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Abstract—In Autonomous Driving Systems (ADS) testing, a test
scenario is a pre-defined, specific sequence of events, including
static entities (e.g., road shapes and traffic signs) and dynamic
entities (e.g., traffic lights and the trajectories of surrounding
vehicles). By creating an environment according to a test scenario
and running the ADS under test in that environment, we
can verify whether the ADS causes any safety violations (e.g.,
collisions with other vehicles) or not. Due to the high cost and
risks associated with setting up test scenarios in the real world,
simulation-based testing, which relies on driving simulators that
can create various virtual driving environments, has gained
significant attention. Since simulated environments can be more
deterministic than the real world, simulation-based testing can
provide non-flaky tests, i.e., the same test outcome for the same
test scenario (and the same ADS), in theory. However, do we
really have no flaky tests in simulation-based ADS testing?

This paper empirically investigates flaky tests in simulation-
based ADS testing using two widely used, open-source driving
simulators: CARLA and MetaDrive. Our results show that,
surprisingly, 31.3% of benchmark test scenarios are potentially
flaky due to nondeterministic simulations in CARLA, whereas
MetaDrive does not yield any flaky tests. We further discuss
potential causes of nondeterministic simulations, implications of
flaky tests in ADS testing, and practical strategies for mitigating
flakiness in future works.

I. INTRODUCTION

To ensure the safety and reliability of Autonomous Driving
Systems (ADS), test scenarios play an essential role in ADS
testing. A test scenario is a pre-defined, specific sequence
of events, including static entities (e.g., road shapes, traffic
lights, and background buildings) and dynamic entities (e.g.,
traffic lights and the trajectories of surrounding vehicles and
pedestrians). It defines an environment where the ADS under
test can operate, and we can verify whether the ADS causes
any safety violations (e.g., collisions with other vehicles or
pedestrians) by operating the ADS in the environment. Consid-
ering the high cost and risks associated with setting up various
(and possibly extreme) test scenarios in the real world, driving
simulators that can create various virtual driving environments
have been increasingly used in ADS testing [1, 2, 3].

The benefits of simulation-based ADS testing are more
than low cost and risk; using deterministic simulations can
effectively suppress flaky tests. In other words, we can expect
the same test outcome (pass or fail) for the same ADS1 when
the same test scenario is used. For example, open-source
driving simulators, such as CARLA [4] (a high-fidelity driving
simulator based on Unreal Engine 4) and MetaDrive [5]

1Although ADS might have nondeterministic behaviors, it can be easily
controlled by fixing random seeds.

(a lightweight-simulator developed for training reinforcement
learning based driving agents), support deterministic simula-
tions [6, 7]. We can, therefore, expect reliable, non-flaky tests
using CARLA and MetaDrive.

However, as shown by Chance et al. [8], CARLA exhibits
intrinsic nondeterminism due to its reliance on the game en-
gine (Unreal Engine 4) for physics and rendering calculations.
Specifically, their evaluation results on six test scenarios based
on a T-junction road show that the deviation in the trajectories
of vehicles and pedestrians before and after collisions across
multiple simulations is significant at the centimetre level. This
raises questions about flaky tests.

In this paper, we empirically investigate flaky tests in
simulation-based ADS testing using CARLA and MetaDrive,
two open-source driving simulators widely used in relevant
studies. Specifically, we aim to answer the following research
questions:
RQ1 How many test scenarios are potentially flaky due to

simulators’ nondeterminism?
RQ2 How flaky are test results from the potentially flaky test

scenarios?
RQ1 is to understand to what extent driving scenarios are

flaky due to (unintentionally) nondeterministic simulations.
We call a test scenario potentially flaky if the scenario can
pass or fail without changes to the test scenario itself and
the ADS under test. If there are no potentially flaky tests, it
implies that the corresponding simulator can provide reliable
test results.

RQ2 is to investigate further the degree to which individual
test scenarios are potentially flaky due to nondeterministic
simulations. This is an essential question since even if there
were many flaky test scenarios for a driving simulator, their
degrees of flakiness is insignificant, making the potentially
flaky tests relatively harmless.

