
QAOA-PCA: Enhancing Efficiency in theQuantum Approximate
Optimization Algorithm via Principal Component Analysis

Owain Parry
University of Sheffield

UK

Phil McMinn
University of Sheffield

UK

ABSTRACT
The Quantum Approximate Optimization Algorithm (QAOA) is a
promising variational algorithm for solving combinatorial optimiza-
tion problems on near-term devices. However, as the number of
layers in a QAOA circuit increases, which is correlated with the
quality of the solution, the number of parameters to optimize grows
linearly. This results in more iterations required by the classical opti-
mizer, which results in an increasing computational burden as more
circuit executions are needed. To mitigate this issue, we introduce
QAOA-PCA, a novel reparameterization technique that employs
Principal Component Analysis (PCA) to reduce the dimensionality
of the QAOA parameter space. By extracting principal components
from optimized parameters of smaller problem instances, QAOA-
PCA facilitates efficient optimization with fewer parameters on
larger instances. Our empirical evaluation on the prominent Max-
Cut problem demonstrates that QAOA-PCA consistently requires
fewer iterations than standard QAOA, achieving substantial effi-
ciency gains. While this comes at the cost of a slight reduction in
approximation ratio compared to QAOA with the same number
of layers, QAOA-PCA almost always outperforms standard QAOA
when matched by parameter count. QAOA-PCA strikes a favorable
balance between efficiency and performance, reducing optimization
overhead without significantly compromising solution quality.

CCS CONCEPTS
• Computer systems organization→ Quantum computing.

KEYWORDS
Quantum Computing, QAOA, PCA

ACM Reference Format:
Owain Parry and Phil McMinn. 2025. QAOA-PCA: Enhancing Efficiency in
the Quantum Approximate Optimization Algorithm via Principal Compo-
nent Analysis . In Proceedings of The 2nd International Workshop on Empirical
Studies for Quantum Software Engineering (E-QSE 2025). ACM, New York,
NY, USA, 5 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

The authors are supported by the EPSRC grant "Test FLARE" (EP/X024539/1) and the
Robust and Reliable Quantum Computing Programme (RoaRQ) .

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
E-QSE 2025, 17–20 June, 2025 , Istanbul, Türkiye
© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Quantum computing leverages quantum mechanical phenomena to
perform computations that are intractable on classical systems [18,
20]. One prominent application is combinatorial optimization, where
the Quantum Approximate Optimization Algorithm (QAOA) is a
promising approach to tackle problems like MaxCut [8]. The goal
in MaxCut is to partition a graph’s vertices to maximize the num-
ber of edges crossing the partition in the unweighted case, or to
maximize the total weight of these edges in the weighted case. It
finds important applications in diverse fields [26].

QAOA operates by applying 𝑝 layers of alternating cost and
mixing Hamiltonians parameterized by two angles, with each layer
increasing solution quality [10]. A major challenge in the practi-
cal deployment of QAOA is the optimization of its 2𝑝 parameters.
This involves a classical-quantum loop where a classical optimizer
proposes parameter values used to execute the QAOA circuit on a
quantum computer to evaluate the cost function at each iteration.
This becomes more expensive as the number of layers, and thus
parameters, increases. The burden of repeated circuit executions,
and the non-convex cost landscape [14], contributes to the quantum
software engineering challenge of scaling QAOA to larger problem
instances (e.g., graphs with more vertices), especially for weighted
MaxCut due to the proliferation of local minima [25].

Recent research has identified parameter concentration, where
optimal parameters cluster around specific values, and transferabil-
ity, where parameters optimized for one instance are applicable to
similar instances. This suggests redundancy in the parameter space,
implying that reduced dimensionality could improve efficiency
without sacrificing performance [4, 6, 9, 10, 16, 23, 24, 27]. Building
on this, we propose QAOA-PCA, a novel reparameterization tech-
nique to improve the efficiency of QAOA. Rather than optimizing
the full QAOA parameter set, QAOA-PCA leverages Principal Com-
ponent Analysis (PCA) [2] to extract key features from the optimal
parameters of a training set of smaller instances. These principal
components form a lower-dimensional subspace, resulting in fewer
parameters to optimize when tackling larger instances, leading to
faster convergence and fewer circuit executions.

