
Input Domain Reduction through Irrelevant Variable Removal

and its Effect on Local, Global and Hybrid

Search-Based Structural Test Data Generation

Phil McMinn∗,
University of Sheffield,

Regent Court,

211 Portobello,

Sheffield, S1 4DP, UK.

Mark Harman, Kiran Lakhotia,
CREST,

University College London,

Gower Street, London,

WC1E 6BT, UK.

Youssef Hassoun,
King’s College London,

Strand, London,

WC2R 2LS, UK.

Joachim Wegener,
Berner & Mattner Systemtechnik GmbH,

Gutenbergstr. 15,

D-10587 Berlin,

Germany.

Abstract

Search-Based Test Data Generation reformulates testing goals as fitness functions so that test
input generation can be automated by some chosen search-based optimization algorithm. The op-
timization algorithm searches the space of potential inputs, seeking those that are ‘fit for purpose’,
guided by the fitness function. The search space of potential inputs can be very large, even for very
small systems under test. Its size is, of course, a key determining factor affecting the performance
of any search-based approach. However, despite the large volume of work on Search-Based Software
Testing, the literature contains little that concerns the performance impact of search space reduction.
This paper proposes a static dependence analysis derived from program slicing that can be used to
support search space reduction. The paper presents both a theoretical and empirical analysis of the
application of this approach to open source and industrial production code. The results provide evi-
dence to support the claim that input domain reduction has a significant effect on the performance
of local, global and hybrid search, while a purely random search is unaffected.

Keywords. Search-Based Software Testing, Evolutionary Testing, Automated test data generation,
input domain reduction.

1 Introduction

Software testing is an important but currently expensive activity. The expense of testing derives largely
from the human costs of designing good test cases and examining their output. This has led to an
enduring interest in methods to automate both construction of good test input and the determination
of output correctness. The latter problem is known as the oracle problem and it has been the subject of
much work in its own right. This paper is concerned with the former problem of automated test input
construction.

The last decade has witnessed a considerable increase in research in the area of applying search-based
optimization methods to this problem. Evidence for this increase in activity comes from the publication
data presented in Figure 1.

This area of research has come to be known as Search-Based Software Testing (SBST) [2, 3, 33], an
instance of Search-Based Software Engineering (SBSE) [17, 22, 40]. The flexibility of the approach lends
itself to many testing problems, including structural [26, 32, 36, 38, 48, 52], functional [11], temporal [49]
and integration [10] testing.

∗corresponding author

1

0

20

40

60

80

100

120

140

N
um

be
r o

f P
ub

lic
at

io
ns

Year

Figure 1: The growth trend of publications on Search-Based Software Testing. The publication
number for 2010 is based on only partially complete data at the time of writing and so the figure
reveals a dramatic growth in publications overall. Despite a rapid growth trend, there has been
very little work on search space reduction strategies.

(Source: the SEBASE publications repository, http://www.sebase.org/sbse/publications)

Although Search-Based Software Testing has received a great deal of attention, there has been almost
no work [19], investigating the relationship between search space size and search performance – the ability
of a search technique to find test data and the effort expended to do so. This paper seeks to address
this problem. It presents both theoretical and empirical results concerning the impact of search space
reduction on performance. The Search-Based Software Testing problem studied herein is the search for
test data for full branch coverage of a program. This test goal was chosen because it has proved to be
the most widely studied in the existing literature [22], thereby making the paper’s findings more widely
applicable.

The key observation underpinning this work is that only some input variables affect whether a branch
will be executed. Others can statically be determined to have no effect on the branch in question and can,
therefore, be safely removed from the search space. The removal of any such irrelevant input variables
removes dimensions from the search space that would otherwise have been unnecessarily explored.

The paper presents a theoretical analysis of the potential impact of irrelevant input variable removal on
Random Search, and three meta-heuristic methods guided by a fitness function; namely

1. A Hill Climbing algorithm. This is an optimization technique based on local search. The version
used in this paper is the well–known Alternating Variable Method, due to Korel [26].

2. An Evolutionary Testing algorithm. This is an optimization technique based on global search. The
version used in this paper is an implementation based on the work done by DaimlerChrysler, which
has also been widely studied [48].

3. A Memetic Algorithm. This is a hybrid optimization technique based on a combination of global
and local search. The version implemented for this paper is similar to that used by Wang and Jeng
[47]. The use of Memetic Algorithms in Search-Based Software Testing is comparatively less well
studied, but is relevant to the work reported here because it completes the overall picture; covering
local, global and combined approaches to search-based optimization.

The theoretical analysis proves that there should be no relationship between irrelevant input variable
removal and Random Search, while performance improvements should be possible for the three meta-
heuristic searches. The theoretical analysis only shows the possibility of improvements for guided search.
In order to assess the likely impact on real systems, an empirical study is required. The paper presents
the results of a detailed, large–scale empirical study on both open source and real world production code
for all three of these approaches: local, global and hybrid search. The results of the empirical study

2

reveal that the theoretically–predicted improvement on search performance is statistically significant in
many cases, including when the time cost of performing the upfront analysis for search space reduction
is taken into account.

More specifically, the primary contributions of this paper are as follows:

1. The paper presents a theoretical analysis of irrelevant input variable removal on each of the algo-
rithms studied in the paper. The predictions of this analysis are:

(a) For Random Search: No significant change will be observed. The empirical results should bear
out this prediction.

(b) For Hill Climbing: Irrelevant input variable removal may cause a reduction in unfruitful ma-
nipulations of irrelevant input variables. An empirical study is required to determine the size
of the effect in practice.

(c) For Evolutionary Testing: Irrelevant input variable removal may also cause a reduction in
unfruitful manipulations of irrelevant input variables. These manipulations are due to the
mutation operator used by Evolutionary Testing. However, this positive effect might be coun-
teracted by the increased disruptive effect on useful recombinations of input vectors produced
by the crossover operator. Therefore, an empirical study is required to determine whether
there is an effect and, if so, how large it could be.

(d) Since Memetic Algorithm combines features of both Hill Climbing and Evolutionary Testing,
there is also potential for improvement and this also requires empirical investigation.

2. To answer the empirical questions raised by the theoretical study, the paper performs a large–scale
empirical study using open source programs and industrial production code. The results do indeed
show that irrelevant input variable removal has no effect on Random Search, but it does have a
positive effect on the performance of fitness–guided search algorithms. Specifically, the study finds
that:

(a) The success rate of finding inputs is significantly improved in several cases when the search
operates in a reduced space. This is also true when the practical time cost of performing the
up-front static analysis for search space reduction is taken into consideration, by allowing test
data searches in unreduced search spaces to run for considerably longer.

(b) Search space reduction results in a significantly higher quantity of additional branches to be
serendipitously executed during the search for one specific target branch. This is because input
variables deemed irrelevant for the target branch can be freely assigned to random values in
the course of fitness evaluation.

The rest of this paper is organized as follows. Section 2 introduces Search-Based Software Testing,
giving a detailed overview of the fitness function used and the search algorithms studied in this paper.
Section 3 introduces the method for search space reduction; the removal of irrelevant input variables for
the coverage of individual branches. Section 4 provides a theoretical analysis of the impact of irrelevant
input variable removal on each of the search techniques. Section 5 introduces the empirical study and the
research questions under investigation. The results obtained are presented, along with their corresponding
analysis. Any empirical study such as this inherently involves potential threats to validity, and the section
concludes with a discussion of these and how they were handled. Section 6 presents related work, while
Section 7 concludes.

2 Search-based structural test data generation

Search-Based Test Data Generation uses optimization techniques, such as Genetic Algorithms, to auto-
matically generate test data. This paper focuses on structural testing, in particular branch coverage. In
order to cover a particular branch in a unit under test, the goal of the search is to find an input vector
for a function that drives the path of execution down the branch of interest. The search space is formed
from the input domain of the function under test.

3

double gradient_calc_radial_factor(double dist,
double offset,
double x,
double y) {

false

false

if (dist == 0)

if (rat < offset)

TARGET

TARGET MISSED
Approach level = 2

Branch distance = K

TARGET MISSED
Approach level = 1

Branch distance = offset - rat + K

true

true

true
if (offset == 1) false

8

6

1

TARGET MISSED
Approach Level = 0

Branch distance = |offset – 1| + K

double r, rat;

(1) if (dist == 0.0) {
(2) rat = 0.0;

} else {
(3) offset = offset / 100.0;
(4) r = sqrt (x * x + y * y);
(5) rat = r / dist;

(6) if (rat < offset) {
(7) rat = 0.0;
(8) } else if (offset == 1.0) {
(9) rat = (rat >= 1.0) ? 1.0 : 0.0;

// ...