Our evaluation results show that, on the one hand, over
30% of the scenarios executed in CARLA exhibit potentially
flaky behaviors. In particular, collisions with other vehicles
and route timeout are the two most frequent safety violation
types in flaky test scenarios. Given the importance of collision-
related safety requirements, the frequency of potentially flaky
tests in CARLA is quite surprising. On the other hand, all test
scenarios in MetaDrive exhibit no flaky behaviors.

We further discuss the potential causes and implications of
nondeterministic simulations in simulation-based ADS test-
ing. We also discuss steps to mitigate flaky tests to make
simulation-based ADS testing more reliable.
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Fig. 1. An overview of scenario-based ADS testing in high-fidelity simulation.
Adapted from Zhong et al. [1].

To summarize, the main contributions of this paper are:
(1) The empirical investigation of flaky tests in simulation-

based testing with CARLA and MetaDrive, two widely
used driving simulators in the research community.

(2) A discussion on the implications of potentially flaky tests
on simulation-based ADS testing.

(3) Guidelines to mitigate potentially flaky tests in simulation-
based ADS testing.

This paper is structured as follows. Section II provides
the necessary background on scenario-based ADS testing
in simulated environments. Section III defines intentional
and unintentional nondeterminism and their relationship with
flaky tests. Section IV contains two case studies with their
methodology and results. Section V discusses potential causes
and implications of nondeterministic simulations on ADS
testing and provides guidelines for addressing unintentional
nondeterminism in future works on ADS testing. Section VI
concludes the paper and includes ideas for future work.

II. BACKGROUND

A. ADS Testing in Simulated Environments

Automated Driving Systems (ADS) have seen rapid de-
velopment in recent years. To ensure their safety, they are
extensively tested before future deployment. Field testing (e.g.,
testing on the proving grounds) is the closest to the real-world
application but is incredibly costly. Test engineers naturally
leverage simulators that promise safe, cheap and reproducible
evaluation.

Figure 1 illustrates a general ADS testing workflow in
simulated environments presented by Zhong et al. [1].

Simulation-based ADS testing typically starts with a test
(driving) scenario (i.e., test input) that defines a sequence of
events (e.g., trajectories of other vehicles from the start to
the end of the scenario) happening in a specific environment
(e.g., a T-junction with no traffic lights on a foggy day).
In practice, a test scenario can be represented as an array
of multiple variables, each representing different static and
dynamic entities considered in the scenario.

Given a test scenario, a high-fidelity simulator, such as
CARLA [4] or MetaDrive [5], creates a virtual environment
according to the scenario description. The ADS under test is
embedded into the virtual world, fully controlling one of the
virtual vehicles, commonly called as the ego vehicle. ADS

under test takes as input sensor data generated by the simulator
(e.g. images from virtual cameras mounted on ego vehicle)
and outputs a driving command (e.g., throttle control and
steering angle). To process sensor data and update the virtual
environment, scenario execution is discretized into small time
steps and runs into a synchronous state-action loop; at every
step, the virtual environment is updated, and the ADS gets
sensor data and outputs driving commands. The simulation
stops when the ego vehicle reaches its destination or when a
pre-defined timeout occurs.

At the end of the simulation, the results of the scenario run
are evaluated to see if the ego vehicle committed any safety
violations (e.g., colliding with another vehicle or drifting out
of its lane). Naturally, the expected test result is no violations
(or fewer than a certain number of violations if there is a
tolerance threshold).

The evaluation results (i.e., test outcomes) are often used
to generate more test scenarios with the aim of maximizing
objectives (e.g., degree of safety violations), therefore closing
the testing loop.

Driving simulators often support deterministic simulations
to achieve reproducible results [8]. Given the same input
scenario and a deterministic driving system, scenario execution
and evaluation results should be precisely the same in the
deterministic simulation mode. However, not all simulations
must be deterministic; some simulators might support inten-
tional nondeterminism. To make things clear, we will further
define and distinguish intentional and unintentional determin-
ism in Section III.

III. DEFINITIONS

Nondeterminism in simulators is when, given the same
inputs, starting configuration and environmental conditions,
different behaviors are exhibited in different simulation runs.
In this section, we draw a distinction between intentional and
unintentional determinism.

In some cases, simulators are intentionally nondeterministic.
This is because the reasons behind the simulated element (for
example, an insect, an animal, or even a human) choosing
to perform a particular behavior are not fully understood. In
order to model these elements, therefore, a scientist or engineer
may program the element to select randomly from a set of
behaviors observed in real life, according to some probability
distribution.