We conducted an extensive empirical evaluation of QAOA-PCA
supported by robust statistical testing. We collected all connected,
non-isomorphic graphs on 5–7 vertices to form an unweighted
training set of 986 graphs. To create a weighted training set, we as-
signed random edge weights to these. We ran QAOA with 2, 4, and
8 layers on all graphs in both training sets. For these six configura-
tions of circuit depth and training set, we applied PCA to extract the
principal components from the optimized parameters. We sampled
1,000 8-vertex weighted graphs to form an evaluation set. Instead
of optimizing the full QAOA parameters for these graphs, we opti-
mized the coefficients of the most important principal components

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn


E-QSE 2025, 17–20 June, 2025 , Istanbul, Türkiye Owain Parry and Phil McMinn

as substitute parameters. We did this for various numbers of com-
ponents for each of the six training configurations. We ensured at
least a 50% reduction in the number of parameters compared to
standard QAOA with the same number of layers, which we used as
a baseline. As another baseline, we used standard QAOA with the
same number of parameters as components and thus fewer layers.

Our results demonstrate that QAOA-PCA requires significantly
fewer iterations, and thus circuit executions, compared to standard
QAOA of the same depth. With the same number of parameters,
QAOA-PCA generally requires slightly fewer. QAOA-PCA achieves
only a slightly reduced approximation ratio [22] compared to stan-
dard QAOA with the same number of layers. It almost always out-
performs standard QAOA when matched by parameter count. By
broadly preserving the advantage of deeper QAOA circuits while
avoiding excessive optimization overhead, QAOA-PCA achieves a
favorable trade-off between efficiency and performance.

The main contributions of this study are as follows:
Contribution 1: QAOA-PCA. We introduce QAOA-PCA, a novel
reparameterization technique that leverages PCA to reduce the
dimensionality of the QAOA parameter space, improving efficiency.
Contribution 2: Empirical Evaluation.We provide a rigorous
empirical evaluation of QAOA-PCA compared to standard QAOA.
Contribution 3: Results.Wedemonstrate that QAOA-PCA achieves
a favorable trade-off between performance and efficiency.

2 BACKGROUND
The Quantum Approximate Optimization Algorithm (QAOA)
is a quantum-classical algorithm for solving combinatorial opti-
mization problems [8]. It employs a parameterized circuit of depth
𝑝 alternating between unitaries generated by the cost Hamilton-
ian 𝐻𝐶 (encoding the problem) and the mixing Hamiltonian 𝐻𝐵

(facilitating computational state transitions). The resulting state is

|𝜓 (𝜸 , 𝜷)⟩ =
𝑝∏
𝑖=1

𝑒−𝑖𝛽𝑖𝐻𝐵 𝑒−𝑖𝛾𝑖𝐻𝐶 |+⟩⊗𝑛,

where |+⟩⊗𝑛 denotes a uniform superposition over all computa-
tional basis states, and𝜸 = (𝛾1, . . . , 𝛾𝑝 ) and 𝜷 = (𝛽1, . . . , 𝛽𝑝 ) are the
variational parameters. These parameters are optimized classically
to minimize the expectation value of the cost Hamiltonian:

(𝜸∗, 𝜷∗) = argmin
𝜸 ,𝜷

⟨𝜓 (𝜸 , 𝜷) |𝐻𝐶 |𝜓 (𝜸 , 𝜷)⟩.

MaxCut aims to cut (partition) the vertices of a graph𝐺 = (𝑉 , 𝐸)
into two sets to maximize the cut value, i.e., the total weight of the
edges between them. A cut is represented by 𝒛 = (𝑧1, . . . , 𝑧𝑛), with
𝑧𝑖 ∈ {+1,−1} indicating the set of vertex 𝑖 . The cut value of z is

𝐶 (z) =
∑︁

(𝑖, 𝑗 ) ∈𝐸
𝑤𝑖 𝑗

1 − 𝑧𝑖𝑧 𝑗

2
,

where𝑤𝑖 𝑗 is the weight of edge (𝑖, 𝑗), or 1 in the unweighted case.
The ground state of 𝐻𝐶 corresponds to the optimal cut. QAOA
performance is measured by the approximation ratio

𝑟 (𝜸 , 𝜷) =
⟨𝜓 (𝜸 , 𝜷) |𝐻𝐶 |𝜓 (𝜸 , 𝜷)⟩

𝐶min
,

where 𝐶min is the minimum energy of 𝐻𝐶 , corresponding to the
maximum cut value. This ratio quantifies how close the obtained

solution is to the optimal one: a value near 1 indicates near-optimal
performance, while a lower value reflects a suboptimal cut.