(a) Code snippet

(b) Fitness calculation for the true branch
from node 8. K is a constant added to the
branch distance when the undesired alternate
branch is taken

dist
-200 -100 0 100 200

fit
ne
ss

0.00

0.05

0.10

0.15

0.0

0.1

0.2

-200

0
200

-200

0

dist
offset

fit
ne
ss

(c) Fitness landscape for true branch from
node 1, plotted for the dist input
variable only

(d) Fitness landscape for true branch from
node 1, plotted for the dist and
offset input variables only

Figure 2: Code from the gimp open source graphics package and corresponding fitness analysis

4

2.1 Basic concepts

Let I = (i1, i2, ...ilen) be a vector of the input variables of the function under test. The domain Din of
the input variable in is the set of all values that in can hold, 1 ≤ n ≤ len; len = |I|. The input domain
of the function under test, therefore, is a cross product of the domains of each of the individual input
variables: D = Di1 × Di2 ... × Dilen . An input to the function i is a specific element of the function’s
input domain, that is, i ∈ D.

2.2 Fitness function

Meta-heuristic optimization techniques require a numerical formulation of the test goal, from which a
‘fitness function’ is formed. The purpose of the fitness function is to guide the search into promising,
unevaluated areas of a potentially vast input domain, in order to find required test data.

For branch coverage, each branch is taken as the focus of a separate test data search. The fitness
function is a function fit(t, i)→ R, that takes a structural target t and individual input i, and returns
a real number that scores how close the input was to executing the required branch. This calculation has
two components [48], the so-called approach level and the branch distance.

The approach level assesses the path taken by the input with respect to the target branch by counting
the target’s control dependencies that were not executed by the path. For structured programs, the
approach level reflects the number of unpenetrated levels of nesting levels surrounding the target. For
example, in Figure 2b, if the target is the true branch from node 8, the approach level is 2 if the execution
path misses the target by taking the true branch at node 1. If the false branch is taken at node 1, but
the target is then missed because the true branch was taken at node 6, the approach level is 1, and so
on.

When execution of a test case diverges from the target branch, the second component, the branch
distance, expresses how close an input came to satisfying the condition of the predicate at which control
flow for the test case went ‘wrong’; that is, how close the input was to descending to the next approach
level. For example, for the coverage of the true branch from node 8 in Figure 2, the branch distance is
computed using the formula |offset−1|+K, where K is a constant added when the undesired, alternate
branch is taken. The closer offset is to 1.0, the ‘closer’ the desired true branch is to being taken. A
different branch distance formula is applied depending on the type of relational predicate. In the case of
relational equals, this is |a − b| + K. For a full list of branch distance formulae for different relational
predicate types, see Tracey et al. [45].

The complete fitness value is computed by normalizing the branch distance and adding it to the
approach level:

fit(t, i) = approach level(t, i) + normalize(branch distance(t, i))

Since the maximum branch distance is generally not known, the standard approach to normalization
cannot be applied [6]; instead the following formula is used:

normalize(d) = 1− 1.001−d

A fitness landscape is a useful visualization of the surface of the fitness landscape. Figures 2c plots the
fitness landscape for the coverage of the true branch from node 1 in the gimp example, for the variable
dist only. The landscape shows how the value of dist can be minimized to zero for coverage of the
branch. Figures 2d adds the variable offset to the plot, giving a 3-dimensional surface, and showing
how changes to the offset variable have no effect on fitness.

The following sections provide a detailed overview along with the parameters used for the search
techniques in this paper, in order to facilitate replication of the empirical study which appears in Section
5.

2.3 Random Search

Random Search does not involve a fitness function to guide the optimization process, and so is technically
not a ‘meta-heuristic’ search technique. However, Random Search has been shown to be a surprisingly
effective way of generating test data [15], and as such makes a useful baseline comparison to more complex
and computationally intensive methods.

It is possible to cover many structural targets using random search, because there are often several
input vectors that can be selected that are good enough to execute most of the structures of a program.

5

Initialization

Exploratory
move

Pattern
move

No improvement

Improvement

Improvement

No improvement

Found local optima
(perform restart)

Test data found
(or resources
exhausted)?

Terminate

Climb phase

Figure 3: The main steps of a Hill Climbing algorithm using the Alternating Variable Method

For example, the false branch from node 1 is easily covered in Figure 2, because it is executed by all
input vectors apart from those for which dist is zero. However, the chances of executing the alternative
true branch at random however are significantly lower; for such test targets, more intelligent techniques
are required.

2.4 Hill Climbing

Hill Climbing is a meta-heuristic search technique that seeks to improve one candidate solution by ex-
ploring its neighbouring search space. Hill Climbing involves two stages; a simple initialization stage,
where an initial candidate solution is chosen from the search space at random. Assuming the randomly-
chosen solution does not satisfy the search criteria, the climb phase then commences, where solutions
neighbouring the current solution are evaluated (Figure 3). If one of these neighbouring solutions offers
an improved fitness, it replaces the current solution. The neighbourhood of this new solution is explored,
and so on, until no neighbouring solutions can be found that improve the fitness of the current solution.
This progressive pattern of moving to points in the search space with improved fitness values is likened
to climbing hills on the surface of the fitness landscape, despite the fact the fitness function is actually
minimized for search-based structural test data generation; and the optimization process figuratively
descending rather than ascending into local optima.

The implementation of the Hill Climbing algorithm for this paper is based on the ‘Alternating Variable
Method’ first introduced for test data generation by Korel [26]. This method explores the neighbourhood
of each individual input variable in the input vector in turn. If changes in the values of the input variable
do not result in an increased fitness, the search considers the next input variable, and so on; recommencing
from the first input variable if necessary, until test data is found or no further improvements can be made
to the current input vector.

Consider the example shown in Figure 2. Suppose the target is the true branch from node 8, and
the initial random input is (1, 50, 1, 1). The input reaches node 8 but takes the false branch. The
Alternating Variable Method begins to perform ‘exploratory moves’ on each input variable by inducing a
small increase, followed by a small decrease. Suppose changes of ±0.1 are made to each double variable
in the example of Figure 2. The moves made around the dist variable are 0.9 and 1.1. However, no
improvement is made; offset is no closer to becoming 1. The search continues on to consider the next
variable in the input vector, offset. An increased value of 50.1 moves offset closer to the value of 1
required at node 8 via the division statement at node 3. At this point, the search makes accelerated
‘pattern’ moves in the direction of improvement. In this paper, the value of the xth move movex made
in the direction of improvement, dir ∈ {−1, 1} is computed using movex = sx · 10−precn · dir, where
s is the repeat base (s = 2 for experiments in this paper), and precn is the number of decimal places
defining the precision of exploratory moves to be made to the nth input variable. Successive moves are
made for offset until it overshoots the required value of 100, and the new value generated represents
a decrease in fitness. At this point, exploratory moves are recommenced in order to establish a new
direction. The search continues in this fashion until the test data is found, or the current input vector
cannot be improved because local moves do not offer an improved fitness. The latter case is a common
problem for local search techniques - the tendency to converge on a sub-optimal solution. This may
be, for example, at the peak of locally optimal ‘hills’ (i.e. in the trough of pits where fitness is being
minimized); or along ridges or plateaux in the fitness landscape, where there is no variation in fitness

6

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

-200 0 200-200
0

x
y

fit
ne
ssvoid local_optima(double x, double y) {

if (x == y) {
if (x == 0) {

// target
}

}
// ...

}

(a) Code snippet containing a nested target (b) Corresponding fitness landscape

Figure 4: Code snippet with a target whose fitness landscape contains several
local optima

value. An example of this can be seen for the coverage of the target branch in Figure 4. As soon as the
search moves to the bottom of one of the locally optimal spikes, it is effectively ‘stuck’, as there is no
input vector in the direct vicinity with a better fitness value. When this happens, the search is restarted
at another randomly chosen point in the search space. The number of restarts is potentially unlimited
and only restricted by the limit on the overall budget allowance of fitness evaluations permitted.

2.5 Evolutionary Testing

Because of the problem of local search techniques like Hill Climbing becoming trapped in local optima,
many authors have considered global search techniques, most notably Genetic Algorithms [31, 32, 34, 38,
48]. This has given rise to the so-called ‘Evolutionary Testing’ approach.

For Evolutionary Testing, input vectors compete with one another according to their ability to satisfy
the test objective. The aim of Evolutionary Testing is that, as the algorithm iterates through increasingly
fit generations of candidate test cases, it steadily and automatically approaches achievement of the test
goal through optimization of the fitness function.

The Genetic Algorithm used for Evolutionary Testing in this paper is based on the approach described
by Wegener et al. [48]. Genetic Algorithms differ from local search techniques in that they maintain a
population of candidate solutions, also referred to as ‘individuals’, rather than just one solution. The
population is therefore capable of sampling many points in the search space at once, and as a result is
more robust to entrapment in local optima.

