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Abstract

Genetic Algorithms are a popular search-based optimisation technique for automatically gener-
ating test inputs for structural coverage of a program, but there has been little work investigating
the class of programs for which they will perform well. This paper presents five program factors that
affect the performance of crossover, a key search operator in Genetic Algorithms, when searching for
inputs that cover the branching structure of a C function.

The paper finds that crossover plays an increasingly important role for programs with large, multi-
dimensional input spaces, where the target structure’s input condition breaks down into independent
sub-problems for which solutions may be sought in parallel. Furthermore, it is found that crossover
can be inhibited when the program under test is unstructured or involves nested conditional state-
ments; and when intermediate variables are used in branching conditions, as opposed to direct input
values. Each program factor is demonstrated with empirical experiments. The paper presents fur-
ther empirical experiments that evaluate different types of crossover and the conditions under which
Genetic Algorithms will outperform local search techniques, because of crossover.

Keywords. Evolutionary Testing, Search-Based Test Data Generation

1 Introduction

Software testing remains an extremely costly activity in the software engineering lifecycle, and as such,
its automation continues to be of high concern. Search-Based Test Data Generation [25] is a means of
automatically generating inputs according to a testing criterion, such as inputs that execute all of a pro-
gram’s branches or statements. The testing criterion of interest is expressed as a ‘fitness function’, which
scores inputs on the basis of how close they were to fulfilling the test goal currently under consideration.
The fitness function is used by a search-based optimisation technique to evaluate points in the search
space (the program’s input domain) and guide it to the required test inputs.

The use of Genetic Algorithms as an optimisation technique for test data generation, more commonly
referred to as ‘Evolutionary Testing’ [34, 25], has received much attention in the literature since 1992,
when their application was first proposed by Xanthakis et al. [36]. One key feature of Genetic Algorithms
is the use of crossover as a search operator. The crossover operator helps explore the search space
of a problem by generating new candidate solutions through the recombination of the components of
sufficiently good, previously evaluated candidate solutions. It is the question of the appropriateness and
effectiveness of crossover for the structural test data generation for different types of C program that
motivates the investigation in this paper. The question is a pertinent one. Recent studies by Harman
and McMinn [14, 15] found that for the majority of branches considered, Evolutionary Testing was not
the most efficient search technique for the branch coverage of C functions. Nevertheless, a small number
of cases existed where Evolutionary Structural Testing was able to find test inputs where other search
methods failed. In these instances it was found that the crossover operator was instrumental in test data
discovery. However, there has been, until now, little work investigating the factors behind a program,
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including its code structure and input domain, that determine whether crossover will be useful in the
Evolutionary Search for test inputs.

This paper seeks to address this concern. Five program factors are identified, which are predicted
to affect crossover through an outworking of existing theory for Evolutionary Structural Testing. An
empirical study is then performed with a set of programs designed to demonstrate the affect of each
program factor on crossover performance in practice. The empirical study also investigates the different
choices available for a crossover operator, and further evaluates the conditions necessary for Genetic
Algorithms, with crossover, to outperform Hill Climbing.

The specific contributions of this paper, therefore, are as follows:

1. The identification of a set of five program factors predicted to affect the performance of the crossover
operator;

2. An empirical study showing how crossover is affected for each program factor in practice;

3. An empirical assessment of the various choices available for a crossover operator in Evolutionary
Testing, and the operator that works best for each of the five case studies considered. The results
show that the discrete recombination operator commonly employed by Evolutionary Testing is often
outperformed by standard uniform crossover.

4. Further empirical analysis comparing variants of Hill Climbing local searches against Evolutionary
Testing on the case studies designed to test the effectiveness of crossover. At least one variant of
Hill Climbing is found to be more efficient for each of the original five case studies, but a sixth
case study demonstrates that programs do exist for which Hill Climbing cannot find test data but
Evolutionary Testing can, because of crossover.

The rest of this paper is organized as follows. Section 2 introduces Search-Based Test Data Genera-
tion and the fitness function used for structural testing. It then goes on to introduce the Evolutionary
Testing approach for generating structural test inputs using Genetic Algorithms. The section also in-
troduces key theoretical concepts for Evolutionary Structural Testing. It is the outworking of these
theoretical concepts that form the basis for the identification of each program factor predicted to affect
the performance of crossover. These program factors are presented in Section 3. Section 4 then details
empirical experiments demonstrating the affect on crossover with each program factor using a set of case
studies designed to be exemplars of those factors. Finally, Section 6 discusses related work while Section
7 closes with concluding remarks and avenues for future work.

2 Search-Based Test Input Generation for the Branch Coverage
of C Programs

This section introduces the automatic generation of test inputs for branch coverage of functions written
in the C language, using search-based techniques. This paper focuses on the use of Genetic Algorithms
as a search method, in a technique referred to as Evolutionary Structural Testing.

In order to find an test data that executes a branch, the goal of the search is to find an input vector
that takes a path which is driven down the branch of interest. The space of candidate solutions in which
the search operates is the input domain of the function under test. (In this paper, only fixed-length input
vectors are considered – although this is not a constraint of the technique in general – see references [21]
and [22].)

2.1 Basic concepts

Let I = (i1, i2, ...ilen) be a vector of the input variables of the function under test. The domain Din of
the input variable in is the set of all values that in can hold, 1 ≤ n ≤ len; len = |I|. The input domain
of the function under test, therefore, is a cross product of the domains of each of the individual input
variables: D = Di1 × Di2 ... × Dilen . An input i to the function under test is a specific element of the
function’s input domain, that is, i ∈ D.
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(1) int cas_check(char* cas) {

(2) int count = 0, checksum = 0, checkdigit = 0, pos;

(3)
(4) for (pos=strlen(cas)-1; pos >= 0; pos--) {

(5) int digit = cas[pos] - ’0’;

(6)
(7) if (digit >= 0 && digit <= 9) {

(8) if (count == 0)

(9) checkdigit = digit;

(10) if (count > 0)

(11) checksum += count * digit;

(12)
(13) count ++;

(14) }

(15) }

(16)
(17) if (count >= 4)

(18) if (count <= 10)

(19) if (checksum % 10 == checkdigit)

(20) return 0;

(21) else return 1;

(22) else return 2;

(23) else return 3;

(24) }

(a) Code

if (count >= 4) if (count <= 10) if (checksum % 10 
== checkdigit)

target
TRUE TRUE TRUE

approach level = 2
branch distance = 4 - count + K

FALSE FALSE FALSE

approach level = 1
branch distance = count - 10 + K

        approach level = 0
branch distance =|(checksum % 10) - checkdigit| + K

a b

1

c d

2 3 4

a b

c d1 2

3 4

a b

1

c d

2 3 4

a

c

d

1

2 3

4b

a b

1

c d

2 3 4

a c2

3 4ba

4

4

(b) Fitness function calculation for executing the true branch from line 19

Figure 1: C routine for demonstrating how the fitness function of Evolutionary Structural Testing works.
The function validates CAS registry numbers of chemical substances. For example, ‘7732-18-5’ is the
CAS number of water
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2.2 Fitness function

Search-based optimization techniques find test data through the use of a fitness function. The purpose
of the fitness function is to guide the search into promising, unevaluated areas of a potentially vast input
domain. For covering individual branches, the fitness function is a function fit(t, i) → R, that takes a
target branch t and individual input i. Upon executing the program with the input i, the fitness function
returns a real number scoring ‘how close’ the input was to executing it. The calculation of the fitness
function involves two components [34]; the so-called approach level and the branch distance.

As an example of a fitness function computation for a branch, take the C function of Figure 1. It
is a program for evaluating a Chemical Abstracts Service (CAS) registry number assigned to chemicals.
Each number is a string of digits separated by hyphens, with the final digit serving as a check digit. The
routine takes a pointer to the first character of the string, processes it, and returns zero if the number is
valid. An error code is returned in the case the number is not valid.

The approach level assesses the path taken by the input with respect to the target branch by counting
the target’s control dependencies that were not executed by the path. For structured programs, the
approach level reflects the number of unpenetrated levels of nesting levels surrounding the target. Suppose
a string is required for the execution of the true branch from line 19, i.e. where the string corresponds to
a valid registry number. With this target, the approach level will be 2 if no invalid characters are found
in the string, but there are too few digits in the string to form a valid CAS number, and the false branch
is taken at line 17. If instead the string has too many digits, the true branch is taken at node 17, but the
target is then missed because the false branch was taken at node 18, and the approach level is 1. When
the checksum calculation is reached at line 19, the approach level is zero.

When execution of a test case diverges from the target branch, the second component, the branch
distance, expresses how close an input came to satisfying the condition of the predicate at which control
flow for the test case went ‘wrong’; that is, how close the input was to descending to the next approach
level. For example, suppose execution takes the false branch at node 17 in Figure 1, but the true branch
needs to be executed. Here, the branch distance is computed using the formula 4−count+K, where K is
a constant added when the undesired, alternate branch is taken. The closer count is being greater than
4, the ‘closer’ the desired true branch is to being taken. A different branch distance formula is applied
depending on the type of relational predicate. In the case of y >= x, and the >= relational operator, the
formula is x− y + K. For a full list of branch distance formulae for different relational predicate types,
see Tracey et al. [32].

The complete fitness value is computed by normalizing the branch distance and adding it to the
approach level:

fit(t, i) = approach level(t, i) + normalize(branch distance(t, i))

Since the maximum branch distance is generally not known, the standard approach to normalization
cannot be applied [1]; instead the following formula is used:

normalize(d) = 1− 1.001−d

2.3 Evolutionary Structural Testing

The search-based approach to test data generation is very general, since different fitness functions can be
applied for the generation of test data satisfying different testing criteria, while the same fitness function
can be used with different search-based optimisation techniques. This section describes the Evolutionary
Testing approach to generating test inputs, using Genetic Algorithms. A detailed overview is provided,
along with the parameters used, in order to facilitate replication of the empirical study in Section 4.

The Genetic Algorithm used for Evolutionary Structural Testing in this paper is based on careful
replication of the approach described by Wegener et al. [34]. This approach formed part of Daimler-
Chrysler’s Evolutionary Testing system, which has been widely studied in the literature [5, 4, 11, 23]. It
has been developed over the period of a a decade, and so can be argued to be the ‘state of the art’ for
Evolutionary Testing of procedural C code.

Whereas traditional Genetic Algorithms use a binary encoding of candidate solutions, referred to
as individuals or chromosomes, Evolutionary Testing optimizes input vectors directly, with input values
forming the ‘genes’ of each chromosome. The Genetic Algorithm maintains 300 individuals at any one
time in a population. An overview of the main steps of the Genetic Algorithm can be seen in Figure 2.
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Initialization

Reinsertion

Fitness
evaluation

Mutation

CrossoverSelectionTest data found

Competition &
Migration

Resources
exhausted

Figure 2: Overview of the Genetic Algorithm used for Evolutionary Testing in this paper

Initialization. In the initialisation stage, each of the 300 individuals are initialized to random values, and
divided equally over 6 subpopulations of 50 individuals each.