Trotterized Quantum Annealing (TQA) provides a heuristic
for initializingQAOAparameters. In quantum annealing, the system
is gradually driven from 𝐻𝐵 to 𝐻𝐶 over a total time 𝑇 . Discretizing
this evolution into 𝑝 steps of duration Δ𝑡 = 𝑇 /𝑝 via the Suzuki-
Trotter decomposition produces the initial QAOA parameters

𝛾𝑖 =
𝑖

𝑝
Δ𝑡, 𝛽𝑖 =

(
1 − 𝑖

𝑝

)
Δ𝑡, 𝑖 = 1, . . . , 𝑝 .

An appropriate choice of Δ𝑡 can guide the optimization towards
the global minimum while avoiding poor local minima [21].

Principal Component Analysis (PCA) reduces the dimen-
sionality of a dataset while retaining most of its variance [2]. Given
a 𝑛 ×𝑚 mean-centered data matrix 𝑋 , the covariance matrix is
Σ = 1

𝑛−1𝑋
⊤𝑋 . The principal components are the eigenvectors as-

sociated with the largest eigenvalues of Σ.

3 APPROACH
QAOA shows promise in addressing combinatorial optimization
problems [8]. Its application is hindered by the need to optimize
numerous parameters as the number of layers increases. We intro-
duce QAOA-PCA to mitigate this, a reparameterization technique
leveraging PCA to exploit redundancies in QAOA parameters.

Recent research has identified parameter concentration and
transferability. Concentration is the tendency of optimal QAOA pa-
rameters to cluster around specific values as the problem size (e.g.,
vertex count) increases, indicating that parameters optimized on
smaller problem instances can be effective on larger ones [4, 6, 9, 27].
Transferability denotes the applicability of parameters optimized
for one instance to different instances, which is predictable from
graph properties when solving MaxCut [9, 10, 16, 23]. These in-
sights imply that the effective dimensionality of the parameter
space is lower than its nominal size [24], presenting an opportunity
to reduce the number of parameters requiring optimization.

QAOA-PCA capitalizes on concentration and transferability by
employing PCA to identify the principal components of optimal
QAOA parameters from a training set of smaller problem instances.
By efficiently narrowing the search space, QAOA-PCA reduces
computational cost while maintaining high solution quality when
addressing larger instances. The process involves four stages:
Stage 1: Data Collection. Gather optimized QAOA parameters
from a diverse set of smaller problem instances.
Stage 2: Principal Component Analysis. Apply PCA to the
optimized parameters to identify the principal components that
capture the most significant variations in the parameter space.
Stage 3: Reparameterization. Represent the QAOA parameters
of new, larger problem instances as linear combinations of the
identified principal components. This approach reconstructs the
full parameter vector from a much smaller set of variables.
Stage 4: Optimization. Optimize only the coefficients of these
principal components, thereby reducing the dimensionality of the
optimization problem and facilitating convergence.

4 EVALUATION
This section details the methodology of our empirical evaluation
aimed at addressing our research questions regarding QAOA-PCA:



QAOA-PCA: Enhancing Efficiency in QAOA via PCA E-QSE 2025, 17–20 June, 2025 , Istanbul, Türkiye

RQ1: Efficiency. How does the number of optimizer iterations
required by QAOA-PCA compare with that of standard QAOA?
RQ2: Performance. How does the approximation ratio achieved
by QAOA-PCA compare with that of standard QAOA?