The initialization phase of a Genetic Algorithm involves constructing the initial population with
randomly generated individuals. The Wegener model splits the overall population of 300 individuals into
six competing subpopulations, which begin with 50 individuals each. The Genetic Algorithm then enters
a loop involving stages referred to as fitness evaluation, selection, crossover, mutation and reinsertion
(Figure 5). The Genetic Algorithm used in Evolutionary Testing also undergoes a further stage of
competition and migration amongst the subpopulations.

For selection, the Wegener model uses linear ranking [51], which sorts the population into fitness
order, assigning a ranked fitness to each individual based on a selection pressure value Z = 1.7. Ranked
fitnesses are allocated in such a way that the current best individual in a population has a fitness of Z, the
median individual a fitness of 1.0 and the worst candidate solution a fitness of 2 − Z. Once individuals
have been assigned a fitness, a selection operator is applied to the population. The method used is
stochastic universal sampling [8], where the probability of an individual being selected is proportionate
to its fitness value. This type of selection favours ‘fitter’ individuals. Weaker individuals retain a selection
chance, but with a relatively smaller probability. Individuals are then removed two-by-two at random
from the selection pool for recombination. A discrete recombination [37] strategy is used to produce new
‘offspring’. Discrete recombination operates such that offspring individuals receive ‘genes’ (i.e. input
variable values) from either parent with an equal probability.

7

Initialization

Competition &
Migration

Reinsertion

Fitness
evaluation

Mutation

Crossover

Selection

Test data found
(or resources
exhausted)?

Terminate

Figure 5: The main steps of a Genetic Algorithm

The next stage in the Genetic Algorithm is to apply a mutation operation to the offspring, based
on the Breeder Genetic Algorithm [37]. Mutation is applied with a probability pm of 1/len, where
len is the length of the input vector. The mutation operator applies a different mutation step size
10−pop, 1 ≤ pop ≤ 6 for each of the six subpopulations. A mutation range r is defined for each input
parameter by the product of pop and the domain size of the parameter. The ‘mutated’ value of an input
parameter can thus be computed as v′ = v ± r · δ. Addition or subtraction is chosen with an equal
probability. The value of δ is defined to be

∑15
y=0 αy · 2−y, where each αy is 1 with a probability of

1/16 else 0. If a mutated value is outside the allowed bounds of a variable, its value is set to either the
minimum or maximum value for that variable.

An elitist reinsertion strategy is used in the following reinsertion stage. The top 10% of the current
generation is retained and the remaining individuals discarded and replaced by the best offspring.

In the final stage of the loop, competition and migration, subpopulations compete with one another for
a slice of individuals. A progress value, prog, is computed for each population at the end of a generation.
This value is obtained using the formula 0.9 · prog+ 0.1 · rank. The average fitness rank for a population
is obtained by linearly ranking its individuals as well as the populations amongst themselves (again
with Z = 1.7). After every 4 generations, the populations are ranked according to their progress value
and a new slice of the overall population is computed for each, with weaker subpopulations transferring
individuals to stronger ones. However, no subpopulation can lose its last 5 individuals, preventing it
from dying out. Finally, a general migration of individuals takes place after every 20th generation, where
subpopulations randomly exchange 10% of their individuals with one another.

2.6 Memetic Algorithms

Memetic Algorithms combine the best features of both global and local search: robustness to local
optima through the diversification of Genetic Algorithms with the fine-tuning intensification power of
Hill Climbing. The Memetic Algorithm employed in this paper is essentially a Genetic Algorithm with
a stage of Hill Climbing at the end of each generation to improve each individual of the population as
much as possible. It was first proposed by Wang and Jeng [47].

Because Hill Climbing is used to intensify the search on an explicit sub-region of the search space,
Memetic Algorithms tend to require smaller population sizes than Genetic Algorithms. For experiments
in this paper, a flat population size of 20 is employed, without division into subpopulations as for Evo-
lutionary Testing. Thus there is no competition or migration stage; however, the selection, crossover
and reinsertion mechanisms are the same as those used for Evolutionary Testing. The Breeder Genetic
Algorithm mutation operator is not used; since it is intended to work with the subpopulations to pro-
duce a process akin to intensification in a Genetic Algorithm. Instead, uniform mutation is employed
at the usual mutation rate of pm = 1/len. Uniform mutation overwrites an input variable value with
a new randomly-generated value from its domain, thus encouraging greater search diversification. The
Alternating Variable Method is applied to improve each input vector at the end of each generation, but

8

without restarts. That is, as soon as a local optima is hit, the intensification phase for that individual
terminates.

3 Irrelevant input variable removal

The test data search space for the coverage of an individual branch of the function under test is the
input domain of that function. However it is possible that not every input variable will be responsible
for determining whether every branch in the function under test will be executed or not. For example, in
Figure 2, only the input variable dist is relevant for the predicate at node 1. Therefore, when attempting
to cover branches from this node, search effort on the values of the other variables (offset, x and y) is
wasted, since these variables cannot influence coverage of the branch. Thus removing irrelevant input
variables from the test data search, and only concentrating on input variables that are relevant for the
current branch of interest may improve the performance of the search process. Relevant and irrelevant
input variables are defined as follows.

Definition 1. Relevant input variable.
A relevant input variable is an input variable irel ∈ I that is capable of influencing whether a particular
structural target t will be executed or not. That is, there exists an i ∈ D where t is not executed, for
which there exists an i′ ∈ D where i′ is a copy of i but for the value of irel in i having been changed to
some other v ∈ Direl , where t is executed with i′ as the input.

Definition 2. Irrelevant input variable.
An irrelevant input variable is an input variable iirrel ∈ I that is not capable of influencing whether a
particular structural target t will be executed. That is, for all i ∈ D where t is not executed, there does
not exist an i′ ∈ D such that i′ is a copy of i but for the value of iirrel in i having been changed to some
other v ∈ Diirrel , for which t is executed with i′ as the input.

In general, the classification of an input variable as relevant or irrelevant for a particular target is an
undecidable problem, since the target structure may appear in a program after a looping construct, for
which termination is unknown. However it is possible to obtain a conservative estimate of irrelevancy
using static data flow techniques. That is, fewer variables may be deemed to be irrelevant than is actually
the case but, as a result, several variables may be removed from the search process.

3.1 Static analysis for removal of irrelevant input variables with CodeSurfer

For experiments in this paper, the implementation of variable dependence analysis was constructed on
top of the CodeSurfer commercial program analysis tool from Grammatech Inc. The dependence analysis
module1, ‘wraps’ the CodeSurfer slicing functionality to produce variable dependence information in a
similar format to that used by the Vada dependence analysis tool [18]. The decision to use the commercial
product CodeSurfer, rather than the research prototype, was motivated by the need for scalability and
robustness. CodeSurfer offers scalable dependence analysis, based on the System Dependence Graph
(SDG) of Horwitz, Reps and Binkley [24] and offers various pointer analysis implementations, such as
Steensgaard’s [44] and Andersen’s [4] scalable (but flow and context insensitive) points-to analysis. The
default global pointer analysis algorithm provided by CodeSurfer is that due to Andersen and this is the
one used in our study.

Of course, like any static analysis, the results of CodeSurfer are conservative approximations to true
dependence, which is uncomputable. This means that the set of variables returned by the variable
dependence wrapper module are a superset of the relevant variables. This is not a problem for the
application to input domain reduction because the analysis is safe. It guarantees that any variables
identified as irrelevant truly are irrelevant and, therefore, it is safe to remove them from the input vector
when searching for input to traverse a chosen target branch. The choice of points–to analysis is not
the only aspect of the dependence analysis that is a safe approximation. The results of the dependence
analysis are also affected by the manner in which composite data types such as structs and arrays are
handled. In CodeSurfer, a variable type containing a struct can be expanded to give a more precise
analysis of dependence. In essence, each field of the struct is treated as a separate variable in its own
right and dependences that arise through one field do not become merged (or collapsed) into those that

1In order to facilitate replication, the code of the dependence analysis module is available from
http://www.dcs.kcl.ac.uk/staff/youssef/software/wrapper-0.1/.

9

flow through the other fields. The wrapper uses this approach to avoid the imprecision that would arise
when structs become collapsed into a singleton variable [9]. However, for array types, there is no such
expansion possible because the index type is a computed field and it is not possible to easily distinguish
a dependence flowing through one index from those flowing through the others. There has been work
on dependence analysis that can handle the complex constraints on array indices, in order to separate
out dependence flowing through individual array elements [27]. However, this work has yet to find its
way into industrial strength scalable dependence analysis tools such as CodeSurfer upon which this work
relies. For this reason, our results for the improvements that can be achieved by domain reduction, can
be thought of as a lower bound on what could be achieved with a more fine grained analysis.