In other cases, simulators may be unintentionally nonde-
terministic. This could, for example, be due to bugs in the
simulator or due to the use of components (e.g., the rendering
engine) that themselves are nondeterministic for unaccounted
and potentially undesirable reasons.

A software test that involves a nondeterministic simulator
may be flaky for intentional or unintentional nondeterminism
— test runs may involve different behaviors being exhib-
ited, which, depending on the assertions or checks made,
may lead to different test outcomes. From a testing perspec-
tive, intentional nondeterminism is easier to account for by
fixing random seeds, allowing for degrees of tolerance in



checks/assertions, or by making checks probabilistic. Uninten-
tional nondeterminism, on the other hand, is hard to predict
and allow for in tests. In this paper, we focus on flaky tests
that result from unintentional nondeterminism in simulators.
Such flaky tests are likely to be difficult to track down and
debug.

Note that flaky tests are based on scenario evaluation results
in Fig. 1; even if scenario execution results vary due to
unintentional nondeterminism in simulators, the corresponding
scenario evaluation results could remain the same depending
on safety requirements and tolerance thresholds used. For
instance, if the ego vehicle takes slightly different paths in
two test repetitions but runs a red light in each, both are
evaluated as the same type of test failure. Therefore, we will
focus on evaluation results rather than execution results in our
evaluation in Section IV.

Luo et al. [9] performed the earliest empirical studies of
test flakiness and categorize different causes. The reasons
for unintentional nondeterminism in simulators may be due
to several of the causes mentioned (e.g., due to the use
of unpredictable thread orders and inaccuracies in floating-
point computations) as discussed in V-A. However, from an
ADS testing perspective, infrastructure flakiness is the most
fitting type of flakiness for describing tests failing due to
unintentional nondeterminism in driving simulators. Eck et al.
[10] define infrastructure flakiness as test flakiness due to
issues outside of project code (i.e., the ADS) but inside the
execution environment (i.e., the driving simulator used to
simulate scenarios using the ADS). Infrastructure flakiness is
usually used, however, to describe flakiness due to containers
and/or the local host. We argue in this paper, therefore, that
simulator flakiness to be a new source of test flakiness due to
unintentional nondeterminism in a simulator that is most apt
for describing the type of flakiness encountered when testing
ADSs evaluated in this paper.

IV. EVALUATION

To recap, we aim to answer the two research questions on
frequency of potentially flaky test scenarios and the degree of
their flakiness.

We performed two independent case studies using two pop-
ular open-source autonomous driving simulation frameworks:
CARLA [4] and MetaDrive [5].

The replication package for our case studies, as well as the
analyzed data, can be found at https://figshare.com/s/365106
68ad05ffa8c0bd.

A. Case study: CARLA

1) Simulator: To answer our research question, we use
CARLA 0.9.10.1 [4] with Leaderboard 1.0 [11] which together
form a popular framework to benchmark ADS used in many
existing studies [12, 13, 14, 15, 16]. CARLA features a flexible
interface that allows the embedding of driving systems for
training and testing purposes. In CARLA, one can control
various elements that make up a virtual environment, such
as weather, lighting, traffic, road shapes, and surrounding

buildings. To make the virtual environments more realistic,
CARLA provides built-in, hand-crafted maps, ranging from
complex city areas with roundabouts to long-stretching high-
ways, including realistic static entities, such as traffic signs,
buildings, and trees. This flexibility and controllability is
needed for scenario-based testing, where testers try to identify
sets of conditions that cause ADS under test to malfunction.

2) ADS under Test: For the ADS, we use TransFuser++
(TF++) [16], a state-of-the-art driving system, capable of
driving in CARLA. TF++ is an end-to-end driving model that
takes input from sensors (i.e., a front RGB camera, Lidar and
speedometer) and outputs steering control for throttle, braking,
and lateral steering. TF++ takes advantage of transformer
decoder [17] and path-based outputs, outperforming other
models and setting new records on Longest6 [13] and LAV
benchmarks [15].

Upon further investigation, we concluded that TF++ does
not contribute to flaky tests for the following reasons:

• Jaeger et al. [16] emphasized ensuring determinism dur-
ing model training;

• The pre-trained model’s weights during scenario execu-
tion are frozen, and the model is set in inference mode
where we can control its randomness.