We created a Python script to automate all aspects of our empiri-
cal evaluation.Wemake this available in our replication package [1].
Training. We collected all connected, undirected, non-isomorphic
graphs on 5, 6, and 7 vertices to form an unweighted training set of
986 graphs [15]. Our script applied random edge weights to every
graph to form a weighted training set. It ran QAOA with 2, 4, and 8
layers on all graphs in both training sets using ideal quantum sim-
ulation provided by Qiskit [13], initializing the parameters using
TQA, and optimizing them using COBYLA [19]. For each combina-
tion of circuit depth and graph, our script repeated the process for
five values of TQA time step Δ𝑡 (0.1, 0.3, 0.5, 0.7, 0.9) and retained
only the results of the run with the greatest approximation ratio.
For the six configurations of training set and circuit depth 𝑝 , our
script applied PCA to extract the principal components from the
986 × 2𝑝 matrix of the optimized parameters of every graph.
Evaluation. Our script randomly sampled 1,000 connected, undi-
rected, non-isomorphic graphs on 8 vertices and applied random
edge weights to form an evaluation set. It ran QAOA on these as
before with 1, 2, 4, and 8 layers. This represents standard QAOA. For
each of the six sets of principal components that it extracted earlier,
our script ran QAOA on the evaluation graphs again. This time, it
optimized the coefficients of the most important principal compo-
nents as substitute parameters, trying five random initializations.
This represents QAOA-PCA with 2, 4, and 8 layers as trained on
the optimal parameters of both unweighted and weighted graphs.
In each case, our script repeated the process for different numbers
of principal components, ensuring at least a 50% reduction in the
number of parameters compared to standard QAOA with the same
number of layers. For QAOA-PCA with 2 layers, it tried 2 principal
components. For 4 layers, it tried 2 and 4 components. For 8 layers,
it tried 2, 4, and 8. This resulted in 12 configurations of QAOA-PCA.
Comparison. We compared each configuration of QAOA-PCA
against two baselines. The first was against standard QAOA with
the same number of layers and thus twice as many parameters.
The second was against standard QAOA with the same number of
parameters as principal components and thus half as many layers.
For each comparison, our script performed two-tailed Wilcoxon
signed-rank tests with rank-biserial correlation (RBC) effect sizes.
It did this regarding the number of optimizer iterations and the
approximation ratio to compare both the efficiency and perfor-
mance respectively of QAOA-PCA to standard QAOA. To calculate
approximation ratio, our script obtained 𝐶min by brute-force.
Threats. Our results may not reflect the behavior of QAOA-PCA
on real quantum computers due to our use of ideal simulation.
However, we also used it for the standard QAOA baseline, so the
comparison is fair. It is possible that our script did not converge
on the globally optimal set of parameters when performing QAOA.
We mitigated this risk by trying multiple initializations, which
increases the probability. Our results could be biased by our choice
of optimizer, COBYLA. We mitigated this by selecting an optimizer
that is popular and well-regarded in this domain [7, 11, 12].

5 RESULTS
For the 12 configurations of QAOA-PCA, Table 1 gives the training
set, the number of layers, and the number of principal components
that determines the number of parameters. It gives the median of
either the number of iterations (RQ1) or the approximation ratio
(RQ2) attained by QAOA-PCA over the evaluation set, followed
by the results of the comparisons against both standard QAOA
baselines. It gives the median attained by the both baselines, and
the p-value and RBC effect sizes. A p-value less than 0.01 indicates
that we can reject the null hypothesis of no difference at the 99%
confidence interval. An RBC of -1 indicates QAOA-PCA always has
a lower value, 1 indicates the opposite, and 0 indicates no difference.

Each subfigure of Figure 1 corresponds to a row in Table 1 as
indicated by the captions. They illustrate the distribution of the
number of iterations (x-axis) and the approximation ratio (y-axis)
across the evaluation set for QAOA-PCA (blue), for standard QAOA
with the same number of layers (orange), and for standard QAOA
with the same number of parameters (green).
Results for RQ1: Efficiency. Table 1 shows that the p-values for
the comparisons between the number of iterations required by
QAOA-PCA and standard QAOA with the same number of layers
are significant (<0.01) for every configuration. The effect sizes are
all -1, indicating that QAOA-PCA always requires fewer iterations.
The magnitude of this is shown by the large differences between
the medians in favor of QAOA-PCA. It is clear in every subfigure of
Figure 1 as the large gap along the x-axis between the data points for
QAOA-PCA and standard QAOA with the same number of layers.