Fitness evaluation. The current population is evaluated for fitness, using the fitness function described
in the previous section.

Selection. Individuals are then selected for the following stages of crossover and mutation. Individuals are
ranked according to fitness and assigned an intermediate fitness value based on their rank. Intermediate
values are assigned using linear ranking [35], with the best individual receiving a value of Z, the median
individual a value of 1, and the worst individual receiving a value of 2−Z, 1.0 ≥ Z ≤ 2.0. The Wegener
model uses a value of Z = 1.7. Parents are then chosen two at a time for crossover using stochastic
universal sampling [2], such that each individual has a probability of being selected proportionate to its
intermediate linearly-ranked fitness value.

Crossover. Figure 3 summarises the two main forms of crossover (one-point crossover and uniform
crossover), and that used in the Wegener Genetic Algorithm (discrete recombination), giving examples
of each. One-point crossover (part a of the figure) involves splicing the chromosomes at a randomly-
chosen crossover point. Uniform crossover (part b) is a less rigid form of crossover, where each point in
the chromosome is a potential crossover point. Discrete recombination, as used in the Wegener Genetic
Algorithm for Evolutionary Structural Testing, is similar to uniform crossover. With uniform crossover,
however each gene from each parent is always copied into exactly one of the offspring, a decision made
with an even probability. This differs from discrete recombination, where a gene may instead be copied
into both children, the first or second child, or neither child, decided with an equal probability. An
example of discrete recombination can be seen in part c of Figure 3.

Mutation. Offspring are then mutated in the mutation phase. The Breeder Genetic Algorithm [30]
mutation operator is used and applied at an inverse of chromosome length. Genes are mutated by the
addition or subtraction of values chosen from a range decided by the subpopulation in which the individual
currently resides. The range for a subpopulation p, 1 ≤ p ≤ 6, is [0, 10−p].

Reinsertion. The reinsertion phase then takes place, where the next generation of individuals is created
from the current population, and mutated offspring. An elitist reinsertion mechanism is applied, with the
top 10% of the current generation retained, while the remaining individuals are discarded and replaced
with the best offspring.

Competition and migration. Finally, individuals are transferred across subpopulations in the competition
and migration phase. A progress value, pg = 0.9 ·pg−1 +0.1 ·r, is computed for each subpopulation at the
end of the gth generation, where r is the subpopulation’s average ranked fitness following linear ranking
of its individuals using Z = 1.7. After every 4th generation, subpopulations are ranked according to their
progress value and a new share of the overall population computed for each, with weaker subpopulations
transferring individuals to stronger ones. A subpopulation cannot lose its last 5 individuals, preventing
its extinction. In addition, individuals migrate every 20th generation, with subpopulations exchanging
10% of their individuals at random.

Each individual in the new generation is then evaluated, and the loop continues until test data is found,
or resources are exhausted; usually decided by an upper bound on the number of fitness evaluations of
the number of generations (i.e. cycles of the Genetic Algorithm loop) that may take place.
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if (count >= 4) if (count <= 10) if (checksum % 10 
== checkdigit)

target
TRUE TRUE TRUE

approach level = 2
branch distance = 4 - count

FALSE FALSE FALSE

approach level = 1
branch distance = count - 10

        approach level = 0
branch distance =|(checksum % 10) - checkdigit|
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(a) One point crossover between position 2 and 3

if (count >= 4) if (count <= 10) if (checksum % 10 
== checkdigit)

target
TRUE TRUE TRUE

approach level = 2
branch distance = 4 - count

FALSE FALSE FALSE

approach level = 1
branch distance = count - 10

        approach level = 0
branch distance =|(checksum % 10) - checkdigit|

a b

1

c d

2 3 4
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c d
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(b) Uniform crossover; every position is potentially a crossover point

if (count >= 4) if (count <= 10) if (checksum % 10 
== checkdigit)

target
TRUE TRUE TRUE

approach level = 2
branch distance = 4 - count

FALSE FALSE FALSE

approach level = 1
branch distance = count - 10

        approach level = 0
branch distance =|(checksum % 10) - checkdigit|

a b
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(c) Discrete recombination; a gene from one parent can appear in both children

Figure 3: Examples of crossover with different crossover types. The chromosomes are strings of char-
acters, with parents shown on the left of the figure, and created offspring on the right. One-point and
uniform crossover are two very common forms of crossover. Discrete recombination is a less common
variant of uniform crossover, but the crossover operator employed in the Wegener Genetic Algorithm for
Evolutionary Structural Testing
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2.4 Theoretical Foundations

The theoretical principles developed for Evolutionary Structural Testing by Harman and McMinn [14, 15]
are grounded in Genetic Algorithm theory, and Holland’s Schema Theorem [17]. Holland’s Schema
Theorem is based on binary string encodings of chromosomes. A schema is an abstraction for a set
of chromosomes. A schema is defined a binary string in which some of the elements are ‘wildcards’.
Wildcards are denoted by an asterisk symbol. For example, 10*1 is an example of a schema. The first
two positions and the last position of each chromosome in the set is fixed, but the third gene may freely
be either a 1 or a 0. Thus the set of chromosomes defined by the schema contains two elements, 1001
and 1011. The length of a schema is the distance between the first and last fixed positions; for example,
the length of 10*1 is 3, and the length of *11* is 1. The order of a schema refers to its number of fixed
positions; for example the order of 10*1 is 3, while the order of *11* is 2.

Holland’s theory contends that during fitness evaluation of a chromosome, several schemata are being
evaluated at once. The Schema Theorem argues that schemata of above average fitness (i.e. the average
fitness of chromosomes defined by the schema) will increase exponentially in successive generations of the
search. The Schema Theorem is also used to justify the so-called building block hypothesis, the argument
that a Genetic Algorithm should work well when it can combine short, low-order schemata (building
blocks) to form better candidate solutions [9, 7]. This is because short, low-order schemata are less
susceptible to disruption by crossover and mutation.

Constraint Schemata

Since Evolutionary Testing optimizes input vectors rather than binary string, Harman and McMinn [14,
15] introduced the concept of constraint schemata in order to engineer a more formal understanding of how
Evolutionary Structural Testing works. The notion of a constraint schema is a generalisation of Holland’s
binary Genetic Algorithm schema. Whereas binary Genetic Algorithm schemata are ‘templates’ denoting
the possible chromosomes that the schema may instantiate, constraint schemata represent explicit sets of
chromosomes, defined in terms of constraints over the input variables of a program. Example constraint
schemata for the program of Figure 4a, for example, include P1 = {(a, b, c) | a = b} and P2 = {(a, b, c) |
a = 0}. The order of a constraint schema is the arity of the schema’s constraint, i.e. the number of
variables it references. The order of the constraint schema {(a, b, c) | a = b} is 2, while the order of
{(a, b, c) | c = 0} is 1. The length of a constraint schema refers to the distance between the first and last
constraint variables in the input vector of the program. The length of the schema {(a, b, c) | a = 0∧c = 0}
is 1. The size |c| of a constraint schema c is the number of chromosomes in the set that it defines. Since
constraint schemata are just generalisations of binary schemata, a binary schema can also be represented
in this form, e.g. 1*01 may be represented as {(l1, l2, l3, l4) | l1 = 1∧ l3 = 0∧ l4 = 1} [14, 15]. Constraint
schemata, as with their binary predecessors, allow for reasoning about the fitness of chromosomes that
they define. For example, chromosomes (input vectors) belonging to P1 will have a higher average fitness
than those belonging to P2, since P1 defines the set of chromosomes traversing the initial approach level
en route to the target.

Harman and McMinn [14, 15] show that the crossover operator will work well for Evolutionary
Testing when a test data generation problem has a structure such that chromosomes of simpler con-
straint schemata can be recombined to produce chromosomes of more specific schemata with higher
average fitness. This is effectively a restating of the building block hypothesis for Evolutionary Testing.
Higher fitness, specific schemata are modelled through the conjunction of the constraints of more general
schemata. For example, with the program of Figure 4c, chromosomes belonging to Q1 = {(a, b, c) | a = b}
may be recombined with those of Q2 = {(a, b, c) | c ≤ 10} to produce chromosomes belonging to
Q = {(a, b, c) | a = b ∧ c ≤ 10}. Q has a higher average fitness than either Q1 or Q2, as the value
of count will be at least 2, as opposed to 1; resulting in a lower and more favourable branch distance
at the condition guarding the target. In general, if some schemata S1 = {I | c1} and S2 = {I | c2} are
recombined to produce a fitter schema S = {I | c}, c = c1 ∧ c2, S must respect the constraints of the
more general schemata from which it was created. That is, c ⇒ c1 and c ⇒ c2. This is equivalent to
stipulating that S is a subset (subschema) of S1 and S2; i.e. S ⊂ S1 and S ⊂ S2. Correspondingly, S1

and S2 are referred to as superschemata of S.
Surprisingly, in a study of programs comprising of 760 different branches in open source and production

code, Harman and McMinn [15] found only 8 branches that were found to allow the crossover operator to
work effectively. As such, although constraint schemata give a clearer picture regarding the type of fitness
function that will allow crossover to work effectively for Evolutionary Testing, the issue of what types of
programs result in such fitness functions is less well understood. This is the subject under investigation for
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void nested(int a,

int b,

int c) {

if (a == b) {

if (b >= 100) {

if (c <= 10) {

// target branch

}

}

}

}

void jumps(int a,

int b,

int c) {

if (a != b) return;

if (b < 100) return;

if (c <= 10) {

// target branch

}

}

void counter(int a,

int b,

int c) {

int count = 0;

if (a == b) count ++;

if (b >= 100) count ++;

if (c <= 10) count ++;

if (count == 3) {

// target branch

}

}

(a) Nested (b) Containing jumps (c) Using a counter

Figure 4: A function written in three different ways. The target is always executed by the input condition
a = b∧ b ≥ 100∧ c ≤ 10. However, only (c) involves all input variable values being evaluated. This allows
building block constraint schemata to form, giving the crossover operator opportunity to do useful work

the remainder of this paper, using the theoretical underpinnings introduced in this section together with
empirical experiments using the state of the art Wegener model for Evolutionary Structural Testing of
procedural C code.

3 Program Factors Predicted to Affect the Performance of the
Crossover Operator

This section identifies five program factors that are predicted to affect crossover performance in test
input searches. The identification of each program factor is based on an outworking of the building block
hypothesis involving constraint schemata, introduced in the last section. The potential for each feature
to affect the performance of crossover is then empirically assessed in the next section. First, however,
some preliminary definitions are given.

3.1 Preliminary Definitions

Whether a given input vector executes a certain structure in a program depends on whether the inputs
satisfy a certain condition over the variables of the program input vector. This condition is referred to
as the input condition.

Definition 1 (Input Condition). The input condition for covering a structural target in a program, such
as a branch, is a constraint over a program’s input variables that describes when the target will be executed.

