in the wild, our results show that

it effectively amplifies detection. In particular, it could be used to

expand flaky test datasets with failures that standard rerunning

misses. Future studies could explore combining mutation-based

rerunning with environment and test code perturbations to better

stress-test flaky test mitigation techniques.

Developer Attitudes. This study was primarily based on statis-

tical analysis of test execution data. Industrial software developers

were not directly involved in the methodology at any stage. Un-

derstanding how developers perceive test flimsiness, and to what

extent they recognize its adverse effects, is crucial for evaluating

its practical impact and informing effective mitigation strategies.

Given that mutation testing is already used in practice [46], it is par-

ticularly important to understand whether developers encounter, or

could detect, flimsiness during routine use of mutation tools. Future

studies should conduct developer surveys and interviews to assess

awareness of test flimsiness, reactions to its implications, and the

perceived usefulness and feasibility of mutation-based rerunning.

Mutation Operator Characteristics. Our analysis revealed
substantial variation across mutation operators in their tendency

to produce mutants that induce test flakiness. Operators that more

frequently generate mutants killed by test cases also tend to be

more effective at inducing flakiness. Although this correlation may

be expected, it remains noteworthy because it highlights flimsiness

as an inherent side effect of standard mutation operators. This

underscores both the danger, as a potential threat to the validity of

mutant-driven techniques, and the utility, as a means of surfacing

hidden flakiness. Future work could investigate whether certain

operators consistently uncover more flaky tests across a broader

range of projects, and whether other mutant characteristics, such

as the surrounding code context where mutations are applied, can

be leveraged to prioritize mutants more likely to expose flakiness.

Understanding the Causes of Test Flimsiness. Our results
indicate that non-deterministic coverage of mutated lines prior to

mutation does not reliably predict whether a mutant will induce

test flakiness. This finding suggests that the root causes of test

flimsiness are more complex and nuanced than simply manifesting

unstable coverage. A more thorough empirical investigation into

these causes could guide the development of focused strategies to

reduce flimsiness. Future work could investigate factors beyond

coverage, such as the presence of existing code smells, properties of

the affected test cases, and the impact on timing and concurrency-

related behaviors in the mutated code under test.

Test Flimsiness: Characterizing Flakiness Induced by Mutation to the Code Under Test ICSE ’26, April 12–18, 2026 , Rio de Janeiro, Brazil

5 Related Work
Shi et al. [48] studied how non-deterministic coverage (variation

in the set of statements executed across repeated runs of passing

test cases) can undermine the reliability of mutation testing results.

They showed that such instability can cause mutants to be misclassi-

fied as killed or survived even when test outcomes remain constant,

and proposed rerunning tests and executing them in isolation to

reduce this noise. In contrast, we examined how mutations them-

selves can induce non-deterministic outcomes in otherwise stable

test cases, revealing a different causal direction between mutation

testing and flakiness. Where their work treats coverage instability

as the primary indicator of flakiness, our RQ4 results show that

pre-mutation coverage instability is a poor predictor of flimsiness.

Alshammari et al. [8] conducted an empirical study examining

the impact of pre-existing flaky tests on mutation testing. They

highlighted that flaky tests introduce significant uncertainty in

the cause behind killed mutants, raising doubt about whether a

mutant was killed reliably or only incidentally due to flakiness.

Their analysis of 22 Java projects revealed that 19% of mutants

killed by pre-existing flaky tests were, in fact, unreliably killed. To

address this concern, they investigated a lightweight failure de-

duplication approach, which they confirmed to be effective. While

Alshammari et al. focused on the effects of pre-existing flakiness

on mutation testing, our work addresses a distinct and critical gap:

the induction of new flakiness by mutation operators themselves.

Chen et al. [13] introduced Croissant, a framework designed

to inject artificial flakiness into JUnit test suites for the purposes

of evaluating flakiness detection and mitigation techniques. They

devised a defect model of test flakiness, comprising of 18 flaky anti-

patterns, based on their analysis of 330 GitHub issues related to

flakiness and a range of papers on the topic. They implemented 18

special mutation operators designed to inject such anti-patterns

directly into test code, simulating order-dependent, non-order-

dependent, and implementation-dependent flakiness. Their em-

pirical evaluation demonstrates its effectiveness, particularly in its

ability to expose bugs in iDFlakies [30], a state of the art flaky

test detection tool. Unlike Croissant, which focuses on injecting

artificial flakiness into test code via custom mutation operators, our

work investigates the previously overlooked phenomenon of test

flimsiness. The key distinguishing factor is that flimsiness describes

flakiness that arises from mutations to the code under test, rather

than the test code, produced by standard mutation operators as

found in out-of-the-box mutation testing tools [1], not purpose-

built frameworks. As such, flimsiness highlights a threat to the

reliability of mutant-driven techniques, including mutation testing.