With respect to standard QAOAwith the same number of param-
eters, all but one of the p-values is significant. While the majority
of the effect sizes are negative, there is significant variance in mag-
nitude. This is illustrated in Figure 1, where the data points for
QAOA-PCA are generally more in line along the x-axis with those
of standard QAOA with the same number of parameters.

Conclusion for RQ1.QAOA-PCA consistently requires far fewer
iterations than standard QAOA with the same layers. With the
same number of parameters, the improvement is less pronounced.

Results for RQ2: Performance. The difference between the ap-
proximation ratio of QAOA-PCA and standard QAOA with the
same number of layers is always significant. The negative effect
sizes with varying magnitudes indicate QAOA-PCA often performs
worse. However, comparing medians, and the y-axis positions of
the data points for QAOA-PCA and standard QAOA with the same
number of layers, highlights that the difference is generally minor.

As for standard QAOA with the same number of parameters, the
difference in performance is once again statistically significant for
every configuration. In this case, all but one of the effect sizes are
positive and are generally close to 1. This indicates that QAOA-
PCA very frequently performs better, as illustrated by the generally
higher y-axis positions of the data points for QAOA-PCA compared
to those for standard QAOA with the same number of parameters.

Conclusion for RQ2. QAOA-PCA generally achieves slightly
lower approximation ratios than standard QAOA with the same
layers. However, with the same number of parameters, QAOA-
PCA almost always outperforms standard QAOA.



E-QSE 2025, 17–20 June, 2025 , Istanbul, Türkiye Owain Parry and Phil McMinn

Table 1: Comparison of QAOA-PCA and standard QAOA across 12 configurations. For each, the table gives the median (Med.)
number of optimizer iterations (RQ1) and approximation ratio (RQ2) for QAOA-PCA and the two standard QAOA baselines
(Same # Layers, Same # Param.). Wilcoxon test results include p-values (P-Val.) and rank-biserial correlation (RBC) effect sizes.

Number of Iterations (RQ1) Approximation Ratio (RQ2)

Same # Layers Same # Param. Same # Layers Same # Param.

Training Set # Layers # Param. Med. Med. P-Val. RBC Med. P-Val. RBC Med. Med. P-Val. RBC Med. P-Val. RBC

Unweighted 2 2 32 65 <0.01 -1.00 32 <0.01 -0.14 0.83 0.85 <0.01 -0.89 0.79 <0.01 1.00
Unweighted 4 2 33 112 <0.01 -1.00 32 <0.01 0.11 0.85 0.90 <0.01 -1.00 0.79 <0.01 1.00
Unweighted 4 4 54 112 <0.01 -1.00 65 <0.01 -0.73 0.85 0.90 <0.01 -1.00 0.85 <0.01 -0.26
Unweighted 8 2 39 210 <0.01 -1.00 32 <0.01 0.78 0.91 0.93 <0.01 -0.97 0.79 <0.01 1.00
Unweighted 8 4 57 210 <0.01 -1.00 65 <0.01 -0.57 0.91 0.93 <0.01 -0.96 0.85 <0.01 0.99
Unweighted 8 8 101 210 <0.01 -1.00 112 <0.01 -0.55 0.93 0.93 <0.01 -0.30 0.90 <0.01 0.94
Weighted 2 2 31 65 <0.01 -1.00 32 <0.01 -0.32 0.84 0.85 <0.01 -0.77 0.79 <0.01 1.00
Weighted 4 2 32 112 <0.01 -1.00 32 0.07 0.07 0.87 0.90 <0.01 -0.96 0.79 <0.01 1.00
Weighted 4 4 55 112 <0.01 -1.00 65 <0.01 -0.76 0.89 0.90 <0.01 -0.38 0.85 <0.01 0.99
Weighted 8 2 32 210 <0.01 -1.00 32 <0.01 -0.20 0.82 0.93 <0.01 -1.00 0.79 <0.01 0.88
Weighted 8 4 57 210 <0.01 -1.00 65 <0.01 -0.46 0.89 0.93 <0.01 -1.00 0.85 <0.01 1.00
Weighted 8 8 103 210 <0.01 -1.00 112 <0.01 -0.49 0.91 0.93 <0.01 -0.95 0.90 <0.01 0.65

25 50 75 100 125
Number of Iterations

0.70

0.80

0.90

Ap
pr

ox
. R

at
io

(a) Unweighted, 2 Layers, 2 Param.