The input condition for the targets of the programs of Figure 4, for example, is a = b∧ b ≥ 100∧ c ≤ 10.
The input condition is equivalent to the constraint of the schema that describes the chromosomes (input
vectors) that will cover a target structure:

Definition 2 (Covering Constraint Schema). A constraint schema S is said to be the covering constraint
schema for a target t if all chromosomes of S execute t (and there do not exist superschemata of S for
which this is also true).

The covering constraint schema may be generalizable into a number of distinct superschemata; the
constraints of which denote simpler sub-test data generation problems that are individually solvable.

Any schema that defines a set of chromosomes that are rewarded by the fitness function is said to be
fitness-affecting:

Definition 3 (Fitness-affecting Constraint Schema). Let w be the worst fitness value for covering a
structure t in a program p obtained by an input vector drawn from p’s input domain. A constraint schema
S is fitness-affecting for a target t if there does not exist some chromosome l ∈ S where fit(l, t) = w.
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The simplest, most general fitness-affecting schemata encapsulate the building blocks of the test input
generation problem:

Definition 4 (Building Block Constraint Schema). Recall w from Definition 3. A constraint schema
S1 = {I | c1} is said to be a building block constraint schema for a target t if it is a) fitness-affecting
(Definition 3) for t; b) for all superschemata Ssup of S1 there exists some chromosome l ∈ Sx, fit(l, t) = w
and c) there exists some other schema S2 = {I | c1} where Ssub = {I | c1 ∧ c2} has a higher average
fitness than either of S1 and S2 individually.

In other words, building block constraint schemata capture sets of chromosomes that make the smallest
possible impact on fitness for a test data generation problem, that when combined with other schemata,
produce subschemata of higher average fitness. The target in the program of Figure 4c involves three
distinct building block schemata: {(a, b) | a = b}, {(a, b, c) | b ≥ 100} and {(a, b, c) | c ≤ 10}. Any
chromosome instantiating one of these schemata will result in the count variable being incremented and
a lower branch distance at the target.

The following sections investigate how input conditions relate to building block constraint schemata, and
the factors of programs that enable or prevent this from happening.

3.2 Program Factors

Program Factor 1. Number of Input Condition Conjuncts

The covering constraint schema for a target must be generalizable into at least two distinct building
blocks in order for crossover to have the opportunity to do any work and contribute to the progress of an
Evolutionary Testing search. It follows, therefore, that the larger the number of distinct building block
constraint schemata inherent in a test data generation problem the more opportunity crossover has to
positively impact the progress of the search. This is because there is greater scope for crossover to arrive
at the covering constraint schema through the recombination of building block constraint schemata;
potentially via intermediate schemata that act as stepping stones between building blocks and final
solutions.

If a large number of building block constraint schemata are inherent in the test data search problem,
the number of input condition conjuncts must also be large.

Program Factor 2. Search Difficulty Involved in Satisfying Input Condition Conjuncts

The presence of multiple input condition conjuncts is not enough, on its own, to guarantee that crossover
will have any discernible effect in progressing the search; chromosomes of the covering constraint schema
may be more easily discoverable through mutation.

The smaller the size of a set defined by a constraint schema, the harder members of the set will be to
discover at random. In theory, such a situation favours the importance of a crossover in an Evolutionary
Testing search, since it has the capability to build larger pieces of a solution from building blocks that are
in existence across different chromosomes in the population. The chances of mutation generating solutions
containing from all the required building blocks for an individual chromosome are much smaller. However,
if the discovery of individual building blocks is too hard, the genetic material will not come into existence
in the first place for crossover to then be able to make use of it.

The chances of discovering chromosomes belonging to a constraint schema at random is referred to as
the constraint schema probability:

Definition 5 (Constraint Schema Probability). Let D be the domain of the program containing the
target, and |D| and |c| denote the size of the domain and the size of the set of chromosomes defined by

the constraint schema c, respectively. The probability of the constraint schema c is |c||D| .

The size of a constraint schema is heavily dependent on the type of the constraint. Some types
constraints have relatively easy to satisfy at random, since there are many inputs from the input domain
that may be chosen. For example the constraint a > b for two input variables a and b of type int, which
has a probability of 0.5 of being satisfied randomly. However there is only one value of a that will satisfy
the constraint a = 0, and as such the probability of its satisfaction is smaller the larger the size of the
domain of a.
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A further factor influencing the difficulty of discovering input variable values for covering a search
target is the shape of the fitness landscape. Where the landscape has a smooth gradient, providing the
search with good guidance to inputs satisfying the constraint, the search will easily find the required
input values (genes), regardless of the probability of finding inputs by pure chance. Figure 7 shows a
program used as one of the case studies appearing in the empirical analysis of the next section. It takes
an integer array as input. When an individual array value is in a certain range, the count variable is
incremented. When every value of the array is in range, i.e. count equals the size of the array, the target
branch is executed. The program increments the count variable by a whole amount, resulting in a fitness
landscape with flat steps down to the global optimum, as depicted in Figure 9a. Array elements are found
to be in range through the pure trial and error of mutation. As such the ratio of ‘in-range’ values to the
size of the domain of each array element decides the rate of success the mutation operator will have in
finding building block genes that contribute to the overall final solution. The program of Figure 8 shows
alternative version of the program increments count by an amount proportional to the nearest in-range
value. This feeds into the branch distance calculation of the target branch, and the corresponding fitness
landscape (Figure 9b) is instead formed of downward gradients to the global optimum. The target of the
program is executed under exactly the same conditions, yet this variant of the program will ultimately
be ‘easier’ for the search than its counterpart, since the search is given more guidance.

Program Factor 3. Evaluation of the Input Condition with Respect to the Target Structure

Depending on the structure of the program, the conjuncts of an input condition cannot always decompose
into a set of distinct building block constraint schemata. Building block schemata will not form for
conjuncts of the input condition that are not evaluated by a program, because there is no reward for them
in terms of an improved fitness value. Conjuncts may not be evaluated by programs that involve nested
structures, short-circuiting in conditional statements, unstructured jumps and premature termination of
looping constructs.

Nested structures. Nested program statements lead to partial evaluation of the input condition. For the
program of Figure 4a, for example, inputs cannot be optimised to fulfil the condition b ≥ 100 until it is
reached in the code, i.e. the predicate a = b has been satisfied.

Short-circuit evaluation. The use of short-circuit evaluation through operators such as ‘&&’ and ‘||’ in
languages such as C and Java have a similar effect to nested control structures. As an example, the input
condition for the target of Figure 4 could be rewritten as one if statement ‘if (a == b && b >= 100

&& c <= 10)’. With short-circuit evaluation, assessment of the entire condition breaks off early if the
evaluation of an earlier subcondition is enough to determine the overall result. For example, if a is not
equal to b, the overall condition will be false no matter if b ≥ 100 or c ≤ 10.

Conditions guarding jumps in the code. Unstructured jumps in program code, such as the use of goto,
break, continue and return can also lead to the input condition only being partially evaluated for
certain inputs. This can be seen in the code of Figure 4b. When a is not equal to b in the code, the
return statement is executed and the function exits, without evaluating the remaining if statements. If
a and b are equal, b >= 100 may now be evaluated, but if it is false, the function again returns.

Early termination of loops. A loop appearing in a program, designed to evaluate a multi-dimensional
input such as an array, may not full evaluate the input condition if the loop test breaks off before all
elements of the input have been assessed. This occurs with the example of Figure 5a, which evaluates
an array of integers. If an array element is found to be non-zero, the loop terminates early, without
considering elements appearing later in the array. These elements do not have a chance to influence the
value of count, and as such, the input condition for executing the target branch (where all array elements
are zero) is not fully evaluated unless a complete solution has already been found.

Partial evaluation of the input condition prevents the formation of building block constraint schemata
for the test data search problem. Take an input condition c1 ∧ c2. If c2 is not evaluated until c1 is
true, then the corresponding constraint schema for c2 cannot be fitness-affecting, and thus cannot be
a building block constraint schema. Chromosomes instantiating c2 will never be rewarded unless they
first instantiate c1. As such such chromosomes will not proliferate in the population for eventual use in
crossover.

This can be seen in all the examples of partial evaluation presented. In the examples of Figures 4a
and 4b, if a chromosome is a member of the constraint schema {(a, b, c) | b ≥ 100} it will not be rewarded
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void all_zeros(int x[SIZE]) {

int count = 0, all_zeros = 1;

while (count < SIZE && all_zeros) {

if (x[count] != 0) all_zeros = 0;

else count ++;

}

if (count == SIZE) {

// target branch

}

}

void all_zeros(int x[SIZE]) {

int count = 0, all_zeros = 1;

while (count < SIZE && all_zeros) {

if (x[count] != 0) all_zeros = 0;

else count ++;

}

if (all_zeros) {

// target branch

}

}

(a) Using counter in target branch (b) Using flag in target branch

Figure 5: A small function evaluating the number of zero-valued array elements. If an one element is
found to be non-zero, consideration of the rest of the array breaks off early

unless it is also a member of {(a, b) | a = b}. If it is not a member of {(a, b) | a = b}, the approach level
is always 2 and the branch distance is based on the value of a and b. The same is true for the constraint
schema {(a, b, c) | c ≤ 10}, which is not rewarded until a chromosome is a member of both {(a, b) | a = b}
and {(a, b, c) | b ≥ 100}.

For an input condition be fully evaluated over all inputs to the program, all input variables must
influence one atomic condition guarding a target. It therefore follows that if more than two input
variables are to affect one condition, giving rise to multiple building block constraint schemata, those
inputs must do so via an intermediate internal variable. This is the case with the target branch of Figure
4c, for example, which is covered under exactly the same circumstances as Figure 4a, except that all
inputs directly impact one condition guarding the target through the count variable. This allows the
search to find solutions to each individual sub-condition necessary to cover the target in parallel. This is
because input vectors satisfying b ≥ 100 and c ≤ 10 are now rewarded by the fitness function regardless
of whether other conditions were previously satisfied. The reward comes in the form of a lower branch
distance at the branching condition concerned. Crossover may then recombine these input vectors to find
an overall solution; i.e. a target-executing input vector.

The CAS number validation program of Figure 1 is another example of this. The program keeps count
of the number of characters in the string found to be digits, which is used in later branching statements.
This enables the search to find digits at each position of the string in parallel, rather than a sequential
search beginning at position 1 that moves onto to latter positions one at a time.

Program Factor 4. Input Condition Conjuncts over Disjoint Sets of Input Variables

If two chromosomes are recombined from two constraint schemata that reference different input variables
in their respective constraints, more specific constraint schema may be reached by simply copying the
genes of input variables referenced in the constraints of each of the original schemata. The constraint
schemata {(a, b, c) | a = b} and {(a, b, c) | c ≤ 10} for the program of Figure 4c, for example, and the
input vectors <a = 10, b = 10, c = 105> and <a = 50, b = 0, c = 5> belonging to the former and latter
schemata respectively, may be crossed over to produce the offspring <a = 10, b = 10, c = 5>, a member
of the more specific schema {(a, b, c) | a = b ∧ c ≤ 10}.