Therefore, we can safely conclude that flaky test results, if
any, are due to unintentional nondeterminism in simulations.

3) Test Scenarios: To evaluate the frequency and the degree
of simulation flakiness, we need a benchmark set of test
scenarios to run in the simulator with the ADS under test.
To mitigate any bias, we use pre-defined scenarios available
in CARLA Leaderboard 1.0 [11], an official test benchmark
which provides 25 challenging driving scenarios in three dif-
ferent maps called Towns. Each town defines the static layout
of the map, i.e., road network, traffic signs, lane markings, as
well as surrounding buildings and parks to create a realistic
environment. We have chosen this benchmark as it is the most
popular validation suite among researchers developing driving
systems with CARLA. At the time of writing, the official
leaderboard has received over 20 unique submissions.

Each scenario includes (1) a route the ADS under test must
follow to reach its goal and (2) a list of events the ADS
must face along a set route. For example, one scenario would
specify that the ego vehicle must handle sudden lane changes
of surrounding cars or pedestrians stepping out from parked
cars. All scenarios include road users (e.g., cars, cyclists, and
pedestrians) managed by a simulator built-in module, Traffic-
Manager. At every simulation step, TrafficManager controls
the behaviors of all road users.

Since the original scenarios in the Leaderboard benchmark
are too long (around 30 minutes to run each), we sliced them
into smaller segments (around 5 minutes to run each), resulting
in 128 scenarios. This is to reduce the execution time of
each individual scenario while maintaining the challenging
nature of the original. During the simulation of each (sliced)
scenario, we set the timeout, as the CARLA Leaderboard does,
to avoid an indefinite run if, for example, the ADS gets stuck.
To answer our research questions, we repeated each scenario



Fig. 2. Sequence of frames from replaying “Scenario 8”, the most flaky
scenario found in CARLA. The ego vehicle passes through the street barrier
in one of the scenarios due to a software bug.

simulation 10 times to see how scenario evaluation results vary
from one rollout to another.

4) Safety Requirements: For each scenario, we evaluate the
ADS by counting the number of infractions for the following
safety requirements in CARLA: (RC1) no collisions with
static objects; (RC2) no collisions with pedestrians; (RC3) no
collisions with other vehicles; (RC4) no out-of-lane episodes;
(RC5) no running a red light; (RC6) no running a stop
sign; (RC7) no block-other-vehicles episodes; (RC8) no route
time-out. We have chosen the above requirements as they
capture the most important requirements of safe autonomous
driving. The same requirements were used in CARLA Leader-
board [11], a popular driving benchmark.

5) Methodology: To answer RQ1, we count the number of
potentially flaky scenarios among the 128 scenarios described
in IV-A3. Recall that, as established in Section III, a flaky
test happens when, given the same test scenario, different
evaluation results are exhibited in different simulation runs.
To check if a test scenario is potentially flaky, we count the
number of unique “behaviors” observed during the repeated
evaluation of the scenario. If the number of unique behaviors
is greater than one, we consider that scenario potentially flaky.

We consider two test runs having the same “behavior”
when the number of safety violations committed for each
requirement is the same. For example, if a car runs a red light
consistently in 10 repetitions, we call it a single behavior (non-
flaky scenario). On the other hand, if we observe zero, one,
and two red light violations in 3, 4, 3 repetitions, respectively,
for a single scenario, we have three unique behaviors, and
the scenario is marked as potentially flaky. We use this
weak notion of determinism (instead of comparing the exact
state of the simulation at all timestamps), as it is directly
connected with the safety requirements we test against. As
noted in Section III, scenario evaluation results, not execution
results, matter. We do not require the simulator to be perfectly
deterministic as long as the infractions reported are consistent
across repetitions.