50 100 150 200
Number of Iterations

0.70

0.80

0.90

Ap
pr

ox
. R

at
io

(b) Unweighted, 4 Layers, 2 Param.

50 100 150 200
Number of Iterations

0.80

0.90

Ap
pr

ox
. R

at
io

(c) Unweighted, 4 Layers, 4 Param.

100 200 300
Number of Iterations

0.70

0.80

0.90

Ap
pr

ox
. R

at
io

(d) Unweighted, 8 Layers, 2 Param.

100 200 300
Number of Iterations

0.80

0.90

Ap
pr

ox
. R

at
io

(e) Unweighted, 8 Layers, 4 Param.

100 200 300
Number of Iterations

0.85

0.90

0.95

Ap
pr

ox
. R

at
io

(f) Unweighted, 8 Layers, 8 Param.

25 50 75 100 125
Number of Iterations

0.70

0.80

0.90

Ap
pr

ox
. R

at
io

(g) Weighted, 2 Layers, 2 Param.

50 100 150 200
Number of Iterations

0.70

0.80

0.90
Ap

pr
ox

. R
at

io

(h) Weighted, 4 Layers, 2 Param.

50 100 150 200
Number of Iterations

0.80

0.90

Ap
pr

ox
. R

at
io

(i) Weighted, 4 Layers, 4 Param.

100 200 300
Number of Iterations

0.70

0.80

0.90

Ap
pr

ox
. R

at
io

(j) Weighted, 8 Layers, 2 Param.

100 200 300
Number of Iterations

0.80

0.90

Ap
pr

ox
. R

at
io

(k) Weighted, 8 Layers, 4 Param.

100 200 300
Number of Iterations

0.85

0.90

0.95

Ap
pr

ox
. R

at
io

(l) Weighted, 8 Layers, 8 Param.

Figure 1: Distributions of the number of iterations (x-axis) and approximation ratios (y-axis) for QAOA-PCA (blue), standard
QAOA with the same number of layers (orange), and standard QAOA with the same number of parameters (green).

Discussion. Our results demonstrate that QAOA-PCA consistently
requires fewer iterations than standard QAOA, achieving a substan-
tial efficiency gain. While this comes at the cost of a slight reduction
in approximation ratio compared to QAOA with the same num-
ber of layers, QAOA-PCA often outperforms standard QAOA when
matched by parameter count. This suggests that QAOA-PCA strikes

a favorable balance between efficiency and performance, reducing
optimization overhead without significantly compromising solu-
tion quality. This is illustrated in Figure 1, where the data points
for QAOA-PCA generally occupy the upper-left of each subfigure,
which represents the optimum region. Our results do not indicate
any obvious differences between training on unweighted versus



QAOA-PCA: Enhancing Efficiency in QAOA via PCA E-QSE 2025, 17–20 June, 2025 , Istanbul, Türkiye

weighted graphs. This may seem surprising given the complexity of
weightedMaxCut, however, previous research demonstrated param-
eter transferability between unweighted and weighted graphs [23].

6 RELATEDWORK
Acampora et al. proposed a clustering approach that assigns fixed
parameters to new problem instances based on their similarity to
previously addressed instances from a training set [3]. Along a sim-
ilar vein, Moussa et al. investigated unsupervised machine learning
techniques, particularly clustering, to set QAOA parameters for
MaxCut without explicit optimization [17]. While this removes the
need for classical optimization, it relies on the assumption that
new instances closely resemble those in the training set, with no
mechanism for further refinement. Unlike these approaches, which
trade all such adaptability for efficiency, QAOA-PCA retains some
optimization capability while still reducing computational cost. In-
stead of assigning parameters from a set of clusters, QAOA-PCA
applies PCA, another technique in unsupervised machine learning,
to identify a lower-dimensional representation of QAOA parame-
ters. It reduces the number of variables that require optimization
while still allowing adjustments for diverse unseen instances.