Cordy et al. [15] presented FlakiMe, a Maven plugin for inject-

ing controlled flakiness into Java test suites to assess the impact

on testing techniques, including mutation testing and automated

program repair. It operates by instrumenting test bytecode to prob-

abilistically raise unchecked exceptions at specified “flake points.”

The probability of failure is determined by a user-defined flakiness

prediction model. Cordy et al. used FlakiMe to assess the impact

of flakiness on mutation testing, finding that it inflates mutation

scores, and automated program repair, finding that it reduces the

number of valid patches. As with Croissant, FlakiMe injects ar-

tificial flakiness into the test cases directly, which distinguishes it

from our study that focuses on off-the-shelf mutation operators

applied to the source code of the program under test. Furthermore,

the flakiness produced by FlakiMe is a controlled input for exper-

imentation, whereas our notion of test flimsiness is a discovered

phenomenon that arises from the mutation process itself.

Habchi et al. [24] proposed FLAKER, a technique to generate

order-dependent flaky tests via mutation. It deletes “helper state-

ments” that usually stabilize shared state between test cases [49].

The primary motivation is to inject a specific type of artificial

flakiness (order-dependency) into test code to generate flaky test

datasets. In that sense, the approach is similar Croissant, along

with all the characteristics that distinguish it from our work.

Prior work has introduced the term fragile to describe test cases

that fail unexpectedly when small changes are made to the appli-

cation under test, even though the core functionality being tested

remains correct [14]. This is particularly problematic in web test-

ing, where even minor alterations in web pages can easily break

existing test code, rendering it unable to correctly locate and in-

teract with web page elements [16]. This contrasts with our work,

as test fragility relates to deterministic, implementation-coupled

test failures. Test flimsiness, however, is characterized by its non-

determinism: it defines the phenomenon where a previously stable

test case begins to fail intermittently (i.e., becomes flaky) as a direct

result of a mutation to the source code under test.

6 Conclusion and Future Work
This paper characterizes flimsiness, a prevalent phenomenon where

stable test cases become flaky due to standard mutation operators

applied to the code under test. This distinct manifestation of flaki-

ness, observed in over half the investigated open-source projects,

poses a fundamental threat to the reliability of mutation testing.

It also endangers other mutant-driven techniques that implicitly

assume deterministic test outcomes in response to code-under-test

mutations. In addition to posing a challenge to widely adopted soft-

ware engineering tools and techniques, flimsiness offers a promising

new lens for detecting potential flakiness. By demonstrating how

perturbing the code under test enhances rerunning-based flaky test

detection, our study extends prior work that perturbs the execu-

tion environment or test code, thereby building upon a suite of

techniques that target the major sources of flakiness. We plan to

investigate all future work outlined in Section 4.3. For instance,

along with studying flimsiness in subjects implemented in different

programming languages, in future work we will empirically assess

the practical consequences of flimsiness across the wide range of

mutant-driven techniques that aid software engineers.

Acknowledgments
Owain Parry and Phil McMinn are supported by the EPSRC grant

“Test FLARE” (EP/X024539/1).

References
[1] 2025. Cosmic Ray: mutation testing for Python — Cosmic Ray documentation.

https://cosmic-ray.readthedocs.io/en/latest/.

[2] 2025. Coverage.py — Coverage.py 7.9.2 documentation. https://coverage.

readthedocs.io/en/7.9.2/.

[3] 2025. Docker: Accelerated Container Application Development. https://www.

docker.com/.

[4] 2025. ossf/criticality_score: Gives criticality score for an open source project.

https://github.com/ossf/criticality_score.

https://cosmic-ray.readthedocs.io/en/latest/
https://coverage.readthedocs.io/en/7.9.2/
https://coverage.readthedocs.io/en/7.9.2/
https://www.docker.com/
https://www.docker.com/
https://github.com/ossf/criticality_score

ICSE ’26, April 12–18, 2026 , Rio de Janeiro, Brazil Owain Parry, Gregory M. Kapfhammer, Michael Hilton, and Phil McMinn

[5] 2025. Replication Package. https://doi.org/10.15131/shef.data.30428569.v1.