To answer RQ2, we investigate the degree of flakiness of
each potentially flaky scenario we found in RQ1. We quantify
the degree by calculating the standard deviation for each

Fig. 3. Frames from replaying four representative repetitions of “Scenario 61”
showing four unique behaviors. Each time, the ego vehicle (black sedan)
approaches a four-way stop junction from one side and faces a red car that
came on its way. Due to simulator nondeterminism, we can observe four
alternative behaviors that happen next: 1) Top left: the ego vehicle ends
up in a deadlock where neither car can move, triggering a ‘vehicle blocked’
infraction. 2) Top right: the ego vehicle manages to pass through the junction
safely 3) Bottom left: the ego vehicle tries to pass through but collides with
the red car 4) Bottom right: the ego vehicle ends up in a deadlock, causing
more traffic, but tries to drive through, resulting in multiple collisions with
both the red car and the motorcyclist.

infraction count across 10 repetitions. It implies how far each
repetition result is from the average result. The higher the
standard deviation, the more potentially flaky the scenario
is for the given safety requirement. Specifically, for each
potentially flaky scenario s and safety requirement r, we com-
pute: σ(s, r) =

√
1
n

∑n
i (InfractionCount(s, r)i − µ(s, r))2

where σ(s, r) is the standard deviation of s for r,
InfractionCount(s, r)i is the infraction count of s for r at
i-th repetition, µ(s, r) = 1

n

∑n
i InfractionCount(s, r)i is the

mean of the infraction counts of s for r, and n = 10 is the
total number of repetitions. For example, consider a potentially
flaky scenario se and the no collision with pedestrians require-
ment rp where InfractionCount(se, rp)i = 0 for i = 1, . . . , 5
and InfractionCount(se, rp)j = 2 for j = 6, . . . , 10. Then
µ(se, rp) = 1, and therefore, σ(se, rp) = 1. This means, on
average, the difference between the infraction count of the
potentially flaky scenario for the given safety requirement and
the average infraction count is one.

6) Results: Figure 4 shows the distribution of unique be-
haviors observed. Our results show that only 88 out of 128
test scenarios exihibit a single unique behavior. It means that
31.3% (40/128) of the benchmark scenarios are potentially
flaky in CARLA. It is worth noting that our notion of flaky
tests is “weaker” than simulation determinism since we rely
on scenario evaluation results instead of scenario execution
results, as discussed in Section IV-A5. This implies that test
evaluation results could have been flaky for around one-third
of any scenarios in the CARLA Leaderboard benchmark [11],
which is quite surprising. Interestingly, 12 of the 40 potential
risk scenarios even have three or more unique behaviours. To
better understand the nature of the potentially flaky scenarios,
we manually investigated the 12 scenarios which exhibit three
or more unique behaviors. For the most potentially flaky
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Fig. 4. Distribution of unique behaviors observed when evaluating TF++ [16]
using CARLA [4] 10 times on 128 benchmark test scenarios.

scenario (i.e., “Scenario 8” exhibiting 5 different behaviors),
we found that it is due to a bug2 that allows the ADS to pass
through a street barrier. Figure 2 presents scenario replay. We
observed that the bug actually occurs at every repetition, but
the evaluation results vary due to the collision detection sensor
counts in CARLA. While the car’s behavior looks consistent
(the ego vehicle always passes through the barrier), CARLA
reports a different number of collisions, between zero and five.

Figure 3 shows another potentially flaky scenario, “Scenario
61”, exhibiting four different unique behaviors. For the given
scenario, we found that the ego vehicle approaching chal-
lenging encounters at the junction can take different actions
due to slight differences in vehicle positioning across multiple
simulations. We suspect slight differences caused by simulator
nondeterminism can trigger a butterfly effect, leading cars to
exhibit completely different behaviors.

In the CARLA case study, the answer to RQ1 is that
31.3% (40/128) of scenarios are potentially flaky, showing
a surprisingly high rate of potentially flaky test scenarios.

Figure 5 shows the standard deviation of the 40 potentially
flaky scenarios from RQ1 for each infraction count. Table I
summarizes the key statistics (min/mean/max) of the standard
deviation values.

For most safety requirements (i.e., RC2, RC4, RC5, RC6,
RC7), the mean degree of flakiness is less than 0.05. RC1
is shown to have relatively high mean degree of flakiness of
0.07, but this results is highly skewed due to a few outliers
like “Scenario 8” described earlier. This implies that the
degree of flakiness for the potentially flaky scenarios is indeed
quite small for many safety requirements, making those safety
requirements reliably testable in CARLA without worrying
about flaky tests.