Amosy et al. introduced a neural network-based method for ini-
tializing QAOA parameters, which predicts parameters based on
previously optimized instances with the aim of eliminating further
optimization [5]. Their approach is effective for the problem sizes
used in training, but their study does not evaluate generalizability
to larger instances. QAOA-PCA retains the ability to refine param-
eters after initialization while reducing the number of parameters,
enabling it to efficiently adapt to larger instances. Additionally, it
provides direct control over the parameter count to adjust the bal-
ance between efficiency and performance. These differences make
QAOA-PCA a viable alternative when full optimization is too costly
but entirely eliminating optimization is undesirable.

7 CONCLUSION AND FUTUREWORK
Our empirical evaluation demonstrates that QAOA-PCA substan-
tially reduces the number of optimizer iterations. Compared to
standard QAOA, it consistently improves efficiency without sig-
nificantly compromising performance. These results highlight the
feasibility of QAOA-PCA as a promising approach in quantum soft-
ware engineering for scaling QAOA to larger problem instances.
Future Work. We aim to develop an adaptive strategy in which
QAOA-PCA begins with a small number of principal components
and expands dynamically when optimization progress stagnates.
This approach should reduce initial computational overhead while
allowing for increased expressivity when necessary, helping the
optimizer escape plateaus and refine solutions more effectively. We
also plan to conduct a broader empirical evaluation by applying
QAOA-PCA to larger graphs and additional problems.Wewill evalu-
ate a greater range of circuit depths, training set configurations, and
numbers of components to more rigorously determine the condi-
tions under which QAOA-PCA provides the best trade-off between
efficiency and performance. Most critically, we will evaluate QAOA-
PCA against noisy quantum simulators and run experiments on
real quantum hardware. Finally, we intend to investigate alternate
initialization schemes for QAOA-PCA. In our empirical evaluation,

we relied on random initialization. We will evaluate the applicabil-
ity of prior machine learning-based approaches [5] to produce a
hybrid technique that benefits from both parameter reduction and
data-driven starting points in the optimization process.

REFERENCES
[1] 2025. Replication Package, https://doi.org/10.5281/zenodo.15269564.
[2] H. Abdi and L. J Williams. 2010. Principal Component Analysis. Wiley Interdisci-

plinary Reviews: Computational Statistics (2010).
[3] G. Acampora, A. Chiatto, and A. Vitiello. 2023. Fuzzy Clustering for QAOA

Complexity Reduction. In Proc. FUZZ. 1–7.
[4] V. Akshay, D. Rabinovich, E. Campos, and J. Biamonte. 2021. Parameter Concen-

trations in Quantum Approximate Optimization. Physical Review A (2021).
[5] O. Amosy, T. Danzig, O. Lev, E. Porat, G. Chechik, and A. Makmal. 2024. Iteration-

Free Quantum Approximate Optimization Algorithm Using Neural Networks.
Quantum Machine Intelligence (2024).

[6] F. G. S. L. Brandao, M. Broughton, E. Farhi, S. Gutmann, and H. Neven. 2018. For
Fixed Control Parameters the Quantum Approximate Optimization Algorithm’s
Objective Function Value Concentrates for Typical Instances. arXiv preprint
arXiv:1812.04170 (2018).

[7] C. Campbell and E. Dahl. 2022. QAOA of the Highest Order. In Proc. ICSA-C.
141–146.

[8] E. Farhi, J. Goldstone, and S. Gutmann. 2014. A Quantum Approximate Optimiza-
tion Algorithm. arXiv preprint arXiv:1411.4028 (2014).

[9] A. Galda, E. Gupta, J. Falla, X. Liu, D. Lykov, Y. Alexeev, and I. Safro. 2023.
Similarity-Based Parameter Transferability in the Quantum Approximate Opti-
mization Algorithm. Frontiers in Quantum Science and Technology (2023).

[10] A. Galda, X. Liu, D. Lykov, Y. Alexeev, and I. Safro. 2021. Transferability of
Optimal QAOA Parameters Between Random Graphs. In Proc. QCE. 171–180.