[6] 2025. SciPy. https://scipy.org/.

[7] A. Alshammari, P. Ammann, M. Hilton, and J. Bell. 2024. 230,439 Test Failures

Later: An Empirical Evaluation of Flaky Failure Classifiers. In Proceedings of the
International Conference on Software Testing, Verification and Validation (ICST).
257–268.

[8] A. Alshammari, P. Ammann, M. Hilton, and J. Bell. 2024. A Study of Flaky

Failure De-Duplication to Identify Unreliably Killed Mutants. In Proceedings
of the International Conference on Software Testing, Verification and Validation
Workshops (ICSTW). 257–262.

[9] A. Alshammari, C. Morris, M. Hilton, and J. Bell. 2021. FlakeFlagger: Predicting

Flakiness Without Rerunning Tests. In Proceedings of the International Conference
on Software Engineering (ICSE). 1572–1584.

[10] Y. Benjamini and D. Yekutieli. 2001. The Control of the False Discovery Rate in

Multiple Testing Under Dependency. Annals of Statistics (2001), 1165–1188.
[11] C. Bonferroni. 1936. Teoria Statistica Delle Classi E Calcolo Delle Probabilita.

Pubblicazioni Del R Istituto Superiore Di Scienze Economiche E Commericiali Di
Firenze 8 (1936), 3–62.

[12] R. D. Boschloo. 1970. Raised Conditional Level of Significance for the 2×2-Table
When Testing the Equality of Two Probabilities. Statistica Neerlandica 24, 1 (1970),
1–9.

[13] Y. Chen, A. Yildiz, D. Marinov, and R. Jabbarvand. 2023. Transforming Test Suites

into Croissants. In Proceedings of the International Symposium on Software Testing
and Analysis (ISSTA). 1080–1092.

[14] R. Coppola, M. Morisio, and M. Torchiano. 2018. Mobile GUI Testing Fragility: A

Study on Open-Source Android Applications. Transactions on Reliability 68, 1

(2018), 67–90.

[15] M. Cordy, R. Rwemalika, A. Franci, M. Papadakis, and M. Harman. 2022. FlakiMe:

Laboratory-Controlled Test Flakiness Impact Assessment. In Proceedings of the
International Conference on Software Engineering (ICSE). 982–994.

[16] S. Di Meglio and L. L. L. Starace. 2024. Towards Predicting Fragility in End-to-

End Web Tests. In Proceedings of the International Conference on Evaluation and
Assessment in Software Engineering (EASE). 387–392.

[17] T. Durieux, C. Le Goues, M. Hilton, and R. Abreu. 2020. Empirical Study of

Restarted and Flaky Builds on Travis CI. In Proceedings of the International Con-
ference on Mining Software Repositories (MSR). 254–264.

[18] M. Eck, F. Palomba, M. Castelluccio, and A. Bacchelli. 2019. Understanding Flaky

Tests: The Developer’s Perspective. In Proceedings of the Joint Meeting of the
European Software Engineering Conference and the Symposium on the Foundations
of Software Engineering (ESEC/FSE). 830–840.

[19] S. Elbaum, A. G. Malishevsky, and G. Rothermel. 2000. Prioritizing Test Cases

for Regression Testing. In Proceedings of the International Symposium on Software
Testing and Analysis (ISSTA). 102–112.

[20] M. Gruber andG. Fraser. 2022. A Survey onHowTest Flakiness Affects Developers

and What Support They Need to Address It. In Proceedings of the International
Conference on Software Testing, Verification and Validation (ICST). 82–92.

[21] M. Gruber and G. Fraser. 2023. FlaPy: Mining Flaky Python Tests at Scale. In

Proceedings of the International Conference on Software Engineering Companion
(ICSE-C). 127–131.

[22] M. Gruber, S. Lukasczyk, F. Kroiß, and G. Fraser. 2021. An Empirical Study of

Flaky Tests in Python. In Proceedings of the International Conference on Software
Testing, Verification and Validation (ICST). 148–158.

[23] M. Gruber, M. F. Roslan, O. Parry, F. Scharnböck, P. McMinn, and G. Fraser. 2024.

Do Automatic Test Generation Tools Generate Flaky Tests?. In Proceedings of the
International Conference on Software Engineering (ICSE). 1–12.