However, we have RC3 “no collisions with other vehicles”
exhibiting a mean standard deviation of 0.3. RC3 is arguably
one of the most essential safety requirements, yet the result
implies it would be too unreliable to test in CARLA due to
the high degree of flakiness. RC8 “no route time-out” also
exhibits a mean standard deviation of 0.09, but it might be
ignorable with a reasonable tolerance threshold for deciding a
test failure.

2We reported the issue to CARLA leaderboard maintainers: https://github
.com/carla-simulator/leaderboard/issues/185.
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Fig. 5. The degree of flakiness of 40 potentially flaky test scenarios in CARLA
for each infraction type.

In the CARLA case study, the answer to RQ2 is that
CARLA results in a high degree of flakiness, i.e., a mean
standard deviation of 0.3, for one of the most important
safety requirements, i.e., no collisions with other vehicles.
This calls for paying attention to test scenario evaluation
results in CARLA.

B. Case study: MetaDrive

1) Simulator: For a second case study, we use
MetaDrive [5], an actively maintained open-source driving
simulator capable of realistic perception [18]. MetaDrive is
lightweight and allows to easily generate scenarios or to build
them from open-source trajectories datasets.

2) ADS under Test: TF++, or any other ADS developed for
CARLA, is not easily executable with MetaDrive. Since our
objective is not to compare CARLA and MetaDrive, we simply
use another driving system (agent) for MetaDrive. We use
an expert policy, a simple, 3-layered neural network driving
agent provided in MetaDrive by default. It inputs the ray-based
sensor data (Lidar, side scanner, and lane line detector) and
outputs the throttle, braking, and lateral steering control. It
is pre-trained using Proximal policy optimization (PPO) [19]
reinforcement learning algorithm.

3) Test Scenarios: For the test scenarios, we use a built-
in procedural map generator (PG) to generate 200 randomly
seeded scenarios. PG generate a road network (a map) using
unit blocks (e.g., straight road, curve, and a roundabout) that
can be further parametrized by length, the radius of curvature,
etc. [5]. The simulator controls the traffic of background
vehicles, the density of which we set to the default value.
By default, the initial position of the background vehicle is
randomly seeded. Given a map, the ego vehicle is tasked with
driving from the first roadblock to the last while keeping the
lane and avoiding collisions with other vehicles.

4) Safety Requirements: In MetaDrive, driving scenarios
are simplified compared to CARLA’s i.e., there are no pedes-
trians, cyclists and many static objects. Therefore, we per-
form our evaluation by testing against the following safety
requirements in MetaDrive: (RM1) no collisions with other



TABLE I
STATISTICS OF THE STANDARD DEVIATION VALUES FOR EACH

INFRACTION TYPE IN CARLA

Infraction Type Min Mean Max

(RC1) Collisions with static objects 0.00 0.07 1.64
(RC2) Collisions with pedestrians 0.00 0.00 0.00
(RC3) Collisions with vehicles 0.00 0.30 1.58
(RC4) Out-of-lane episodes 0.00 0.01 0.42
(RC5) Running a red light 0.00 0.03 0.52
(RC6) Running a stop sign 0.00 0.03 0.52
(RC7) Block-other-vehicles episodes 0.00 0.04 0.42
(RC8) Route time-out 0.00 0.09 0.52

vehicles; (RM2) no collisions with sidewalk; (RM3) no out-
of-lane episodes; (RM4) no route time-out.

5) Methodology: To answer RQ1 and RQ2, we use the
same methodology as used in the CARLA case study (see
Section IV-A5).

6) Results: Figure 6 shows the distribution of unique
behaviors. All 200 test scenarios exhibit only one unique
behavior when repeated 10 times, meaning that there are no
potentially flaky tests.

To examine further how deterministic MetaDrive evaluation
results are, we additionally investigated the test scenario
execution results (i.e., the trajectories of all moving vehicles,
including the ego vehicle, for all time steps). The result
confirmed that MetaDrive is fully deterministic3.

The answer to RQ1 and RQ2 in MetaDrive is that 100%
(200/200) of test scenarios executed are non-flaky. Upon
further investigation, we found that the simulation is fully
deterministic regarding test scenario execution results.

V. DISCUSSION

In Section IV, we confirmed potentially flaky test scenarios
in simulation-based ADS testing. Although we already know
that they are due to nondeterministic simulations, we go one
more step to understand the potential causes of such nondeter-
ministic simulations below. We then discuss the implications
of flaky tests in simulation-based ADS testing for triaging risks
that have been under-appreciated. We also present strategies
to mitigate such potentially flaky tests.