Recombination is more awkward for contending constraint schemata, however, where one or more of
the same input variables are referenced in the respective constraints of two or more schemata.

Definition 6 (Contending Constraint Schemata). Let vars(S) be the set of input variables involved in
the constraint of a constraint schema S. Two constraint schema S1 and S2 are said to be contending if
their constraints reference one or more of the same input variables, i.e. vars(S1) ∩ vars(S2) 6= ∅.

The ability of the crossover operator may be impaired if contending superschemata are inherent in a
test data generation problem. The target of the program of Figure 4c, for example, involves the contending
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void direct(int a, int b, int c, int d) {

int count = 0;

if (a == 0) count ++;

if (b == 0) count ++;

if (c == 0) count ++;

if (d == 0) count ++;

if (count == 4) {

// target branch

}

}

void indirect(int a, int b, int c, int d) {

int count = 0, count1 = 0, count2 = 0;

if (a == 0) count1 ++;

if (b == 0) count1 ++;

if (c == 0) count2 ++;

if (d == 0) count2 ++;

if (count1 == 2) count += 2;

if (count2 == 2) count += 2;

if (count == 4) {

// target branch

}

}

(a) Individual impact (b) Combined impact

Figure 6: Programs demonstrating how different orders of building block constraint schemata can arise
for the same input condition

schemata R1 = {(a, b, c) | a = b} and R2 = {(a, b, c) | b ≤ 0}, which both contain references to the variable
b in their respective constraints. Crossover of chromosomes of these schemata is not guaranteed to respect
the conjunction of their constraints. For example, recombination of < a = 10, b = 10, c = 5 > of R1 and
< a = 50, b = 20, c = 105 > of R2 cannot result in offspring that satisfy a = b ∧ b ≤ 0.

It follows therefore that the crossover operator will be less useful for programs involving input condition
conjuncts that reference overlapping sets of input variables.

Program Factor 5. Individual Impact of Input Condition Conjuncts on Conditions Guarding
the Target

Input condition conjuncts should be capable of individually influencing the value of the fitness function
for the structural target in order for building blocks to form during the search. When the impact of a
particular conjunct is ‘combined’ with other conjuncts with respect to fitness, building block constraint
schemata tend to be larger and of higher order. The building block hypothesis predicts that this will
inhibit crossover.

The first example of this can be seen in Figure 5. The figure shows two ways of writing the same code
to process an array an execute a branch if all elements are zero. In part a of the figure, early zero-valued
array elements may directly impact fitness at the condition guarding the target, resulting in a lower
branch distance. However, in part b, the predicate guarding the target is replaced with a flag. In this
program, all array elements must be zero for the fitness value at the target to be affected, and as such
the building block schema is the covering constraint schema, of order equal to the size of the inputted
array.

The flag problem is a well-known source of poor testability for search-based approaches [12, 6, 4, 3].
However the issue is not limited to flags, as can be seen in Figure 6. Again, this figure contains two
programs written in two different ways. Each involves a target executed by the input condition a =
0 ∧ b = 0 ∧ c = 0 ∧ d = 0. In part a, any of the input condition conjuncts is capable of changing the
value of count, which is used in the condition guarding the target enabling a direct impact to be made
on the branch distance. Thus each conjunct forms a distinct building block constraint schema, of order
1. In part b, however, both a = 0 and b = 0 need to be true before count is incremented, and an impact
made on the branch distance. This not only reduces the number of building blocks (there are now 2 as
opposed to 4), and the order of each building block is 2.

The above analysis predicts that the presence and absence of certain factors in a program will allow the
crossover operator to work more effectively in the test input search for covering a branch. The empirical
study presented in the next section tests each of these predictions.
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4 Empirical Study

This section describes the results of a series of experiments that were undertaken to empirically demon-
strate the effect of each program factor identified in the last section on crossover in Evolutionary Structural
Testing. In order to test the effects of each program factor, a series of synthetic programs were designed
such that the extent of the presence of each program factor (e.g. the number of input condition conjuncts)
could be finely controlled and varied, in order to accurately assess its impact on crossover.

The Wegener model of Evolutionary Structural Testing was applied, as described in Section 2 with
discrete recombination as a crossover operator. In order to test the impact of crossover, Evolutionary
Testing was firstly applied without crossover and secondly with ‘headless chicken’ crossover, also known
as the ‘Headless Chicken Test’ [19]. The Headless Chicken Test is used to assess whether Genetic Al-
gorithm progress is not merely the result of crossover simply functioning as a macro-mutation operator.
With the Headless Chicken Test, crossover is performed as usual, but instead of using two parents drawn
from the current population, one of the parents is a new individual generated at random. If Evolution-
ary Testing cannot perform better than the Headless Chicken Test, the search is not actually benefiting
from the random exchange of genes between individuals. For experiments in this paper, headless chicken
crossover is discrete recombination, but using a randomly-generated individual and an existing individual
as parents for the offspring.

Each particular experiment, involving the coverage of a particular branch in a synthetic function,
is repeated 50 times so as to account for stochastic variation. For each batch of 50 runs, two metrics
are calculated – the success rate and the average number of fitness evaluations to find test data. The
success rate is the percentage of runs for which test data was successfully found for the target branch,
and measures the effectiveness of the search. For each successful run, the average number of fitness
evaluations can be calculated. This metric indicates the efficiency of the search technique for a given
branch, since a search finding test data in fewer fitness evaluations will have reached a solution faster
with fewer executions of the program under test.

Statistical significance was tested between two experiments with the Wilcoxon rank-sum test, using
numbers of fitness evaluations required to find test data over the set of 50 runs. Where test data could
not be found in one of the experiments for more than 20 runs (i.e. a success rate of 60% or less), Fisher’s
exact test was applied instead, using the number of successful runs for each experiment. For both types
of statistical test, the confidence level was set at 0.999.

4.1 Empirical Investigation of Program Factors Predicted to Affect Crossover

Program Factor 1. Number of Input Condition Conjuncts

In order to assess the effect of program factor 1 on crossover, the function of Figure 7 (Case Study 1) was
designed. The program takes an integer array. The code involves a counter (count) and a loop. The loop
iterates through the array of integer elements and increments count every time an array value is found
to be equal to be less than the value R. The target is executed when all the array elements are less than
R. The input condition for the target, therefore, is composed of a series of conjuncts where each conjunct
corresponds to an in-range array element, i.e. x[0] < R ∧ x[1] < R... ∧ x[SIZE − 1] < R. The number of
input condition conjuncts is varied by changing the value of SIZE. Each conjunct forms the constraint of
a distinct building block constraint schema for the test data generation problem.

Case Study 1 was run with different array sizes, ranging from 5-50. The domain size of each array
element was 0-999, and R was set to 500, resulting in a building block probability of 0.5.

For each array size, Evolutionary Testing was performed 50 times, with discrete recombination, head-
less chicken crossover and no crossover. The results can be found in Table 1. They show that as the
length of the array increases, and the number of input condition conjuncts and building block constraint
schemata also increase, the search not only becomes harder – as evidenced by higher average numbers
of fitness evaluations and lower success rates – but also that crossover becomes increasingly important
as a search operator in finding test data. With discrete recombination, test data were always found with
a 100% success rate. Evolutionary Testing with discrete recombination significantly outperformed the
Headless Chicken Test and no crossover from array sizes of 15 and above. Both headless chicken and no
crossover fail to generate test data with 100% success with array sizes greater than 20 and 5 respectively.

The results therefore provide evidence to support the claim that the higher the number of input
condition conjuncts, the greater the role crossover plays in finding test inputs in Evolutionary Structural
Testing. For higher numbers of input condition conjuncts, inputs could not be found without the crossover
operator.
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void case_study_1(int x[SIZE]) {

int count = 0, i;

for (i=0; i < SIZE; i++) {

if (x[i] < R) count ++;

}

if (count == SIZE) {

// target branch

}

}

Figure 7: Case Study 1, for assessing the performance of crossover on problems with varying numbers
of building block constraint schemata, and varying probabilities of schema constraints being satisfied at
random. Each in-range array element forms a building block for finding test data that execute the target
branch. The number of building blocks is varied by setting the array length in the code (i.e. varying the
value of SIZE). Building block probability for a particular domain size can be adjusted by changing the
value of the global variable R

Table 1: Varying inputted array size (number of building block constraint schemata) with the Case Study
1 (Figure 7). The number of average evaluations is recorded unless the target could not be covered with
a 100% success rate, in which case success rate is recorded instead. A figure appears in bold if the
crossover type was significantly worse than discrete recombination, or in italics if the crossover type was
significantly better. The results show that crossover plays an increasingly important role as the number
of building block constraint schemata increase

Array size / Crossover type
no. of building blocks Discrete Headless Chicken None

5 32 32 32
10 497 582 68%
15 1,071 3,178 18%
20 1,615 14,380 4%
25 2,076 90% 0%
30 2,518 12% 0%
35 2,941 0% 0%
40 3,273 0% 0%
45 3,821 0% 0%
50 4,054 0% 0%
55 4,391 0% 0%
60 4,950 0% 0%
65 5,095 0% 0%
70 5,430 0% 0%
75 5,726 0% 0%
80 6,043 0% 0%
85 6,321 0% 0%
90 6,572 0% 0%
95 6,828 0% 0%
100 7,186 0% 0%
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void case_study_2(int x[SIZE]) {

int count = 0, i;

for (i=0; i < SIZE; i++) {

if (x[i] < R)

count ++;

else

count += 1 - ((x[i]-R)/(DOMAIN-R));

}

if (count == SIZE) {

// target branch

}

}

Figure 8: Case Study 2, used to assess the impact of landscape on crossover. The target branch is
executed under exactly the same condition as Case Study 1 (Figure 7), except the count variable is
incremented by fractional amounts proportional to the distance the array element was to being less than
R. This results in a gradient landscape, as seen in Figure 9b

Program Factor 2. Search Difficulty Involved in Satisfying Input Condition Conjuncts

Input condition conjuncts are harder to satisfy the fewer the input domain elements that will make them
true. This occurs when the probability of finding inputs at random decreases. The shape of the fitness
landscape is also important; when the landscape is flat, the search relies on mutation finding inputs by
chance. A gradient landscape, on the other hand, provides guidance to the required values. The last
section predicted that the harder input condition conjuncts are to satisfy, the more essential crossover
will be as a search operator, as it can recombine existing genetic material in the population at each loci,
rather than having to rediscover those values for every individual through mutation.

Experiments were performed with Case Study 1 (Figure 7) with an array size of 50. Different values
of R were applied with array element domains of 0-999 to give different building block probabilities; i.e. a
value of R = 500 (giving a probability of 0.5), 250 (0.25), 200 (0.2), 100 (0.1), 50 (0.05), and 10 (0.01).
The results can be found in Table 2. As the probability of producing an array value less than R becomes
smaller, the search problem becomes more difficult, and crossover becomes more essential, as predicted
by the theory. Searches with discrete recombination were 100% successful down to a probability level of
0.2. Headless chicken crossover generated test data at the 0.5 level with only 90% success, while searches
with no crossover were always unsuccessful.