[24] S. Habchi, M. Cordy, M. Papadakis, and Y. Le Traon. 2021. On the Use of Mutation

in Injecting Test Order-Dependency. arXiv preprint arXiv:2104.07441 (2021).
[25] S. Habchi, G. Haben, M. Papadakis, M. Cordy, and Y. Le Traon. 2022. A Qualita-

tive Study on the Sources, Impacts, and Mitigation Strategies of Flaky Tests. In

Proceedings of the International Conference on Software Testing, Verification and
Validation (ICST). 244–255.

[26] M. Harman and P. O’Hearn. 2018. From Start-ups to Scale-ups: Opportunities

and Open Problems for Static and Dynamic Program Analysis. In Proceedings of
the International Working Conference on Source Code Analysis and Manipulation
(SCAM). 1–23.

[27] M. Hilton, J. Bell, and D. Marinov. 2018. A Large-Scale Study of Test Coverage

Evolution. In Proceedings of the International Conference on Automated Software
Engineering (ASE). 53–63.

[28] Xinyi Hou, Yanjie Zhao, Yue Liu, Zhou Yang, Kailong Wang, Li Li, Xiapu Luo,

David Lo, John Grundy, and Haoyu Wang. 2024. Large Language Models for

Software Engineering: A Systematic Literature Review. ACM Transactions on
Software Engineering and Methodology 33, 8, Article 220 (Dec. 2024).

[29] Y. Jia and M. Harman. 2010. An Analysis and Survey of the Development of

Mutation Testing. IEEE Transactions on Software Engineering 37, 5 (2010), 649–

678.

[30] W. Lam, R. Oei, A. Shi, D. Marinov, and T. Xie. 2019. IDFlakies: A Framework for

Detecting and Partially Classifying Flaky Tests. In Proceedings of the International
Conference on Software Testing, Verification and Validation (ICST). 312–322.

[31] R. Lawson. 2004. Small Sample Confidence Intervals for the Odds Ratio. Commu-
nications in Statistics-Simulation and Computation 33, 4 (2004), 1095–1113.

[32] M. Leotta, D. Paparella, and F. Ricca. 2024. Mutta: A Novel Tool for E2E Web

Mutation Testing. Software Quality Journal 32, 1 (2024), 5–26.
[33] Q. Luo, F. Hariri, L. Eloussi, and D. Marinov. 2014. An Empirical Analysis of Flaky

Tests. In Proceedings of the Symposium on the Foundations of Software Engineering
(FSE). 643–653.

[34] S. Lydersen, M. W. Fagerland, and P. Laake. 2009. Recommended Tests for

Association in 2× 2 Tables. Statistics in Medicine 28, 7 (2009), 1159–1175.
[35] H. B. Mann and D. R. Whitney. 1947. On a Test of Whether one of Two Random

Variables is Stochastically Larger than the Other. The Annals of Mathematical
Statistics 18, 1 (1947), 50–60.

[36] M. Papadakis and Y. Le Traon. 2014. Effective Fault Localization via Mutation

Analysis: A Selective Mutation Approach. In Proceedings of the Symposium on
Applied Computing (SAC). 1293–1300.

[37] O. Parry, G. M. Kapfhammer, M. Hilton, and P. McMinn. 2021. A Survey of Flaky

Tests. ACM Transactions on Software Engineering and Methodology 31, 1 (2021),

1–74.

[38] O. Parry, G. M. Kapfhammer, M. Hilton, and P. McMinn. 2022. Evaluating Features

for Machine Learning Detection of Order- and Non-Order-Dependent Flaky Tests.

In Proceedings of the International Conference on Software Testing, Verification and
Validation (ICST). 93–104.

[39] O. Parry, G. M. Kapfhammer, M. Hilton, and P. McMinn. 2022. Surveying the

Developer Experience of Flaky Tests. In Proceedings of the International Conference
on Software Engineering: Software Engineering in Practice (ICSE-SEIP). 253–262.

[40] O. Parry, G.M. Kapfhammer, M. Hilton, and P.McMinn. 2022. What DoDeveloper-

Repaired Flaky Tests Tell Us About the Effectiveness of Automated Flaky Test

Detection?. In Proceedings of the International Conference on Automation of Soft-
ware Test (AST). 160–164.

[41] O. Parry, G. M. Kapfhammer, M. Hilton, and P. McMinn. 2023. Empirically

Evaluating Flaky Test Detection Techniques Combining Test Case Rerunning

and Machine Learning Models. Empirical Software Engineering 28, 3 (2023).