A. Potential Causes of Nondeterministic Simulations

Based on our observations, along with existing research on
game engines used in driving simulators [8], we propose po-
tential causes of nondeterministic simulations: asynchronous
behavior, floating point, time, and game engines.

1) Asynchronous Behavior: Comprehensive driving simu-
lators are complex software systems that schedule and coordi-
nate many tasks, such as 3D rendering, physics simulation,
and background traffic control [18]. Many of those tasks

3In fact, we found that the driving environment was not initializing properly
when running multiple scenarios in sequence following the guideline. How-
ever, we could easily resolve it by explicitly re-initialising the environment
before each scenario simulation. The issue is reported to the MetaDrive
repository: https://github.com/metadriverse/metadrive/issues/758.

200

# unique behaviors
1

Fig. 6. Distribution of unique behaviors observed when evaluating
MetaDrive’s ‘PPO expert agent’ in MetaDrive [5] 10 times on 200 proce-
durally generated scenarios.

can be executed simultaneously, e.g., reading sensor data
while calculating vehicle trajectories, making them nonde-
terministic. To avoid such nondeterministic simulations, they
often implement a stepped (synchronous) mode, where the
simulation is discretized into smaller steps. Using the steps,
all tasks can be scheduled in order, e.g., reading sensor data
followed by calculating vehicle trajectories. However, even
with the stepped mode, a potentially faulty implementation
can still introduce unintentional nondeterminism. For example,
CARLA 0.9.10.1 has a bug in the collision sensor that could
generate multiple collision events per frame. We suspect this
fault is responsible for the flaky behavior observed in executing
“Scenario 8” described in Section IV-A6.

2) Floating Point: Simulators often involve floating point
calculations, which can have unexpected results, such as non-
associative addition [20]. We suspect these slight differences in
the positions of surrounding vehicles controlled by simulators
(e.g., TrafficManager in CARLA) can trigger a butterfly effect
resulting in a crash observed in “Scenario 61” presented in
Figure 3.

3) Time: Another common pitfall that can introduce non-
determinism is a dependency on ‘system time’ (i.e., real-
world time) instead of ‘in-simulation time’ to schedule code
execution. This can lead to nondeterminism due to hardware
dependencies. For example, a low-spec machine might take 10
seconds of the real world to simulate 1 second of the virtual
world, whereas another high-spec machine might take only 2
seconds of the real world for the same simulation. Therefore,
using real time to schedule threads that coordinate the simula-
tion processes can be a source of unexpected nondeterminism.

4) Game Engines: High-fidelity driving simulators often
leverage game engines [18], such as Unity Engine used by
LGSVL [21] and Unreal Engine 4 used by CARLA [4]. These
game engines were specifically designed and optimized for
game and movie production applications. For example, they
might prioritize 3D rendering performance over determinism.
Chance et al. [8] empirically confirmed that some degree of
nondeterminism is unavoidable in game engine-based simu-
lators and extensively discussed the shortcomings of game
engines in driving simulators.

B. Implications of Simulator Flakiness

To better understand the implications of flaky tests in
simulation-based ADS testing, let us consider the critical
scenario generation problem, one of the most widely studied
problems in simulation-based testing [2, 3].



Critical scenario generation is to automatically generate
scenarios that are likely to expose the critical safety violations
of the ADS under test. A driving simulator runs the generated
scenarios and evaluates the degree of safety violations they
expose. If generated scenarios are flaky, the evaluation results
may be unreliable. For example, a flaky test scenario may
expose a critical safety violation in one run but not in the other.
During the scenario generation process, this can decrease the
effectiveness of scenario generation approaches, which often
rely on the evaluation results of the previously generated sce-
narios to guide the generation of new scenarios. At the end of
the scenario generation process, it can also lead to an under- or
overestimation of the effectiveness of the scenario generation
approaches, possibly leading to incorrect conclusions when
comparing different approaches.

The same implications can be extended to other simulation-
based testing problems, such as test scenario selection and
prioritization [22], that rely on the evaluation results of poten-
tially flaky scenarios due to nondeterministic simulations.