The same experiments were re-performed with Case Study 2 (Figure 8), which is identical to Case
Study 1, except it has a much easier gradient landscape for the target – as can be observed by comparing
a visualisation of the landscape plots in Figure 9 for the case studies. As expected, mutation becomes
more competent at finding in-range array elements, and the search without crossover improves dramati-
cally. Evolutionary Testing with discrete recombination is more effective, with 100% success rates being
achieved at all probability levels, and with a lower average of fitness evaluations. Evolutionary Test-
ing without crossover is more successful with the gradient landscape, as mutation is able to find the
required values alone. However, as the figures show, even with the gradient landscape, Evolutionary
Testing with crossover is always significantly better.

The gradient landscape results in discrete recombination becoming more effective, with 100% success
rates being achieved at all probability levels, but interestingly is less efficient than the flat landscape at
probabilities of 0.5 to 0.1; requiring a greater number of fitness evaluations on average. This is because
of what happens during the selection phase of the Genetic Algorithm. The flat landscape results in a
smaller number of ‘super’ fit individuals, with relatively high number of array elements in range, which
are re-selected for breeding. When a gradient landscape is used, the ‘best’ solutions may not necessarily
have a high number of array elements in-range, but a high number of array elements that merely close
to being in-range.

These results therefore support the claim that the harder the search difficulty involved in satisfying
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(a) Case Study 1: flat landscape (b) Case Study 2: gradient landscape

Figure 9: Fitness function landscapes for case studies 1 and 2, with an array size of 2. The form of the
landscape generated by Case Study 1 is flat, compared to that of Case Study 2, which offers a smooth
downward gradient to the input values that will execute the target. The test data search is more successful
as a result

void case_study_3(int x[SIZE]) {

if (x[0] < R) {

if (x[1] < R) {

if (x[2] < R) {

// ...

// target branch

Figure 10: Case Study 2, used to assess crossover when input conditions may only be partially evaluated.
The target branch is executed under exactly the same condition as that of Case Study 1 Figure 7, except
the input condition conjuncts are nested

input condition conjuncts positively affects the role that crossover will play in the discovery of test inputs.

Program Factor 3. Evaluation of the Input Condition with Respect to the Target Structure

Experiments were performed with Case Study 3 (Figure 10) under the same conditions as those for RQ1,
i.e. the domain of each array element set to 0-999, R = 500, and array sizes ranging from 5 to 50. The
target branch of Case Study 3 (Figure 10) is executed under exactly the same circumstances as Case
Study 1, but instead of using a count variable, conjuncts of the input condition are nested. This means
that each conjunct is only evaluated if the previous conjuncts were true, i.e. the input condition may
only be partially evaluated with respect to the target.

With Case Study 3, each array element introduces an input condition conjunct for executing the
target; however building block constraint schemata are not created due to the nested structure of the
program. The results can be seen in Table 3, and show that discrete recombination helps in finding test
data, significantly outperforming the Headless Chicken Test and no crossover in all but three cases.

As predicted, however, searches are less effective for nested programs than non-nested programs, as
seen in Table 4. With Case Study 1, where input condition conjuncts are not nested, Evolutionary
Testing with discrete recombination always covers the target, regardless of array size. However, with
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Table 2: Varying building block probability with the Case Study 1 (Figure 7) and Case Study 2 (Figure
8). The number of average evaluations is recorded unless the target could not be covered with a 100%
success rate, in which case success rate is recorded instead. A figure appears in bold if the crossover type
was significantly worse than discrete recombination, or in italics if the crossover type was significantly
better. The results show that crossover has an increasing role to play in test data discovery as the
probability of finding inputs at random reduces, for both flat and gradient landscapes

(a) Flat landscape (b) Gradient landscape

Building block Crossover type
probability Discrete Headless Chicken None

0.50 2,076 90% 0%
0.25 4,093 0% 0%
0.20 4,683 0% 0%
0.10 6,248 0% 0%
0.05 94% 0% 0%
0.01 12% 0% 0%

Crossover type
Discrete Headless Chicken None

2,432 58% 27,114
5,905 0% 58,740
7,149 0% 67,681
11,346 0% 96%
16,037 0% 74%
23,160 0% 30%

Table 3: Results with Case Study 3 (Figure 10) with nested conditions. The number of average evaluations
is recorded unless the target could not be covered with a 100% success rate, in which case success rate
is recorded instead. A figure appears in bold if the crossover type was significantly worse than discrete
recombination, or in italics if the crossover type was significantly better. The figures show that discrete
recombination clearly plays a role in finding test data

Array size / Crossover Type
level of nesting Discrete Headless Chicken None

5 32 32 32
10 587 638 8,715
15 1,790 4,697 28,649
20 3,411 27,535 58,965
25 5,987 30% 76%
30 8,372 0% 40%
35 14,527 0% 10%
40 17,491 0% 0%
45 96% 0% 0%
50 82% 0% 0%
55 66% 0% 0%
60 38% 0% 0%
65 22% 0% 0%
70 2% 0% 0%
75 6% 0% 0%
80 0% 0% 0%
85 0% 0% 0%
90 0% 0% 0%
95 0% 0% 0%
100 0% 0% 0%
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Table 4: Comparing results with Case Studies 1 and 3 (Figures 7 and 10 respectively). The number of
average evaluations is recorded unless the target could not be covered with a 100% success rate, in which
case success rate is recorded instead. The target is executed in the same condition for both programs,
but the structure is different – in Case Study 1 input condition conjuncts are not nested whereas with
Case Study 3 they are. A figure appears in bold for Case Study 3 if the search performed significantly
worse when compared with Case Study 1, or in italics if the reverse was true. The results show that
Evolutionary Testing is clearly is more effective and efficient for the non-nested Case Study 1

Array size Case Study 1 Case Study 3
(Non-nested) (Nested)

5 32 32
10 497 587
15 1,071 1,790
20 1,615 3,411
25 2,076 5,987
30 2,518 8,372
35 2,941 14,527
40 3,273 17,491
45 3,821 96%
50 4,054 82%
55 4,391 66%
60 4,950 38%
65 5,095 22%
70 5,430 2%
75 5,726 6%
80 6,043 0%
85 6,321 0%
90 6,572 0%
95 6,828 0%
100 7,186 0%

the nested conditionals in Case Study 3, Evolutionary Testing with discrete recombination is only 100%
successful up to an array size of 35. The search is significantly better with the non-nested Case Study
1 for an array size of 15 elements or more. Figure 11 plots the average number of fitness evaluations
required to find a target-executing input vector.

The last section showed how nesting prevents input condition conjuncts forming building block con-
straint schemata, and this can be seen visually with Figure 12. The greyscale heat maps in this figure
correspond to two searches with the non-nested Case Study 1 (Figure 12a) and its nested equivalent, Case
Study 3 (Figure 12b). In these heat maps, building block probability is lower for Case Study 1 (0.1) to
produce a search of similar duration for easy comparison with that with the nested Case Study 2. Each
cell at each grid position of the map corresponds to a particular array element at a given index (a loci in
the chromosome) at each generation of the search. The grid position is darker the number of individuals
in that generation with that array index element in-range. The cell is black if all 300 individuals have an
array index element in-range at a given generation. For the non-nested search, all in-range array index
elements are building blocks of the problem, and as such individuals are rewarded if any of their array
elements are in-range at any point in the search. Thus the heat map becomes darker moving from left
to the right of the figure, i.e. as the search progresses. This contrasts with the nested search. Here, an
individual only receives fitness reward for an in-range array index element if all the elements before it in
the array are also in-range, giving a staircase appearance to the figure. Despite this, crossover can still
positively impact the search for nested programs. The heat map shows how crossover allows ‘good’ genes,
or in-range array elements, to be spread across the population over time, providing more opportunities
for mutation to penetrate the next level of nesting in the next generation.

The results from the experiments for partial evaluation of the input condition therefore do support
the claim that crossover is affected when the full input condition does not undergo full evaluation for a
branch target. (Section 5 discusses ways in which this problem may be alleviated.)
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Figure 11: Comparing average fitness evaluations for discrete recombination when constraints are nested
(Case Study 2) and when they are not (Case Study 1). Average fitness evaluations increases exponentially
for nested input condition conjuncts whereas the trend for non-nested conjuncts is more linear

Program Factor 4. Input Condition Conjuncts over Disjoint Sets of Input Variables

In order to answer RQ4, Case Study 4 (Figure 13) was designed. The function involves input condition
conjuncts with non-disjoint sets of variables, i.e. the involvement of contending constraint schemata. The
number of contending building block constraint schemata are controlled through the value of NUM CONTENDING.
The target is executed when the array elements at indexes 1 to NUM CONTENDING are equal to the first
array element at index zero. The dependence of subsequent array elements on the first element’s value
creates contending constraint schema of the form {(x[0], x[1], x[2] . . .) | x[0] = x[1]}, {(x[0], x[1], x[2] . . .) |
x[0] = x[2]} etc.. The remainder of the array from indexes NUM CONTENDING+1 to SIZE-1 must be equal
to zero.

Experiments were performed using an array size of 50, with the number of contending building block
schemata increased by varying the value of NUM CONTENDING from 0 to 50. Three different building block
probabilities were tried, 0.5, 0.25 and 0.1. This was achieved by widening the domain of each array
element from 0 to 1, up to -2 to 3 and -4 to 5.

The results can be seen in Table 5. Across all three probability levels tested, the number of contending
building block constraint schemata increase, average evaluations increases or the success rate decreases.
One reason for this is the crossover operator failing to effectively produce offspring in presence of con-
straints across array elements. The results support the prediction that contending schemata negatively
impact the performance of the crossover operator.

Program Factor 5. Individual Impact of Input Condition Conjuncts on Conditions Guarding
the Target

Case Study 5 (Figure 14) was designed to empirically test the question of the effect on crossover of
the number of input variables involved in the constraint of each building block constraint schema. The
value of NUM VARS allows the number of input variables involved in the constraint of each building block
constraint schema to be varied, since it controls how many array elements should be less than R before
count is incremented.