The GrammaTech tool CodeSurfer is provided with a Scheme–based scripting language [16]. The
scripting language extends standard Scheme with additional data types for computing the dependence-
graph representation of C programs as well as the program’s individual structures. This provides a pro-
gramming level interface to the underlying implementation of the System Dependence Graph. Operations
on the SDG are built into the extended language to express program elements and their dependencies.
Scripts use this API to inspect C programs according to their structure.

The implementation used to calculate variable dependencies is based on slicing functions provided by
the tool’s scripting language. The correspondence between the problem of slicing and that of variable
dependence analysis is described in more detail elsewhere [18]. This correspondence is used to manip-
ulate the results of slicing, using the scripting language, in order to compute a conservative and safe
approximation to the relevant input variable set.

To provide variable dependence information for branch coverage, conditional statements such as if-
statements and loops, are identified. CodeSurfer provides function calls in Scheme to return all vertices
in the SDG and to select from these, those of a certain type (for example predicate nodes, as required
for branch coverage).

CodeSurfer also provides a set of Scheme functions for computing the backward slice of a node. The
result of a backward slice is a set of vertices from the SDG that are contained in the slice. From the
computed slice node set, all relevant variables can be derived. These are the variables that affect the
computation of the program point at the given line. Input variables (global and formal parameters) can
be then filtered out from this set. For each branch that forms a target for the Search-Based Test Data
Generation, the CodeSurfer wrapper module provides a set of relevant variables (global variables and
formal parameters that may affect the outcome of the predicate evaluation). This set is guaranteed to
contain the true relevant variables. The search for test data can then operate on a reduced input vector
to find inputs to execute the current branch of interest.

4 Theoretical analysis

This section presents a theory of the impact of irrelevant input variable removal on each of the search
techniques discussed and applied in this paper. The theoretical analysis performed in this section demon-
strates that:

1. Irrelevant input variable removal has no mean effect on Random Search.

2. Irrelevant input variable removal has the potential to improve the efficiency of the meta-heuristic
searches considered; i.e. Hill Climbing, Evolutionary Testing and the Memetic Algorithm.

The analysis starts from first principles; that is by discussing the question of what factors contribute
to the difficulty of a search-based test data generation problem. The impact of irrelevant input variable
removal on these factors is then studied, and from this the potential effect on each of the individual
search techniques is derived. The analysis assumes a search target of one specific branch, and that other
branches executed serendipitously whilst searching for the target branch are ignored.

4.1 Problem difficulty for search-based test data generation

A common metric for measuring the effort expended by a search is the number of trial solutions (fitness
evaluations) that the search had to consider in order to reach a final solution.

This paper contends that there are two main factors that contribute to the amount of effort a search
needs to expend in order for search-based methods to find test data for a program structure. These are
as follows:

10

1. Ratio of domain size to target-executing inputs

The higher the ratio of domain size to target-executing inputs (or more simply the ‘domain-to-
execution ratio’), the ‘scarcer’ the existence of test data for its coverage, and the more effort the
optimization technique is likely to have to expend in order to find an input vector that executes it.

Take for example the program of Figure 2, and the coverage of the true branch from node 1. For
sake of argument, suppose each floating point variable has the range -499.9 to 500, with a precision
of 0.1, and thus an individual domain size of 10000. The true branch is only executed by one
specific value of dist along with any value of the other three input variables, giving a high domain-
to-execution ratio of 100004:100003 or 10000:1. The domain-to-execution ratio of the alternative
false branch, however, is extremely low; there is only one input from the domain size of 100004 that
does not execute it, resulting in test data that is very easy to find.

Domain-to-execution ratio is related to the concept of domain-to-range ratio, the ratio of the car-
dinality of the set of all inputs to the cardinality of the set of all outputs for a program, identified
by Voas [46] as a general source of poor testability in programs.

2. Fitness landscape.

The shape of the fitness landscape is also a factor that affects the progress of a search. If the fitness
landscape is free of plateaux and local optima, providing smooth guidance to the location of the
desired inputs, the search will be relatively easy; as with the landscape of Figure 2d. However,
if the search problem has a difficult landscape, that contains several local optima (for example as
with Figure 4) or is largely flat, then the search may be either misled or offered little guidance at
all.

It can be theorised from the above, that test data search problems with a high domain-to-execution
ratio and difficult landscapes will be problematic for search-based test data generation techniques. The
paper now investigates whether, from a theoretical stand-point, irrelevant input variable removal can
have an impact on these attributes and whether it is capable of making test data generation problems
easier. These results are then applied to each of the individual search techniques studied in this paper.

4.2 Impact of irrelevant input variable removal on search problem difficulty

4.2.1 Ratio of domain size to target-executing inputs

It transpires that irrelevant input variable removal has no effect on the domain-to-execution ratio for a
target, i.e. irrelevant input variable removal has no impact on the first attribute of problem difficulty for
search-based test data generation:

Proposition 1. Irrelevant input variable removal has no impact on the domain-to-execution ratio for a
target.

Proof. The domain-to-execution ratio der for a target can be expressed as

der = |D| : |E|

where |D| is the cardinality of the input domain of the function under test, and |E| is the size of the set
of target-executing inputs.
Input variables can be classified as either relevant or irrelevant to the target. Thus D can be split into
two independent sets; the set of relevant input variables, and the set of irrelevant input variables. Let
Drel equal the cross product of the domains of the relevant variables, and Dirrel the cross product of the
domains of the irrelevant variables. In accordance with this, D can be expressed as

D = Drel ×Dirrel

and it follows that

|D| = |Drel| × |Dirrel|

In a similar fashion, the set E may itself be split into two sets of ‘partial’ input vectors:

E = Erel × Eirrel

11

where Erel is the set of target-covering partial input vectors made up of relevant variables only, and Eirrel

is the set of target-covering partial input vectors made from irrelevant variables.
By definition, in order to cover the target, specific values are required of relevant variables; while any value
may be chosen from the domain of an irrelevant variable. Therefore it follows that |Eirrel| = |Dirrel|,
and that correspondingly

|E| = |Erel| × |Dirrel|

and the domain-to-execution ratio for a target can be re-expressed as

der = (|Drel| × |Dirrel|) : (|Erel| × |Dirrel|)

Since |Dirrel| appears on both sides of the ratio, it can be cancelled, thus

der = (|Drel| × |Dirrel)| : |Erel|)× |Dirrel|)
= |Drel| : |Erel|

That is, the domain-to-execution ratio of a target is not actually affected by irrelevant variables.

The above result can be demonstrated with an example. Take again the program of Figure 2, and
the coverage of the true branch from node 1; the domain-to-execution ratio of which is 100004:100003 or
10000:1. Removing irrelevant variables gives a domain size of 10000 and one target-executing input vector
(i.e. dist equal to 0), and despite irrelevant variable removal, the same domain-to-execution ratio of
10000:1.

4.2.2 Fitness landscape

It can be shown that irrelevant input variables identified by static analysis can have no effect on fitness
values, and this has an interesting impact on the overall fitness landscape.

Proposition 2. Statically-identified irrelevant input variables cannot have an effect on the fitness value
for a target branch.

Proof. The fitness function for covering an individual branch relies on structural control dependency
information, and the values of variables appearing in conditions in the branch’s control dependent nodes.
This set of variables cannot be influenced by irrelevant input variables identified through static analysis.
If they were, some irrelevant variable may exist capable of influencing whether the branch is executed or
not. This however is contrary to the definition of an irrelevant input variable (Definition 2).

As a consequence of this, fitness invariant lines exist in the fitness landscape for the target’s fitness
function in each dimension representing an irrelevant variable revealed by static analysis. These dimen-
sions of fitness-invariance are of no help in guiding the search. This observation can be seen in Figure 2d,
where the irrelevant variable offset is responsible for a constant fitness for each value of dist. When
offset is not considered, a useless dimension is removed from the fitness landscape, which does not give
any guidance to the search (Figure 2c). The removal of these useless dimensions has the potential to
improve the efficiency of a meta-heuristic search, albeit in different ways. Thus, the ramifications of these
sections are now investigated in the light of the individual search techniques that are the focus of this
paper.

Note that the proof only extends to the set of variables identified as irrelevant by static analysis, a
subset of all variables that may be irrelevant in practice for a branch. Irrelevant variables not identified
by static analysis, for example, include those that influence variables appearing in the predicates of
infeasible branches. As the branch is infeasible, such variables cannot influence actual execution of the
branch, and therefore are irrelevant as per Definition 2). However, as discussed in Section 3.1, automating
the discovery of this type of irrelevancy is a generally undecidable problem, and is not considered further
here.