It is worth noting that this implication does not nullify the
value of existing simulation-based studies and their evaluation
results. The results may still be valid depending on the fre-
quency of flaky scenarios and the degree of flakiness. However,
it is important to be aware of the issue of potentially flaky test
scenarios and consider it when interpreting the results.

After conducting our research, we found a closely related
study of Amini et al. [23], empirically evaluating the impact
of flaky simulations on automated testing. They have also
acknowledged that flakiness is a persistent issue in simulation-
based ADS testing, highlighting the importance of mitigation
strategies, which will be discussed in Section V-C.

C. Possible Mitigation Strategy

To mitigate the risks of flaky tests in simulation-based ADS
testing, we propose the following strategy: (1) Acknowledge,
(2) Prepare, (3) Check and (4) Respond.

1) Acknowledge the flakiness: First of all, it is important
to acknowledge that driving simulators can be flaky. For
example, despite the flaky behaviors of CARLA shown in
Section IV-A, existing CARLA-based studies do not report
flaky test results, understandably due to their unawareness of
simulator flakiness. Acknowledging the possibility of flaky
tests allows us to, for example, allocate time before designing
experiments to check and respond to any flaky tests, which
will be discussed below.

2) Prepare for flakiness: Secondly, we should prepare for
potentially flaky tests. This involves using the latest release of
the simulator and running regression tests provided with the
simulator to assess its determinism. For example, the latest
CARLA release claims to support improved deterministic
simulations, especially in traffic management, and includes a
few smoke tests for determinism. Running these tests before
the main experiments can help identify simulator flakiness. If
these tests include some set-up steps, e.g., applying correct
settings, ensuring the simulator is in deterministic mode, and
seeding randomness, be sure to include them in your main

experiment. However, these tests might not be inadequate to
guarantee deterministic simulations for all possible scenarios.
Thus, the next steps will be useful.

3) Check for flakiness: As a third step, we should check
for flaky tests. This can be done by running each test scenario
multiple times and assessing both the frequency and degree of
its flakiness. Note that not all scenarios are necessarily flaky,
and the frequency and degree of flakiness may vary among
scenarios. Therefore, it is important to check as many scenar-
ios as possible. For instance, one could randomly generate n
scenarios and run each scenario r times to evaluate flakiness
prior to the main experiments. While a larger n and r yield
better results, simulation time and available resources should
be considered. As a rule of thumb, we recommend that n and
r be at least 30 and 10, respectively. This means the checks
should ideally be completed within approximately 25 hours
if each scenario takes 5 minutes to run. If potentially flaky
scenarios are found, it may be necessary to increase n and/or
r to gain a clearer understanding of flaky tests. For example,
if 7 unique behaviors are observed among 10 runs of one
scenario, one should consider increasing r to at least double
the number of observed unique behaviors.

4) Respond to flakiness: Lastly, we should respond to any
flaky tests identified in the previous step. Ideally, every test
scenario used in the experiments should be run multiple times,
and the results should be compared using statistical tests to
ensure reliability. For example, when comparing two scenario
generation approaches, each generated scenario could be run
10 times, in addition to comparing multiple runs of each
approach [24], using tests such as the Mann-Whitney U tests.
However, given limited simulation time and resources, this
may not always be feasible.

VI. CONCLUSIONS AND FUTURE WORK

One of the key requirements for any autonomous driving
verification, performed in simulation is that the simulation can
be deterministic. Deterministic simulation guarantees that the
tests executed are not flaky.

In this paper, we empirically investigated frequency and de-
gree of potentially flaky driving scenarios in two open-source
driving simulators: CARLA and MetaDrive. We identified the
potentially flaky driving scenarios by observing infractions that
the driving system is committing in benchmark scenarios. We
found that over 30% of driving scenarios executed in CARLA
are potentially flaky due to unintentional nondeterminism. On
the contrary, we found that MetaDrive is capable of fully de-
terministic execution resulting in non-flaky evaluation. Lastly,
we included discussion section in which we consider potential
causes of nondeterministic simulations, their implications and
possible mitigation strategy, where we provide guidelines to
mitigate potentially flaky scenarios.

As future work, we will extend our study to further simula-
tion platforms. Another avenue for future work is developing
a statistical testing framework for evaluating driving systems
that takes potential flakiness into account.
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