[11] T. Hao, Z. He, R. Shaydulin, J. Larson, andM. Pistoia. 2024. End-to-End Protocol for
High-Quality QAOA Parameters With Few Shots. arXiv preprint arXiv:2408.00557
(2024).

[12] Z. He, R. Shaydulin, D. Herman, C. Li, R. Raymond, S. H. Sureshbabu, and M.
Pistoia. 2024. Parameter Setting Heuristics Make the Quantum Approximate
Optimization Algorithm Suitable for the Early Fault-Tolerant Era. arXiv preprint
arXiv:2408.09538 (2024).

[13] A. Javadi-Abhari, M. Treinish, K. Krsulich, C. J. Wood, J. Lishman, J. Gacon, S.
Martiel, P. D. Nation, L. S. Bishop, A. W. Cross, Johnson B. R., and Gambetta J. M.
2024. Quantum Computing With Qiskit. arXiv preprint arXiv:2405.08810 (2024).

[14] I. Lyngfelt and L. García-Álvarez. 2025. Symmetry-Informed Transferability
of Optimal Parameters in the Quantum Approximate Optimization Algorithm.
Physical Review A (2025).

[15] B. D. McKay. 1983. Applications of a Technique for Labelled Enumeration.
Congressus Numerantium (1983).

[16] J. A. Montanez-Barrera, D. Willsch, and K. Michielsen. 2024. Transfer Learning
of Optimal QAOA Parameters in Combinatorial Optimization. arXiv preprint
arXiv:2402.05549 (2024).

[17] C. Moussa, H. Wang, T. Bäck, and V. Dunjko. 2022. Unsupervised Strategies
for Identifying Optimal Parameters in Quantum Approximate Optimization
Algorithm. EPJ Quantum Technology (2022).

[18] M. A. Nielsen and I. L. Chuang. 2010. Quantum Computation and Quantum
Information.

[19] A. Pellow-Jarman, I. Sinayskiy, A. Pillay, and F. Petruccione. 2021. A Compar-
ison of Various Classical Optimizers for a Variational Quantum Linear Solver.
Quantum Information Processing (2021).

[20] J. Preskill. 2018. Quantum Computing in the NISQ Era and Beyond. Quantum
(2018).

[21] S. H. Sack andM. Serbyn. 2021. QuantumAnnealing Initialization of the Quantum
Approximate Optimization Algorithm. Quantum (2021).

[22] T. Schwägerl, Y. Chai, T. Hartung, K. Jansen, and S. Kühn. 2024. Benchmarking
Variational Quantum Algorithms for Combinatorial Optimization in Practice.
arXiv preprint arXiv:2408.03073 (2024).

[23] R. Shaydulin, P. C. Lotshaw, J. Larson, J. Ostrowski, and T. S. Humble. 2023.
Parameter Transfer for QuantumApproximate Optimization ofWeightedMaxCut.
Transactions on Quantum Computing (2023).

[24] K. Shi, R. Herrman, R. Shaydulin, S. Chakrabarti, M. Pistoia, and J. Larson. 2022.
Multiangle QAOA Does Not Always Need All Its Angles. In Proc. SEC. 414–419.

[25] S. H. Sureshbabu, D. Herman, R. Shaydulin, J. Basso, S. Chakrabarti, Y. Sun, and
M. Pistoia. 2024. Parameter Setting in Quantum Approximate Optimization of
Weighted Problems. Quantum (2024).

[26] Rui-Sheng W. and Li-Min W. 2010. Maximum Cut in Fuzzy Nature: Models and
Algorithms. J. Comput. Appl. Math. (2010).

[27] H. Zeng, F. Meng, T. Luan, X. Yu, and Z. Zhang. 2024. Improved Quantum
Approximate Optimization Algorithm for Low-Density Parity-Check Channel
Decoding. Advanced Quantum Technologies (2024).

https://doi.org/10.5281/zenodo.15269564

	Abstract
	1 Introduction
	2 Background
	3 Approach
	4 Evaluation
	5 Results
	6 Related Work
	7 Conclusion and Future Work
	References