12

4.3 Impact on Random Search

Random Search simply attempts to cover the target structure by constructing input vectors at random,
and is not guided by a fitness function. Therefore, problem difficulty for Random Search centres around
the probability of executing a target. The lower the probability of covering a target, a greater number of
trials will be required to cover it, in expectation. The reverse is true for targets with a high probability
of execution. However, irrelevant input variable removal has no impact on the probability of executing a
target, and thus, in expectation, irrelevant input variable removal has no impact on Random Search.

Proposition 3. Irrelevant input variable removal has no effect, on average, for Random Search.

Proof. The probability of executing a target at random is simply another way of looking at a target’s
domain-to-execution ratio: for a domain-to-execution ratio of |D|:|E| for a target, the chance of executing

that target with one randomly chosen input is |E||D| .

However, as has already been shown by Proposition 1, irrelevant input variable removal has no impact
on domain-to-execution ratio, and irrelevant input variable removal will not affect the probability of
coverage of a target at random. Because excluded input variables cannot affect whether the target is
covered, any of their values can be selected; removing them reduces |D| and |E| in equal proportion, and
the probability of executing the target is unchanged.

The variation in the generation of random numbers and/or the order in which they are applied means
that, in practice, differences will be observed at the level of individual random searches when irrelevant
variables are removed from consideration. However, since the probability of generating test data is the
same, the mean effect will be of no change in the performance of Random Search.

4.4 Impact on Hill Climbing

The Hill Climbing algorithm was described in Section 2.4. The algorithm begins with a randomly gen-
erated starting point, and makes moves from this initial position towards the nearest point of locally
optimal fitness. If a locally optimal point does not represent test data that covers the target, the algo-
rithm restarts with a freshly generated random point. Thus there are two distinct parts to the algorithm,
initialization followed by the climb phase.

Initialization

As per Proposition 3, the randomly-generated starting point is no more likely to cover the target if
irrelevant variables are present or not. Furthermore, it can be shown that the randomly generated
starting point will be no closer to the required test data in the input domain with irrelevant input
variable removal than it would have been under normal circumstances. That is, it will be no easier for
a search to find test data starting with randomly-generated solutions whether irrelevant variables have
been removed or not.

Proposition 4. Initial, randomly generated solutions will be no closer to required test data in the input
domain following the removal of irrelevant input variables from the search process.

Proof. The distance from a starting solution in the fitness landscape to the required test data can be
found by finding the Euclidean distance between the initial input vector init = (init1, init2, ...initn) and
the nearest qualifying, target-executing input vector qual = (qual1, qual2, ...quallen), i.e.:

d(init,qual) =

√√√√ len∑
n=1

(initn − qualn)
2

Let initrel = (initrel1 , initrel2 , ..., initrelp) and initirrel = (initirrel1 , initirrel2 , ..., initirrelq) be partial
vectors of init that respectively contain either relevant or irrelevant variables only for a target t. Likewise,
let qualrel = (qualrel1 , qualrel2 , ..., qualrelp) and qualirrel = (qualirrel1 , qualirrel2 , ..., qualirrelq) be partial
vectors of qual that respectively contain relevant or irrelevant variables pertaining to t. The Euclidean
distance function can now be represented as:

13

d(init,qual) =

√√√√ p∑
j=1

(initrelj − qualrelj)
2

+

q∑
k=1

(initirrelk − qualirrelk)
2

By definition, any value of an irrelevant input variable is suitable for executing the target. Thus each
initial irrelevant input variable value is a qualifying value, and

∀k ∈ {1, . . . , q}, (initirrelk − qualirrelk)
2

= 0

Therefore

q∑
k=1

(initirrelk − qualirrelk)
2

= 0

Consequently

d(init,qual) =

√√√√ p∑
j=1

(initrelj − qualrelj)
2

+

q∑
k=1

(initirrelk − qualirrelk)
2

=

√√√√ p∑
j=1

(initrelj − qualrelj)
2

That is, the euclidean distance to the required test data is dependent on relevant variables only, i.e. randomly-
generated test data will be no closer to the required test data in the input domain whether the search
process removes irrelevant variables or not.

Climb Phase

A performance increase is possible for Hill Climbing as the search commences from its initial position. As
per Proposition 2, changing the values of irrelevant variables will never yield a difference in fitness. Thus,
the exclusion of irrelevant variables will avoid incremental and decremental exploratory moves occurring
in the climb phase. From this we can conclude that for non-trivial structures (i.e. those requiring the test
data search to enter the climb phase of the Hill Climbing algorithm as described in Section 2.4) irrelevant
input variable removal has the potential to improve the efficiency of Hill Climbing. That is, test data
may be found using fewer fitness evaluations.

Proposition 5. Irrelevant input variable removal can result in test data being found in fewer fitness
evaluations for a target with Hill Climbing than if all variables are considered

Proof. The climb phase of the Hill Climbing algorithm defined in Section 2.4 involves taking each input
variable in turn and performing incremental and decremental ‘exploratory’ moves until a variable is found
that has an impact on the fitness.

Let Irel denote the set of relevant input variables for some target t, and Iirrel the set of irrelevant
variables. One ‘cycle’ through the input vector will therefore involve at least two moves per input variable,
i.e. |I| × 2, or (|Irel|+ |Iirrel|)× 2. If irrelevant variables are removed from the search process however,
this is reduced to |Irel| × 2, i.e. a ‘saving’ of |Iirrel| × 2 evaluations per cycle.

Thus, for non-trivial structures that are not easily covered at random in the initialization stage of
Hill Climbing (and require traversal of the input vector in the following climb phase), the removal of
irrelevant variables can result in the performance of fewer fitness evaluations.

The theory predicts that improvements in efficiency are possible, but does not predict exactly what
the improvement will be. This is because it is impossible to predict how many times the Hill Climb-
ing algorithm will cycle through the input vector, and thus how many fitness evaluations will be saved.
The number of cycles performed is dependent on the starting point and the shape of the fitness land-
scape, which is different for each program structure. This information can only be known by actually
working through the process of the search on a case-by-case basis. As such, although the theoretical

14

analysis suggests that Hill Climbing will be subject to an improved performance as a result of irrelevant
input variable removal, the actual improvement in performance in practice is better assessed through an
empirical treatment. For two branches of similar difficulty (i.e. requiring a similar number of fitness
evaluations before irrelevant input variable removal) the theory predicts a greater efficiency improvement
for the branch that has more irrelevant input variables removed, as a greater number of fitness evaluations
will be ‘saved’ per cycle of the input vector. The theory therefore suggests the existence of a relationship
whereby the efficiency of Hill Climbing improves as a function of the number of irrelevant variables that
are removed from the input domain.

4.5 Impact on Evolutionary Testing

The Evolutionary Testing algorithm was introduced and described in detail in Section 2.5. The effect of
irrelevant input variable removal is analysed with respect to each stage of the algorithm.

Initialization

The initial phase of Evolutionary Testing involves the construction of 300 inputs at random for the first
generation of the search. Thus for ‘easy’ branches (generally those with a probability of execution of 1

300
or higher), there will be no change in performance for Evolutionary Testing. As proved in Proposition 4,
these initial solutions will be no closer to the required solution in the input domain.

Selection

Selection is a function of fitness and does not take any other properties of candidate solutions into account.
Thus, irrelevant input variable removal will not affect the operation of selection mechanisms.

Crossover

Evolutionary Testing performs discrete recombination. The choice of the two parents from which each
individual element of the offspring’s chromosome is taken is decided with a fixed probability of 0.5. Thus,
irrelevant input variable removal will affect crossover in that it gives it slightly less work to do - without
irrelevant input variable removal there are more variables to be inserted into child input vectors than are
actually needed in practice. However, this overhead is small in terms of executing the overall algorithm
and, more crucially, does not affect the number of fitness evaluations that will need to be performed.

Mutation

While irrelevant input variable removal has no impact on crossover in terms of fitness evaluations, it will
affect the performance of the mutation operator.

Proposition 6. Irrelevant input variable removal reduces the number of mutations that do not lead to a
change in fitness of an input vector

Proof. The mutation rate is set to 1
|I| , and thus, in expectation one variable will be mutated per in-

put vector. If the variable mutated is an irrelevant variable, the mutation may as well not have been
performed, as it cannot bring about a change in fitness.

When irrelevant input variables are present, the mutation operator is essentially working with a

handicap; only |Irel|
|Irel|+|Iirrel| of the mutations have the potential to affect fitness. When irrelevant variables

are removed, mutation is concentrated on variables deemed to be relevant for covering the structure of
interest.