In order to keep the building block probability constant, the probability of each array element having
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(a) Non-nested (b) Nested

Figure 12: Greyscale heat maps showing the progress of two example evolutionary searches of comparable
duration. The first is with Case Study 1 (Figure 7), with non-nested input condition conjuncts, and the
second for Case Study 3 (Figure 10) with nested conjuncts. The darkness of each cell in the map
denotes the number of chromosomes in a generation for which a particular array element was in-range
(i.e. a particular constraint schema was present). Without nesting, all constraint schema are potentially
rewarded, so their multiplicity increases evenly over time; aided by crossover. Hence for all array indices,
the number of in-range elements increases over each generation (heat map becomes darker moving left
to right). With nesting, however, constraint schema are only rewarded one at a time; i.e. if previous
constraint schema in the nesting structure have been satisfied. Thus the heat map takes on a ‘stepped’
looking appearance, since an in-range element will only increase in multiplicity if there are a suitable
number of in-range elements earlier in the array rewarded by the nested structure of the program
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void case_study_4(int x[SIZE]) {

int count = 1, i, j;

for (i=1; i <= NUM_CONTENDING; i++) {

if (x[i] == x[0]) count ++;

}

for (j=NUM_CONTENDING+1; j < SIZE; j++) {

if (x[j] == 0) count ++;

}

if (count == SIZE) {

// target branch

}

}

Figure 13: Case Study 4, used to assess the performance of the crossover operator in the presence of
contending constraint schemata – schemata whose constraints reference disjoint sets of input variables.
The target is executed when the array elements at indexes 1 to NUM CONTENDING are equal to the first
array element at index 0. The remaining elements at indexes NUM CONTENDING to the end of the array
need to be equal to zero, independently of the other array elements

Table 5: Results for discrete recombination with Case Study 4 (Figure 13). The number of average
evaluations is recorded unless the target could not be covered with a 100% success rate, in which case
success rate is recorded instead. As the number of building block contending constraint schemata increase,
the search becomes more difficult, as evidenced by a decreasing success rate or an increasing number of
average fitness evaluations required to reach a solution

No. of Contending Probability
Constraint Schemata 0.5 0.25 0.1

0 1,595 2,712 5,034
1 1,663 2,802 5,146
2 1,598 2,892 5,547
3 1,821 3,001 5,960
4 1,830 3,067 6,095
5 1,896 3,127 94%
6 1,898 3,110 94%
7 1,905 3,178 84%
8 1,937 3,240 94%
9 1,970 3,193 72%
10 1,994 3,228 82%
11 2,000 3,314 74%
12 2,097 3,250 66%
13 2,156 3,350 66%
14 2,148 3,347 52%
15 2,123 3,365 60%
16 2,132 3,279 56%
17 2,130 3,415 58%
18 2,134 3,416 42%
19 2,088 3,403 50%
20 2,014 3,347 40%
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void case_study_5(int x[SIZE]) {

int count = 0, i, j;

for (i=0; i < SIZE; i += NUM_VARS) {

int count2 = 0;

for (j=i; j < i + NUM_VARS; j++) {

if (x[j] < R) count2 ++;

}

if (count2 == NUM_VARS)

count += NUM_VARS;

}

if (count == SIZE) {

// target branch

}

}

Figure 14: Case Study 5, used to assess the performance of crossover when the order of building block
constraint schemata (the number of variables involved in the constraint of a constraint schema) is varied

the required value increases in proportion with the number of array elements involved in each block.
This is controlled by computing the element probability, ep, and scaling it the domain of each array

element. The element probability is computed using the formula ep = p
1
nv

b , where pb is the building block
probability, nv is the number of variables involved in the building block’s constraint. The value of R is
then round(min domain+ ((max domain−min domain+ 1)∗ ep)−1); where min domain is the lowest
value that each of the array elements can have, max domain is the largest.

For example, suppose there is one input variable per building block, and building block probability is
0.5. If the domain size of each array element is 0-999, R is 499. However if there are two variables per
building block, ep = 0.5

1
2 and R = 706.

Experiments were performed by varying the number of array elements in each building block constraint
schema by increasing the value of NUM VARS from 1 to 20. Three different configurations of the experiment
were attempted. In the first and second, the probability of each building block constraint schema forming
at random was fixed at 0.5. This was achieved by fixing MIN RANGE and MAX RANGE according to the
number of array elements in each building block, so that the overall probability of all the array elements
involved in the building block was fixed even though the number of array elements involved in it was
changing. In the third experimental configuration, the probability was lowered to 0.1. Furthermore,
the number of building blocks was varied. The first and third configurations involved 10 building block
constraint schemata each, resulting in array sizes of 10 up to 200. The second configuration involved 20
building block constraint schemata, resulting in array sizes of 20 up to 400.

Each experimental configuration with each value of NUM VARS was repeated 50 times using Evolutionary
Testing with discrete recombination. Box plots for the distribution of fitness evaluations over each of the
50 runs can be found in Figure 15. With 10 building blocks and a probability of 0.5 (Figure 15a), no
significant variation was observed. However with a larger number of building blocks or a lower probability,
the number of variables in each building block constraint schema matters. In both cases the jump from
one variable to two variables is significant. There is then a trend of a higher average number of fitness
evaluations required to reach a solution up to a variable number of 5. The crossover operator finds it
easier to operate when there is only one variable involved in each building block constraint schema, but
above this level it becomes less probable that the variables involved in each block will be crossed over
into the same offspring.

The above findings therefore support the claim that increasing the number of variables in each building
block constraint schema will have a negative impact on the performance of crossover in the search.
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Figure 15: The effect of the number
of variables involved in each building
block constraint schema for Case Study
5 (Figure 14). With larger array sizes
and lower probabilities there is a pro-
nounced difference between just one
variable and more than one variable

(c) No. of building blocks = 10,
building block probability of 0.1
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4.2 Further experiments

Further experiments were conducted to determine the effect of different crossover types, namely one-
point crossover and uniform crossover, and also comparing the performance of Evolutionary Search with
alternative Hill Climbing approaches.

4.2.1 Crossover type

Experiments were performed with different forms of crossover with Case Study 1 (Figure 7), the results
of which can be found in Table 6 and Table 7. Discrete recombination almost always significantly
outperformed one-point crossover. However, on several occasions uniform crossover was significantly
better than discrete recombination, particularly with large numbers of building blocks and low building
block formation probabilities.

A similar pattern emerges for Case Study 4 (Figure 13), where the number of contending building
block constraint schema are varied. The results can be found in Table 8. One-point crossover was
almost always significantly outperformed by discrete recombination, which was in turn almost always
significantly outperformed by uniform crossover.

There was no significant difference between discrete recombination and uniform crossover when the
number of input variables involved in each building block constraint schema was varied, with Case Study
5 (Figure 14), as can be seen in Table 9. However one-point crossover was significantly worse for small
numbers of input variables, and its performance did not significantly change when the number of input
variables increased.

The poor performance of one-point crossover can be attributed to its inflexibility, particularly with
building block constraint schema involving few input variables. A freer exchange of input variables across
chromosomes allows the search to progress faster.

Over all of the case studies, uniform crossover is significantly better than discrete recombination on
several occasions. Conversely, discrete recombination never outperforms uniform crossover. Discrete
recombination does not guarantee to copy all parental genes into their offspring, and in this way, seems
to be responsible for destroying valuable building blocks, slowing down the progress of the search. This
is not the case with uniform crossover, which always preserves genes in newly-created offspring.

4.2.2 Performance of Evolutionary Testing compared to Variants of Hill Climbing

Experiments with Case Study 1, 2 and 4 were performed with the Alternating Variable Method (AVM),
Random Hill Climbing (RHC) and the Random Hill Climbing-Alternating Variable Method (RHC-AVM).
The Alternating Variable Method (AVM) [20] was one of the earliest algorithms used for Search-Based
Testing. An input vector is initially chosen at random. The algorithm then optimises the fitness function
for each input variable of the vector in turn. First, an ‘exploratory’ move is performed by increasing and
decreasing the value by a small amount k (k = 1 for experiments with integer types in this paper). If an
exploratory move results in an improvement in fitness, further ‘pattern’ moves are made in the direction
of improvement with increasing step sizes of 2i for the ith successive move. Pattern moves continue until
fitness fails to improve, where upon exploratory moves are recommenced. If exploratory moves fail to
yield improvement, the focus moves to the next input variable in the vector. Moves are made until a
target-executing input is found or until exploratory moves have been attempted on each input variable
without an improvement in fitness. At this point the search may be restarted with a new random input.
The search continues until the target is covered or the pre-determined budget of fitness evaluations has
been exhausted.

With Random Hill Climbing (RHC), an input vector is initially selected from the search space at
random. Mutations are then made by replacing input variable values with a new value selected at
uniform random. Input variables are mutated at a probability that is the inverse of the input vector’s
length. The mutated individual replaces the current individual if it is of improved fitness. RHC is the
equivalent of a (1+1) EA – an Evolutionary Algorithm with only one individual and hence no crossover.

The Random Hill Climbing-Alternating Variable Method (RHC-AVM) combines the Alternating Vari-
able Method with random mutation restarts (referred to as RM-AVM in [24]). When the Alternating
Variable Method becomes ‘stuck’, random mutations are made until a better solution is found. RHC-
AVM therefore incorporates the best features of Alternating Variable Method and Random Hill Climbing;
the ability of the Alternating Variable Method to accelerate down gradients with the ability of RHC to
escape certain local optima.
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Table 6: Comparing crossover operators for Case Study 1 (Figure 7), varying array size but keeping
constraint schema probability constant at 0.5. The number of average evaluations is recorded unless the
target could not be covered with a 100% success rate, in which case success rate is recorded instead.
A figure appears in bold if the crossover type was significantly worse than discrete recombination, or in
italics if the reverse was true. The results show that uniform crossover is often the most effective operator,
often significantly outperforming discrete recombination (which in turn often significantly outperforms
one-point crossover)

Array size / Crossover type
no. of building blocks Discrete Uniform One-point

5 32 32 32
10 497 462 493
15 1,071 1,084 1,258
20 1,615 1,638 2,063
25 2,076 2,098 2,834
30 2,518 2,502 3,701
35 2,941 2,916 4,324
40 3,273 3,238 5,223
45 3,821 3,656 5,875
50 4,054 3,946 6,688
55 4,391 4,314 7,309
60 4,950 4,643 8,177
65 5,095 4,942 9,107
70 5,430 5,230 9,882
75 5,726 5,542 10,695
80 6,043 5,743 90%
85 6,321 6,003 11,879
90 6,572 6,371 92%
95 6,828 6,512 90%
100 7,186 6,811 84%

Table 7: Varying building block probability with the Case Study 1 (Figure 7) and Case Study 2 (Figure
8). The number of average evaluations is recorded unless the target could not be covered with a 100%
success rate, in which case success rate is recorded instead. A figure appears in bold if the crossover type
was significantly worse than discrete recombination, or in italics if the reverse was true. The results show
that crossover has an increasing role to play in test data discovery as the probability of finding inputs at
random reduces, for both flat and gradient landscapes

(a) Flat landscape (b) Gradient landscape

Building block Crossover type
probability Discrete Uniform One-point

0.50 2,076 2,098 2,834
0.25 4,093 3,895 6,235
0.20 4,683 4,357 7,282
0.10 6,248 5,781 96%
0.05 94% 7,136 62%
0.01 12% 28% 0%