[42] O. Parry, G. M. Kapfhammer, M. Hilton, and P. McMinn. 2025. Systemic Flakiness:

An Empirical Analysis of Co-Occurring Flaky Test Failures. In Proceedings of the
International Conference on Evaluation and Assessment in Software Engineering
(EASE).

[43] G. Petrović, M. Ivanković, G. Fraser, and R. Just. 2021. Does Mutation Testing

Improve Testing Practices?. In Proceedings of the International Conference on
Software Engineering (ICSE). 910–921.

[44] M. T. Rahman and P. C. Rigby. 2018. The Impact of Failing, Flaky, and High

Failure Tests on the Number of Crash Reports Associated With Firefox Builds.

In Proceedings of the Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering (ESEC/FSE). 857–862.

[45] A. B. Sánchez, P. Delgado-Pérez, I. Medina-Bulo, and S. Segura. 2018. Search-Based

Mutation Testing To Improve Performance Tests. In Proceedings of the Genetic
and Evolutionary Computation Conference Companion (GECCO-C). 316–317.

[46] A. B. Sánchez, J. A. Parejo, S. Segura, A. Durán, and M. Papadakis. 2024. Mutation

Testing in Practice: Insights From Open-Source Software Developers. IEEE
Transactions on Software Engineering 50, 5 (2024), 1130–1143.

[47] P. Schober, C. Boer, and L. A. Schwarte. 2018. Correlation Coefficients: Appropri-

ate Use and Interpretation. Anesthesia & Analgesia 126, 5 (2018), 1763–1768.
[48] A. Shi, J. Bell, and D. Marinov. 2019. Mitigating the Effects of Flaky Tests on

Mutation Testing. In Proceedings of the International Symposium on Software
Testing and Analysis (ISSTA). 112–122.

[49] A. Shi, W. Lam, R. Oei, T. Xie, and D. Marinov. 2019. iFixFlakies: A Framework

for Automatically Fixing Order-dependent Flaky Tests. In Proceedings of the Joint
Meeting on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering (ESEC/FSE). 545–555.

[50] D. Silva, M. Gruber, S. Gokhale, E. Arteca, A. Turcotte, M. d’Amorim, W. Lam, S.

Winter, and J. Bell. 2024. The Effects of Computational Resources on Flaky Tests.

IEEE Transactions on Software Engineering 50, 12 (2024), 3104–3121.

[51] D. Silva, L. Teixeira, and M. D’Amorim. 2020. Shake It! Detecting Flaky Tests

Caused by Concurrencywith Shaker. In Proceedings of the International Conference
on Software Maintenance and Evolution (ICSME). 301–311.

[52] C. Spearman. 1904. The Proof and Measurement of Association Between Two

Things. The American Journal of Psychology 15, 1 (1904), 72–101.

[53] B. Vancsics, T. Gergely, and A. Beszédes. 2020. Simulating the Effect of Test

Flakiness on Fault Localization Effectiveness. In Proceedings of the International
Workshop on Validation, Analysis and Evolution of Software Tests (VST). 28–35.

[54] A. J. Vickers. 2005. Parametric Versus Non-Parametric Statistics in the Analysis of

Randomized Trials With Non-Normally Distributed Data. BMC Medical Research
Methodology 5, 1 (2005), 35.

[55] B. Wang, J. Wei, M. Chen, C. Chen, Y. Lin, and J. M. Zhang. 2025. A Systematic

Exploration of Mutation-Based Fault Localization Formulae. Software Testing,
Verification and Reliability 35, 1 (2025), e1905.

[56] Y. Yan, S. Jiang, Y. Zhang, and C. Zhang. 2023. An Effective Fault Localization

Approach Based on PageRank and Mutation Analysis. Journal of Systems and
Software 204 (2023), 111799.

https://doi.org/10.15131/shef.data.30428569.v1
https://scipy.org/

	Abstract
	1 Introduction
	2 Methodology
	2.1 Dataset
	2.2 Methodology for RQ1: Prevalence
	2.3 Methodology for RQ2: Operators
	2.4 Methodology for RQ3: Detection
	2.5 Methodology for RQ4: Coverage
	2.6 Threats to Validity

	3 Results
	3.1 Results for RQ1: Prevalence
	3.2 Results for RQ2: Operators
	3.3 Results for RQ3: Detection
	3.4 Results for RQ4: Coverage

	4 Discussion
	4.1 Causes of Test Flimsiness
	4.2 Predicting Flimsiness from Code Context
	4.3 Implications and Future Directions

	5 Related Work
	6 Conclusion and Future Work
	Acknowledgments
	References