In the absence of a crossover operator, one would expect the increase in the number of effectual
mutations to improve the performance of the search; fewer fitness evaluations would be performed on input
vectors whose relevant variables are unchanged (i.e. there is no change in fitness value). Furthermore, a
relationship is expected whereby performance should increase as a function of the number of irrelevant
variables removed.

However, such a relationship needs to be confirmed by an empirical study. Although the mutation
operator becomes more effective, the change of mutation rate on the relevant variables may not necessarily
improve performance. For example, an increase may further disrupt useful recombinations brought about
by the crossover operator.

15

Reinsertion, Competition and Migration

As with selection, the reinsertion, competition and migration mechanisms of Evolutionary Testing are
functions of the fitness values of input vectors only, and as such no impact is expected of irrelevant input
variable removal on these parts of the Evolutionary Testing algorithm.

4.6 Memetic Algorithm

Since the Memetic Algorithm is a combination of Evolutionary Testing and Hill Climbing, the same
factors apply as discussed in the previous two sections. For trivial branches whose test data can be
found on average in 20 trials or fewer (i.e. those usually found in the first generation by the Memetic
Algorithm) there will be no impact. However, irrelevant input variable removal will increase the mutation
rate as with Evolutionary Testing, and in the climb phase borrowed from the Hill Climbing algorithm.
Irrelevant input variable removal will stop ineffectual moves being made involving variables that cannot
affect whether the target will be executed or not.

4.7 Conclusions of the Theoretical Analysis

The theory shows that there will, on average, be no impact for Random Search. While the theory
predicts a positive impact is possible for each of the meta-heuristic searches, it does not show exactly
for all possible cases what the expected impact will be, for either specific cases or on ‘average’. This is
because search difficulty varies on a branch-by-branch basis, i.e. the domain-to-execution ratio for the
branch and the shape of its fitness landscape. The true impact is more efficiently assessed by an empirical
study, and this is the subject of the next section.

5 Empirical Study

The theoretical analysis raises several empirical questions which are answered in this section, using real
world examples of industrial and open source test data generation problems.

5.1 Case Studies

The empirical study was performed on 636 branches, drawn from seven different case studies. Details
of these case studies can be found in Table 1. Search-based test data generation requires the tester to
specify information about the ranges of each input variable. In practice, this helps prevent the search
from generating values for the unit that would not be possible in practice. In the empirical study, two
different setups were used to produce two artificial domain sizes for each function, one larger and therefore
‘harder’ than the other, thus giving 1108 search problems available for study. As can be seen, approximate
domain sizes ranged from 105 to 10712, resulting in large search problems.

The search algorithms under study from the literature are capable of handling data of numerical type
only (character, integer, double etc.). More recent work has demonstrated that this is not a limitation
of the search-based approach [28]. However, in this study, dynamic data structures were fixed in size
and shape where necessary for inputs to functions of the space case study. The size and shape of the
data structures in question were fixed to the largest size required to prevent branches in the case study
becoming artificially infeasible, as determined through manual tests..

The programs f2 and defroster are industrial case studies provided by DaimlerChrysler, which are
production code for engine and rear window defroster embedded control systems for which the source
code was automatically generated from a design model.

To complement the industrial examples, five further case studies were selected. Different functions
were selected from these case studies to allow for a broad range of styles including different types of input
(for example primitive integers and non-trivial data structures involving pointers) and control structures
(for example loops and the switch statement). The number of functions was chosen in order to keep
the number of source lines of code studied large enough to allow for a rigorous empirical analysis, whilst
keeping the study manageable to perform from a human perspective.

Of the five additional case studies, three were open source. Sixteen functions were selected from
gimp-2.2.4, a graphics manipulation package. The program space comes from the European Space
Agency and is available from the Software-artifact Infrastructure Repository [1, 14]. Nine functions
were tested. The program spice is an open source general purpose analogue circuit simulator. Two

16

functions were tested, which were clipping routines for the graphical front-end. The library tiff-3.8.2

manipulates images in the Tag Image File Format (TIFF). The functions tested comprised of routines for
placing images on pages, and the building of ‘overview’ compressed sample images. Finally, the program
totinfo was created by Siemens and, like the program space, is also drawn from the Software-artifact
Infrastructure Repository. Three functions were tested.

5.2 Experimental setup and evaluation method

The test data generation experiments were performed sixty times using an identical list of sixty differ-
ent random seeds for each combination of branch and search method; Random Search, Hill Climbing,
Evolutionary Testing and the Memetic Algorithm, as described in Section 2; with and without irrelevant
input variable removal. If test data was not found to cover a branch after 100,000 fitness evaluations, the
search was terminated. However, in order to answer some research questions, further experiments were
performed where searches in unreduced spaces were allowed to run for a certain amount of time past this
limit. The precise configuration used in each case are discussed along with the results answering each
research question in Section 5.4.

For the irrelevant input variable removal version of the experiments, values still have to be provided
for the irrelevant inputs, even though they are not subject to the search process. These values were
assigned randomly.

The success or failure of each search was recorded, along with the number of test data evaluations
required to find the test data, if the search was successful. From this the success rate of each branch can be
calculated - the percentage of the 60 runs for which test data to execute the branch was found. The success
rate measure expresses the effectiveness of the search. Using the number of runs for which a particular
search was successful in finding test data, effectiveness was contrasted for statistical significance with
and without irrelevant input variable removal using Fisher’s Exact test at a confidence level of 99.9%.
All p-values were computed using the R statistical package [39]. For each successful run, the average
evaluations statistic (the average number of test data evaluations) indicates how efficient the search has
been in finding the required test data. The fewer test data evaluations required, the better and more
efficient the search performed. Any increase in effectiveness or efficiency therefore contributes to an
increase in the performance of a search algorithm.

Experiments were performed on a laptop running Windows 7 with 2GHz 64bit dual core processor,
and 2GB of RAM.

5.3 Research Questions

The research questions to be addressed by the empirical study are as follows:

RQ1. Scope for irrelevant input variable removal

For the test subjects considered, what proportion of input variables are irrelevant for each branch? If
each branch is dependent on most of the input variables, then the search may not become much more
effective or efficient following irrelevant input variable removal.

RQ2. Effect on search performance

The theory predicts that irrelevant input variable removal will have no impact on Random Search, while
the theory predicts that for non-trivial branches, irrelevant input variable removal will have a positive
effect on the performance of Hill Climbing, and will increase the number of ‘effectual’ mutations for
Evolutionary Testing. The Memetic Algorithm combines aspects of both Hill Climbing and Evolutionary
Testing, and therefore there should also be improvements in performance for the Memetic Algorithm.
Does the empirical study confirm that this is the case in practice? The theory suggests the existence of
a relationship whereby the efficiency of the search increases with the number of irrelevant variables. Is
this relationship observed in practice?

RQ3. Practical considerations

Does irrelevant input variable removal make for a more effective test data generation process overall when
the time overhead of performing the static analysis is taken into account?

17

Table 1: Details of the case studies investigated

Case Study / Function Physical Source Number of Number of Domain Size (10x)
Lines of Code of Branches of Input Variables Setup 1 Setup 2

defroster
Defroster main 56 20 24 96
Total 250 56

f2
F2 24 17 54 81
Total 418 24

gimp
gimp hsv to rgb 16 4 21 37
gimp hsv to rgb int 16 3 7 12
gimp hsv to rgb4 16 3 16 27
gimp hwb to rgb 18 3 17 27
gimp rgb to hsl 14 4 20 37
gimp rgb to hsl int 14 3 7 12
gimp rgb to hsv 10 4 20 37
gimp rgb to hsv4 18 3 7 12
gimp rgb to hsv int 14 3 7 12
gradient calc bilinear factor 6 6 34 51
gradient calc conical sym factor 8 6 31 49
gradient calc conical asym factor 6 6 31 49
gradient calc linear factor 8 6 31 49
gradient calc radial factor 6 4 21 33
gradient calc spiral factor 8 7 37 58
gradient calc square factor 6 4 21 33
Total 867 184

space
addscan 32 236 519 712
fixgramp 8 9 23 32
fixport 6 65 125 182
fixselem 8 65 125 182
fixsgrel 68 236 524 712
fixsgrid 22 44 101 120
gnodfind 4 24 70 89
seqrotrg 32 68 206 264
sgrpha2n 16 161 451 614
Total 2210 196

spice
cliparc 64 9 44 59
clip to circle 42 7 23 30
Total 269 106

tiff
TIFF SetSample 14 3 10 13
PlaceImage 16 11 38 59
Total 182 30

totinfo
gser 6 2 10 14
InfoTbl 30 4 19 23
LGamma 4 1 5 7
Total 319 40

Grand Total 4515 636

RQ4. Relative impact

Which search is the all-round ‘best’ at test data generation following irrelevant input variable removal,
and which search exhibits the largest improvement in effectiveness?