Crossover type
Discrete Uniform One-point

2,432 2,496 3,602
5,905 5,389 9,283
7,149 6,335 11,401
11,346 10,132 18,756
16,037 14,405 23,270
23,160 21,289 30,021
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Table 8: Comparing crossover types with Case Study 4 (Figure 13), at a constraint schema probability
level of 0.1. The number of average evaluations is recorded unless the target could not be covered with a
100% success rate, in which case success rate is recorded instead. A figure appears in bold if the crossover
type was significantly worse than discrete recombination, or in italics if the reverse was true. Again,
uniform crossover often significantly outperforms discrete recombination

No. of Contending Crossover type
Constraint Schemata Discrete Uniform One-point

0 5,034 4,615 8,094
1 5,146 4,792 7,757
2 5,547 5,179 8,058
3 5,960 5,514 94%
4 6,095 5,453 82%
5 94% 98% 54%
6 94% 98% 60%
7 84% 98% 50%
8 94% 94% 52%
9 72% 92% 48%
10 82% 92% 30%
11 74% 82% 34%
12 66% 90% 26%
13 66% 74% 24%
14 52% 78% 20%
15 60% 72% 14%
16 56% 64% 20%
17 58% 66% 8%
18 42% 62% 8%
19 50% 60% 18%
20 40% 64% 2%

Table 9: Crossover types and the number of input variables involved in each building block. A figure
appears in bold if the crossover type was significantly worse than discrete recombination, or in italics if
the reverse was true. Again, uniform crossover often significantly outperforms discrete recombination

No. of input variables Crossover type
per building block Discrete Uniform One-point

1 2,749 2,621 3,783
2 3,249 3,260 98%
3 3,691 3,388 4,038
4 3,815 3,670 4,142
5 3,940 3,832 4,132
6 3,949 3,693 4,018
8 4,052 3,950 3,919
10 4,071 3,999 4,181
12 4,127 3,950 4,189
14 4,161 3,948 4,048
16 4,164 3,920 4,046
18 4,250 4,024 4,055
20 4,120 4,208 4,060

26



Tables 10-12 report the results of these hill climbing approaches compared with the best configuration
for Evolutionary Testing. Experiments in the previous section found uniform crossover to perform best.
Further experimentation found that a population size of 120 represented the optimal size of population.
Despite these best settings for Evolutionary Testing, it was always out performed by one of the hill
climbers for each of the case studies.

As expected, the Alternating Variable Method performs poorly with the flat fitness landscape gen-
erated with Case Study 1 (Table 10), but is significantly superior to all other searches when a gradient
exists, as with Case Study 2 (Table 11). The Alternating Variable Method also struggles with Case Study
4, as seen in Table 12, as it is not able to change more than one input variable value at once. RHC, on the
hand, performs best with case studies 1 and 4, and is significantly better when compared to Evolutionary
Testing. It is significantly worse than Evolutionary Testing for the gradient landscape of Case Study 2.
The RHC-AVM, being a combination of RHC and the Alternating Variable Method, always performs
somewhere between the two. In summary for case studies 1, 2 and 4, it is always the case that at least
one of the hill climbers significantly outperforms Evolutionary Testing with crossover.

Case Study 6 was specifically designed to contain a local optimum (Figure 16), to demonstrate that
cases of program can exist where Evolutionary Testing will consistently outperform both the Alternating
Variable Method and RHC. Each in-range element increments the count variable, improving the branch
distance at the target. However, when the number of elements that are less than R rises to a certain level
(defined by the length of the array minus the value of the GAP SIZE variable), count is reset to zero. It
only increases again when all elements of the array are less than R. This causes a local optimum to form
in the fitness landscape, as depicted in part b of the figure. Evolutionary Testing may overcome the local
optimum by crossover of two individuals with in-range elements at different positions, as shown in part
c of the figure. The first individual has in-range elements at the beginning of the chromosome, whilst
the second has in-range elements at the end. A one-point crossover in the middle of the chromosome
will result in a child having all the array elements in range, and the target will be executed. The results
with the Case Study are shown in Table 13 with domain size as for Case Study 1 and a building block
generation probability of 0.5. As illustrated in Figure 16c, it is possible for Evolutionary Testing to reach
the global optimum through crossover of two individuals on the edge of the local optimum. Conversely,
the chasm between optima is bridged by mutation alone with an extremely low probability, resulting in
a low success rate for RHC.

The conclusion for this research question, therefore, is that test data generation problems for ‘crossover-
friendly’ programs are not necessarily better solved by Evolutionary Testing than a hill climber. Cast
study 5, however, does show that test data generation problems can exist where Evolutionary Testing can
find test data, but which are highly challenging for hill climbers. However, how many real examples of
this type exist in practice is an open question.

4.3 Threats to Validity

The results of the empirical study provide evidence that the performance of the crossover operator is
affected for the set of program factors outlined in Section 3, using the set of case studies designed to
evaluate them.

The purpose of the empirical study was to demonstrate the causal relationships between different
program factors and the performance of the crossover operator. This section discusses potential threats
to validity for the experiments performed. The first consideration is that of the internal validity of the
experiments; that is, whether there has been a bias in the experimental design that could affect the
results of the study and the conclusions that have been drawn. One such source of potential bias comes
from the inherent stochastic behaviour of the search algorithms under scrutiny. A common and reliable
technique for overcoming this source of variability is to perform tests for statistical significance on a
sufficiently large sample of result data. Such a test is required whenever one wishes to make the claim
that one technique produces different results to another. A set of results are obtained from a set of
runs of the search algorithm using different random seeds. To show that one crossover type or search
algorithm is more effective than another, Fisher’s Exact Test – a test for categorical data – was used to
compare the number of successful searches that covered a particular branch. To show that one crossover
type or search algorithm is more efficient than another, the Wilcoxon rank-sum test was used to compare
numbers of fitness evaluations required by each search algorithm in order to find inputs that cover a
particular program branch. The lower the number of fitness evaluations, the quicker and more easily the
search was to find an input. Both tests were applied with the confidence level set at 99.9% to see if there
is a statistical significant difference in the means of each set of results. Both tests are non-parametric,
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void case_study_6(int x[SIZE]) {

int count = 0, i;

for (i=0; i < SIZE; i++) {

if (x[i] < R) count ++;

}

if (count > SIZE-GAP_SIZE && count < SIZE) {

count = 0;

}

if (count == SIZE) {

// target branch

}

}

(a) Code
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(c) Crossover of two chromosomes to reach the global optimum

Figure 16: Case Study 6. The code, shown in part a, is similar to that of Case Study 1. The count

variable is increased until a certain value, upon which it is reset to zero. It does not increase again until
all array elements are less than R. This causes a local optimum to form in the fitness landscape as shown
in part b of the figure. It is possible for Evolutionary Testing to overcome the local optimum through
crossing over two individuals with in-range elements at different positions, for example as shown in part
c of the figure with one-point crossover, where an ‘0’ represents a value less than R while an ‘X’ represents
a value that is out of range
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Table 10: Comparing Hill Climbing with Evolutionary Testing on Case Study 1 (Figure 7) by varying
array size (number of building blocks for Evolutionary Testing). The optimal setup for Evolutionary
Testing (Uniform 120 – uniform crossover, 120 individuals in a population) is used, as found in the
answer to RQ7. The number of average evaluations is recorded unless the target could not be covered
with a 100% success rate, in which case success rate is recorded instead. A figure appears in bold if the
search was significantly worse than Evolutionary Testing with discrete recombination, or in italics if the
reverse was true. RHC is the best performer, and is significantly better than Evolutionary Testing in the
majority of cases

Array size / Search type
no. of building blocks Uniform 120 AVM RHC RHC-AVM

5 32 857 22 174
10 287 88% 67 970
15 550 6% 123 2,622
20 779 0% 180 4,997
25 1,030 0% 196 6,809
30 1,256 0% 306 12,494
35 1,414 0% 353 16,772
40 1,631 0% 429 23,274
45 1,851 0% 434 25,808
50 2,105 0% 532 35,878
55 2,183 0% 681 98%
60 2,332 0% 722 96%
65 2,521 0% 803 94%
70 2,704 0% 965 72%
75 2,933 0% 1,018 48%
80 3,186 0% 1,076 38%
85 3,149 0% 1,059 28%
90 3,521 0% 1,215 14%
95 3,596 0% 1,281 4%
100 3,806 0% 1,373 2%

Table 11: Comparing Hill Climbing with Evolutionary Testing by varying constraint schema probability
size for Case Study 1 (part a) and Case Study 2 (part b), with a gradient landscape. The optimal setup
for Evolutionary Testing (Uniform 120 – uniform crossover, 120 individuals in a population) is used, as
found in the answer to RQ7. The number of average evaluations is recorded unless the target could not
be covered with a 100% success rate, in which case success rate is recorded instead. A figure appears
in bold if the search was significantly worse than Evolutionary Testing with discrete recombination, or
in italics if the reverse was true. RHC is significantly the best performer for Case Study 1, while the
Alternating Variable Method is significantly the best performer with Case Study 2

(a) Flat landscape (b) Gradient landscape

Building block Search type
probability Uniform 120 AVM RHC RHC-AVM

0.50 3,946 0% 532 35,878
0.25 6,723 0% 1,469 80%
0.20 7,410 0% 2,006 46%
0.10 9,797 0% 4,691 0%
0.05 74% 0% 9,253 0%
0.01 0% 0% 98% 0%

Search type
Uniform 120 AVM RHC RHC-AVM

2,637 294 592 294
9,176 420 1,769 420

10,631 444 2,304 444
17,022 492 5,229 492
20,392 519 11,263 519
26,580 540 54,299 540
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Table 12: Comparing Hill Climbing with Evolutionary Testing with the contending constraint schema
example of Case Study 4 (Figure 13). The optimal setup for Evolutionary Testing (Uniform 120 – uniform
crossover, 120 individuals in a population) is used, as found in the answer to RQ7. The number of average
evaluations is recorded unless the target could not be covered with a 100% success rate, in which case
success rate is recorded instead. A figure appears in bold if the search was significantly worse than
Evolutionary Testing with discrete recombination, or in italics if the reverse was true. RHC is the best
performer, and is significantly better than Evolutionary Testing

No. of contending Search type
constraint schemata Uniform 120 AVM RHC RHC-AVM

0 2,623 18,137 350 2,035
1 2,709 18,661 348 1,975
2 2,766 20,483 355 2,182
3 2,818 23,590 349 2,284
4 2,921 23,799 372 2,285
5 2,969 98% 372 2,106
6 3,101 94% 343 2,282
7 3,031 96% 362 2,169
8 3,102 96% 370 2,196
9 3,077 94% 384 2,484
10 3,168 94% 397 2,446
11 3,103 96% 376 2,409
12 3,163 96% 364 2,419
13 3,193 92% 360 2,334
14 3,194 94% 373 2,444
15 3,224 90% 386 2,321
16 3,292 86% 391 2,576
17 3,270 86% 403 2,483
18 3,333 84% 383 2,472
19 3,272 86% 404 2,408
20 3,478 84% 413 2,429

Table 13: Hill Climbing and Evolutionary Testing with Case Study 6 (Figure 16) involving a local
optimum. The number of average evaluations is recorded unless the target could not be covered with a
100% success rate, in which case success rate is recorded instead. A figure appears in bold if the search
was significantly worse than Evolutionary Testing with discrete recombination, or in italics if the reverse
was true. With this case study, Evolutionary Testing with discrete recombination or one-point crossover
always outperform each Hill Climbing algorithm, and significantly so in the majority of cases

Size of Evolutionary Testing AVM RHC RHC-AVM
Local Discrete Uniform One-point Headless chicken No

Optimum recombination crossover crossover crossover crossover

0 4,054 3,946 6,688 0% 0% 0% 532 35,878
1 4,139 4,026 7,585 0% 0% 0% 11,113 16%
2 4,491 4,399 84% 0% 0% 0% 2% 0%
3 5,207 4,969 32% 0% 0% 0% 2% 0%
4 10,007 9,436 10% 0% 0% 0% 0% 0%
5 62% 82% 4% 0% 0% 0% 0% 0%
6 26% 24% 0% 0% 0% 0% 0% 0%
7 4% 4% 0% 0% 0% 0% 0% 0%
8 0% 0% 0% 0% 0% 0% 0% 0%
9 0% 0% 0% 0% 0% 0% 0% 0%
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which avoids the need to make assumptions regarding the normality of the sample means – i.e. that the
conditions for a parametric test have been met. Such additional analysis could introduce further possible
sources of error into the study.