RQ5. Serendipitous coverage

During the search for test data for a particular branch, other branches may also be covered serendipitously.
Does irrelevant input variable removal lead to the search covering a greater number of branches by chance?

5.4 Results

This section discusses the results and answers the research questions posed in Section 5.3.

18

RQ1. Scope for irrelevant input variable removal

Figure 6 plots the number of relevant and irrelevant variables for each branch of each case study listed
in Table 1. The branches are sorted along the horizontal axis by their containing function’s input vector
size, and then by the number of irrelevant variables. The figure clearly shows a lot of scope for irrelevant
input variable removal, particularly for the space case study, with functions made up of a large number
of inputs, made up of linked lists of records grouped together using the struct keyword. Most of the
variables contained within these records are not relevant for executing many of the branches contained
within each individual function analyzed.

RQ2. Effect on search performance

In this research question, the performance of each search is considered with and without irrelevant input
variable removal with the termination criterion set at 100,000 fitness evaluations if test data is not found.

The results provide evidence to support the claim that Random Search is unaffected by the removal
of irrelevant input variables from the search space. Although the results of the empirical study for
Random Search exhibit variation before and after the application of search space reduction, no obvious
relationship was found between the number of variables removed and the performance of Random Search.
The variation is merely a result of a difference in the order in which random numbers are assigned to
inputs from the same seed; with irrelevant input variable removal the relevant variables are assigned first,
with the further irrelevant variables assigned next in order to form a complete input vector to execution
the function containing the target. No branches were found for which there was a statistically significant
difference in the number of successful test data searches before and after reduction. There is, therefore,
no evidence to suggest that the effort required for Random Search is reduced by removing irrelevant
variables.

The lack of improvement for Random Search contrasts strongly with those for Hill Climbing and
Evolutionary Testing, as can be seen by comparing Figure 7 for Random Search with Figure 8 for Hill
Climbing, Evolutionary Testing and the Memetic Algorithm. These scatter plots show the difference in
success rate (the percentage of the sixty runs for which a particular branch was successfully covered)
and average numbers of test data evaluations for each branch recorded before and after the removal of
irrelevant variables from the search. Branches are ordered along the horizontal axis according to the
number of variables removed from the input vector as a result of irrelevant variable analysis. Some points
are plotted for the same horizontal axis value because some branches share the same number of irrelevant
variables. The vertical axis value of each point plotted is found by subtracting the success rate or average
evaluations value for searches performed without input domain reduction from the corresponding statistic
for searches performed with irrelevant input variable removal. Therefore, a positive difference in success
rate denotes an increase in success rate, and is indicated by a point on the positive vertical axis scale
for the scatter plot of Figure 7a. Conversely, a poorer success rate is marked on the negative vertical
axis scale. For the average number of evaluations, a positive difference means that the search required
more test data evaluations to find a solution, and thus a point on the positive vertical axis corresponds
to poorer efficiency as a result of irrelevant input variable removal, whereas a negative vertical axis mark
is the result of fewer average evaluations and an improved efficiency. To enable a fair comparison, the
average number of evaluations plot only includes branches that were covered with a 100% success rate
before and after the removal of irrelevant variables. The plots of Figure 7 depict stochastic variation
but reveal no trend to suggest an increased (or even decreased) performance of Random Search as the
percentage of irrelevant variables increases and the search space becomes smaller.

The conclusion for Random Search, therefore, is the empirical lack of relationship between irrelevant
input variable removal and its performance, validating the proof for Random Search in Section 5.3.

With respect to Hill Climbing, 41 branch test data searches were found for which Hill Climbing was
significantly more effective with irrelevant input variable removal using Fisher’s Exact Test when com-
paring the number of times the branch was successfully executed with and without reduction, and with
the termination criterion set at 100,000 fitness evaluations for both types of search. No branch test
data searches were found to be significantly worse. 9 of the 41 branches are not covered by Random
Search with a 100% success rate, and are thus non-trivial. These branches are recorded in Table 3. 1
of the 9 branches is never covered without irrelevant input variable removal at the 100,000 evaluations
termination criterion. This branch belongs to the space case study and appears in the addscan function.

Figure 8 (parts a and b) shows the performance difference with Hill Climbing against the number of
variables removed for all branches considered in this experiment. Although there are a large number of

19

0

2

4

6

8

10

12

14

16

18

20

N
o.

 o
f i

np
ut

 v
ar

ia
bl

es

Branches in defroster case study

Required
Irrelevant

0

2

4

6

8

10

12

14

16

18

N
o.

 o
f i

np
ut

 v
ar

ia
bl

es

Branches in f2 case study

Required
Irrelevant

(a) defroster case study (b) f2 case study

0

1

2

3

4

5

6

7

N
o.

 o
f i

np
ut

 v
ar

ia
bl

es

Branches in gimp case study

Required
Irrelevant

0

20

40

60

80

100

120

140

160

180

200

220

240

N
o.

 o
f i

np
ut

 v
ar

ia
bl

es

Branches in space case study

Required
Irrelevant

(c) gimp case study (d) space case study

0

1

2

3

4

5

6

7

8

9

N
o.

 o
f i

np
ut

 v
ar

ia
bl

es

Branches in spice case study

Required
Irrelevant

0

1

2

3

4

5

6

7

8

9

10

11

N
o.

 o
f i

np
ut

 v
ar

ia
bl

es

Branches in tiff case study

Required
Irrelevant

(e) spice case study (f) tiff case study

0

1

2

3

4

N
o.

 o
f i

np
ut

 v
ar

ia
bl

es

Branches in totinfo case study

Required
Irrelevant

(g) totinfo case study

Figure 6: A summary of required and irrelevant variables for each branch from each case study and
function. The branches are sorted along the horizontal axis by the no. of input variables of their
containing function and then by the number of irrelevant variables for the individual branch

20

-20

-15

-10

-5

0

5

10

15

20

0 0.2 0.4 0.6 0.8 1

D
iff

er
en

ce
 in

 s
uc

ce
ss

 ra
te

 p
er

ce
nt

ag
e

Branches by irrelevant variables as a
proportion of input vector size

-5000

-4000

-3000

-2000

-1000

0

1000

2000

3000

4000

5000

0 0.2 0.4 0.6 0.8 1

D
iff

er
en

ce
 in

 a
ve

ra
ge

 e
va

lu
at

io
ns

Branches by irrelevant variables as a
proportion of input vector size

(a) Success rate (b) Average evaluations

Figure 7: The effect of irrelevant input variable removal on Random Search. The scatter plots show
changes in success rate and average test data evaluations as a result of removing irrelevant variables
from the search process. No trend exists suggesting a change in performance of Random Search as
more variables are removed and the search space becomes smaller

cases of improvement, in terms of success rate and average number of test data evaluations, some branches
exhibited no improvement at all, simply because test data was found easily by Random Search. Search
space reduction is superfluous in such instances. Due to stochastic variation, success rate decreased by
3% for one branch, and in a handful of cases, the average number of evaluations increased with irrelevant
input variable removal. None of these branches were significantly worse with irrelevant input variable
removal. The trend lines on the scatter plots strongly indicate the existence of a relationship whereby
increasing the number of variables removed from the search improves the performance for Hill Climbing,
in terms of higher success rate (improved effectiveness) and lower average number of test data evaluations
(improved efficiency).

The conclusion for Hill Climbing is that the results provide evidence to support the hypothesis that
removing irrelevant input variables from the search has a positive impact on the rate of success of test
data generation.

For Evolutionary Testing, 26 branches were found for which irrelevant input variable removal from
the search resulted in a statistically significant improvement in success of test data generation with the
100,000 fitness evaluations termination criterion. There were no branches for which the test data search
became significantly less successful using irrelevant input variable removal. 25 of these branches were not
covered by Random Search with a 100% success rate and appear in Table 3.

Figure 8 (parts c and d) shows the performance difference with Evolutionary Testing, against the
number of irrelevant input variables removed for all branches considered in this experiment. The scatter
plots show the existence of a trend: as the number of irrelevant input variables increases, and the search
space is made smaller, the effectiveness and efficiency improves. This is observed through an increasing
success rate and decreasing number of average test data evaluations required to cover the branches. For
a handful of branches, the success rate became worse with irrelevant input variable removal, a result of
stochastic variation and a difference that was not statistically significant. In further cases, as with Hill
Climbing, the average number of evaluations increased with irrelevant input variable removal. Again, this
appears to be due to simple random variation. None of the branches were significantly worse, with the
difference being small or with only a very small number of variables actually removed from the search.