Another source of bias comes from the choice of case studies used. This affects not only the internal
validity of the empirical study, but also its external validity – the extent to which it is possible to
generalise from the results obtained. The empirical study performed in this paper involves case studies
that were specifically designed to test the effect of a particular program factor on the performance of
the crossover operator. The creation of synthetic programs for the experiments allowed for results to
collated reliably. The presence of a program factor is guaranteed by construction, allowing it to be
investigated in isolation and without interference from other artefacts in the code – as might be the case
with a program used from an external source. The synthetic design also allowed for the experiments to be
tightly controlled. Variations could be made to the program structure easily in the required manner, with
changes in crossover performance accurately observed. However, the case studies are merely exemplars
of the program factors studied. They do not represent all cases in which a particular crossover-over
affecting factor may manifest itself into a program. Caution is required, therefore, before making claims
as to whether these results would be observed on other programs. However, the results show that cases do
exist where there is a statistically significant relationship between the program factors and the crossover
operators studied.

5 Discussion

This section summarises each program factor and discusses the potential ways in which that program
factor may manifest itself in programs in practice, followed by a discussion of the wider impact of the
findings made.

5.1 Program Factors

Program Factor 1. Number of Input Condition Conjuncts

In order for crossover to do useful work, there needs to be a sufficient number of constraint schemata
for the crossover operator to recombine. This means there should be an accompanying sufficient number
of input condition conjuncts, from which building block constraint schemata can form. If there are
few input condition conjuncts, it is unlikely crossover will make any contribution the test input search.
Program branches may involve several input condition conjuncts where the branch is nested within a
loop, with each loop iteration adding a new conjunct to the condition. Loops tend to operate over data
structures composed of several primitive types, for example arrays of numbers or strings of characters.
Large numbers of input condition conjuncts may also arise for modules with state behaviour [28], where
an action needs to be repeated several times in order for a target branch to be executed, for example the
filling up of a stack, and for programs operating over dynamic data structures.

Program Factor 2. Search Difficulty Involved in Satisfying Input Condition Conjuncts

Crossover will become more important in progressing the search when input condition conjuncts are hard
to satisfy, i.e. they cannot be satisfied easily at random, often due to a coarse fitness landscape. or the
fitness landscape is coarse. Coarse fitness landscapes tend to be the result of the use of intermediate
variables, which potentially serve to ‘squash’ a range of input variable values to a smaller number of
distinct fitness values. This lends crossover to short functions, where the variables pertaining to branch
predicates are more likely to be input variables to the function.

Program Factor 3. Evaluation of the Input Condition with Respect to the Target Structure

Building block schemata will not form for input condition conjuncts not always evaluated by the program.
Nested structures, short-circuit evaluation, guarded jumps and premature termination of loops lead to
partial evaluation of the input condition. Such structures inhibit the crossover operator in positively
contributing to the search – any test input is likely to be found through the sole use of mutation alone.
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Program Factor 4. Input Condition Conjuncts over Disjoint Sets of Input Variables

To avoid clashes of input vector values during crossover, each conjunct should reference different input
variables. Therefore the program needs to have a large, multi-dimensional input space to accompany an
abundant number of independent input condition conjuncts for crossover to work well.

Program Factor 5. Individual Impact of Input Condition Conjuncts on Conditions Guarding
the Target

Building block constraints should involve as few input variables as possible, to avoid their possible disrup-
tion when input vectors are recombined. Building blocks involve few input variables when they involve
few input condition conjuncts, i.e. the program is structured so that each input condition conjunct can
make a direct impact of the value of the fitness function for executing the target. Again, this implies
programs involving conditions that relate directly to individual input variables, rather than intermediate
variable values that are dependent on the values of several inputs.

5.2 Implications for Further Research

The identification of the above program factors and their relationship to crossover performance has the
potential to impact the following areas of research:

Choice of Search Technique

The presence or absence of the above program factors explain why Evolutionary Search may or may
not represent a good choice of search technique. If crossover is unlikely to impact the progress of an
Evolutionary Search, simpler and faster search techniques like Hill Climbing may represent a better
choice of algorithm.

Metrics for Evolutionary Structural Testability

The above program factors may help form the basis of metrics for Evolutionary Structural Testability.
Previous work has attempted to link traditional software engineering metrics with Evolutionary Structural
Testability without success. This fact, coupled with the findings presented in this paper, suggest that
new metrics are needed that are based on the structure of the input domain and the program itself.

A Basis for New Testability Transformations

Testability transformations are source-to-source program transformations that aim to change a program
so that test inputs may be more easily generated using search-based techniques [13]. Testability transfor-
mations have been developed, for example, to remove flat fitness landscapes as a result of intermediate
boolean flag variables [3]. Once test inputs have been successfully generated for the target branch, the
transformed version may be thrown away. The findings of this paper show how crossover is affected by
different program factors. Where crossover is adversely affected, the program could be transformed so
that the crossover operator becomes more effective. As such, the identification of program factors affect-
ing crossover in this paper may help form the basis of the development of new Testability Transformations
which can improve the Evolutionary Search for structural test inputs. It is worth noting that two such
Testability Transformation has already been developed – for removing nesting in a program [27] and the
removal of intermediate boolean flag variables which flatten the fitness landscape [3, 13]. This paper
brings an understanding as to why these transformations improve the Evolutionary Search process in the
context of crossover. Further Testability Transformations may be developed, for example, to decompose
the input condition down into further input condition conjuncts – to aid crossover – and to break down
input condition conjuncts so that they are focussed on disjoint sets of input variables.

6 Related work

Researchers in the field of Evolutionary Computation have devoted much attention to characterising
the class of fitness functions for which different search operators perform well. The Royal Road fitness
functions, proposed by Mitchell et al. [29, 8], were an early attempt to identify the types of fitness
landscapes in which crossover worked well. Watson et al. [33] later proposed the H-IFF (‘Hierarchical
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IF-and-only-iF’) fitness functions, which are mutation-deceptive and result in Genetic Algorithms with
crossover outperforming Hill Climbing. Later work by Jansen and Ingo Wegener [18] gave rise to the ‘Real’
Royal Road fitness functions, for which crossover was shown to be provably essential. Conversely, recent
work by Richter et al. [31] produced the ‘Ignoble Trail’ fitness functions, which are characterisations of
crossover-deceptive landscapes for which crossover is shown to be provably harmful.

This paper has focussed on the characterisation of programs for which structural test data search by
Genetic Algorithms, referred to as Evolutionary Testing, will perform well. Recent studies by Harman
and McMinn [14, 15] on a selection of open source and industrial programs revealed that simple hill
climbing search in the form of Korel’s Alternating Variable Method (Alternating Variable Method) was
able to outperform Evolutionary Testing in covering the vast majority of branches considered. For the
small number of branches for which Evolutionary Testing outperformed the Alternating Variable Method,
a ‘Royal Road’-type property was found to be present. The present paper builds on work presented in
[24], showing how programs give rise to fitness functions that cause crossover to perform well.

By contrast, there has been a comparatively large volume of work devoted to when search-based
techniques do not work very well for certain program structures. This is usually because the fitness
landscape is flat, offering no guidance to the search technique. This is the case with the so-called ‘flag’
problem [12, 6, 4, 3]. Testability transformation [13, 10] has been proposed to amend the program as a
temporary measure so as to remove these awkward landscape features so that the search can work more
effectively. Nested structures [26, 27, 5], short-circuit evaluation [5] and unstructured programming [16]
have been shown to cause problems for Evolutionary Testing, however, this is the first paper to show
both theoretically and empirical why this is the case with respect to the crossover operator of Genetic
Algorithms.

7 Conclusions and future work

This paper has investigated how programs affect the efficacy of the crossover operator for test data
generation using Genetic Algorithms (Evolutionary Testing). The paper found several characteristics
that a program needs to have in order for crossover to work well. The characteristics were identified
by theoretical analysis based on modelling building blocks of a test data search using Evolutionary
Testing constraint schemata [15], and were confirmed through an empirical study.

The empirical study also found that the crossover operator traditionally used with the popular We-
gener model of Evolutionary Testing [34], discrete recombination, is frequently outperformed by standard
uniform crossover. It also found that Hill Climbing tends to outperform Evolutionary Testing for many
of the programs for which Evolutionary Testing works well, with the exception of those with entrapping
local optima.

The paper has presented results using Evolutionary Testing with procedural C programs. Further
work needs to investigate the efficacy of crossover in the context of programs written in other languages
and paradigms. The work has also focussed on branch coverage – further analysis is required for other
structural coverage types. Whilst the main, common forms of crossover have been investigated (one-point,
uniform and discrete recombination), further work would be needed to evaluate the affects on other types
of crossover, for example operators that average values from parent chromosomes.

Future work may seek to develop algorithms to detect the presence or non-presence of certain features
in a program, in order to decide which search technique is best to apply. The identification of different
program factors may serve as a basis for a rigorous set of metrics that help to define the evolutionary
testability of a program. A related avenue for future work is the potential use of Testability Transfor-
mations to improve the performance of crossover as a search operator. Testability transformations have
already been proposed, for example, to remove nesting and unstructured-ness from programs, identified
in this paper to be sources of inhibiting crossover operator performance. Additional work in this area
could target further barriers to full input condition evaluation, such as short-circuiting and premature
exiting of loops over inputted data structures. Furthermore, Testability Transformation may help ensure
that input condition conjuncts have direct impact on the value of the fitness function, reducing the size
of building blocks for crossover.
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