In conclusion for Evolutionary Testing, the results provide evidence to support the hypothesis that
removing irrelevant variables from the search has a positive impact on Evolutionary Testing.

With respect to the Memetic Algorithm, statistical tests on the number of successful test data searches

21

revealed 29 branches became significantly more effective using irrelevant input variable removal with the
100,000 fitness evaluations termination criterion, with no branches becoming significantly worse. 9 of
these branches were not covered by Random Search with a 100% success rate, and appear in Table 3.

The scatter plots for changes in success rate and average number of evaluations appear in Figure
8, parts e and f. As for Hill Climbing and Evolutionary Testing, there exists a trend (although less
pronounced) whereby an increasing number of irrelevant variables improves efficiency and effectiveness.

Therefore, to conclude, the results again provide evidence that confirms the hypothesis that irrelevant
input variable removal has a positive impact on the Memetic Algorithm also.

RQ3. Practical considerations

In the answer to RQ2, the analysis concentrated on a comparison with the performance of the search over
100,000 fitness evaluations for searches with and without irrelevant input variable removal. As detailed
earlier in the paper, static analysis must be performed a priori on the source code of a test object in
order to identify which variables are relevant and which are irrelevant. This research question aims to
address the practical issue of whether it is worth doing the static analysis and searching for test data
over the relevant variables only, or whether searches should just be run for more fitness evaluations in
unreduced input domains, i.e. as many fitness evaluations as can be performed in the time taken by the
static analysis for irrelevant input variable removal.

The times to perform static analysis are recorded in Table 2. The static analysis takes a C code file
and determines the relevant and irrelevant variables for each function within it. The static analysis was
performed 60 times in order to obtain an average wall clock time for each file, referred to as the ‘file time’.
In the case of gimp, the functions analyzed were split across two files, and as such the times for each file
are recorded. The static analysis is performed once and used for each function and branch analyzed in
the empirical study. Therefore, the table records two further times for each file analyzed. The ‘function
time’ is the file time divided by the number of functions in it analyzed in the empirical study. The ‘branch
time’ corresponds to the file time for a case study divided by the number of branches analyzed in that
file.

Each search technique was re-performed for each branch without irrelevant input variable removal,
except the process was not terminated after 100,000 fitness evaluations if test data was not found. Instead,
the search was allowed to continue for the same amount of time that it took for the static analysis to
be performed on the file containing that branch. This represents a worst case upper bound on the
static analysis time required to perform irrelevant input variable removal, as it is equivalent to the static
analysis being performed each time for each branch – in practice the information obtained would be
re-used for other branches. However, even when the searches in the unreduced input domains were given
the full amount of static analysis time, 41 cases were found where the search was found to be significantly
more effective in finding test data when static analysis had been performed first. The significance test
performed was Fisher’s Exact Test on the number of successful searches, with and without irrelevant
input variable removal. 23 of these cases are reported in Table 3; these cases correspond to branches not
covered with a 100% success rate by Random Search up to the original 100,000 evaluations limit, and are
thus deemed to be non-trivial. The cases include Hill Climbing, Evolutionary Testing and the Memetic
Algorithm, and are drawn from the defroster, f2 and space case studies. When the additional time
allowed is tightened to the function time limit, a further 13 branches are found to be significant in favor
of performing irrelevant input variable removal; and at the branch time level, a further 7, giving 43 cases
in total.

Only 6 cases were found to be significant in favour of running the search longer and not performing
irrelevant input variable removal. These cases all involved Evolutionary Testing with the seqrotg function
of the space case study, and are also recorded in Table 3. For these branches, the conservative pointer
analysis leads to more variables being included in the search than are strictly necessary, leading to an
almost identical list of variables to search for test data even after static analysis has been performed. Since
Evolutionary Testing fails to find test data within the 100,000 evaluations limit, it benefits significantly
if the amount of time equivalent to static analysing the file in which they are contained is given over
to extra fitness evaluations. However, it should be noted that these cases are only significant when the
full file time is given as extra time for each branch. In practice, it would be performed at most once for
the function and re-used for each branch. However the search is not significantly better when only extra
function time or less is granted for additional fitness evaluations.

Of further interest are the 9 cases in which the search did not benefit at all from the additional ‘file
time’ afforded to it. A further experiment was performed where the searches and branches in question

22

-1
0010203040506070809010
0

0
0.

2
0.

4
0.

6
0.

8
1

Difference in success rate percentage

Br
an

ch
es

 b
y

irr
el

ev
an

t v
ar

ia
bl

es
 a

s
a

pr
op

or
tio

n
of

 in
pu

t v
ec

to
r s

ize

-1
0010203040506070809010
0

0
0.

2
0.

4
0.

6
0.

8
1

Difference in success rate percentage

Br
an

ch
es

 b
y

irr
el

ev
an

t v
ar

ia
bl

es
 a

s
a

pr
op

or
tio

n
of

 in
pu

t v
ec

to
r s

ize

-1
0010203040506070809010
0

0
0.

2
0.

4
0.

6
0.

8
1

Difference in success rate percentage

Br
an

ch
es

 b
y

irr
el

ev
an

t v
ar

ia
bl

es
 a

s
a

pr
op

or
tio

n
of

 in
pu

t v
ec

to
r s

ize

(a
)

S
u

cc
es

s
ra

te
(c

)
S

u
cc

es
s

ra
te

(e
)

S
u

cc
es

s
ra

te

-2
00

00

-1
80

00

-1
60

00

-1
40

00

-1
20

00

-1
00

00

-8
00

0

-6
00

0

-4
00

0

-2
00

00

20
00

0
0.

2
0.

4
0.

6
0.

8
1

Difference in average evaluations

Br
an

ch
es

 b
y

irr
el

ev
an

t v
ar

ia
bl

es
 a

s
a

pr
op

or
tio

n
of

 in
pu

t v
ec

to
r s

ize

-2
00

00

-1
80

00

-1
60

00

-1
40

00

-1
20

00

-1
00

00

-8
00

0

-6
00

0

-4
00

0

-2
00

00

20
00

0
0.

2
0.

4
0.

6
0.

8
1

Difference in average evaluations

Br
an

ch
es

 b
y

irr
el

ev
an

t v
ar

ia
bl

es
 a

s
a

pr
op

or
tio

n
of

 in
pu

t v
ec

to
r s

ize

-2
00

00

-1
80

00

-1
60

00

-1
40

00

-1
20

00

-1
00

00

-8
00

0

-6
00

0

-4
00

0

-2
00

00

20
00

0
0.

2
0.

4
0.

6
0.

8
1

Difference in average evaluations

Br
an

ch
es

 b
y

irr
el

ev
an

t v
ar

ia
bl

es
 a

s
a

pr
op

or
tio

n
of

 in
pu

t v
ec

to
r s

ize

(b
)

A
ve

ra
ge

ev
a
lu

a
ti

o
n

s
(d

)
A

ve
ra

ge
ev

a
lu

a
ti

o
n

s
(f

)
A

ve
ra

ge
ev

a
lu

a
ti

o
n

s

H
il

l
C

li
m

b
in

g
E

v
o
lu

ti
o
n

a
ry

T
e
st

in
g

M
e
m

e
ti

c
A

lg
o
ri

th
m

F
ig

u
re

8:
T

h
e

eff
ec

t
of

ir
re

le
va

n
t

in
p

u
t

va
ri

ab
le

re
m

ov
al

o
n

m
et

a
-h

eu
ri

st
ic

se
a
rc

h
.

S
u

cc
es

s
ra

te
is

th
e

p
er

ce
n
ta

g
e

o
f

th
e

6
0

ru
n

s
fo

r
w

h
ic

h
a

b
ra

n
ch

w
a
s

co
v
er

ed
.

A
m

ar
k

on
th

e
p

os
it

iv
e

ve
rt

ic
al

ax
is

d
en

ot
es

an
im

p
ro

ve
m

en
t

a
ft

er
ir

re
le

va
n
t

va
ri

a
b

le
s

a
re

re
m

ov
ed

.
A

ve
ra

g
e

ev
a
lu

a
ti

o
n

s
is

th
e

av
er

a
g
e

n
u

m
b

er
o
f

fi
tn

es
s

ev
a
lu

a
ti

o
n

s
re

q
u

ir
ed

to
re

ac
h

a
so

lu
ti

on
.

T
h

e
fe

w
er

ev
al

u
at

io
n

s
ar

e
re

q
u

ir
ed

,
th

e
fa

st
er

a
n

d
th

er
ef

o
re

m
o
re

effi
ci

en
t

th
e

se
a
rc

h
is

.
T

h
er

ef
o
re

,
a

m
a
rk

o
n

th
e

n
eg

a
ti

ve
re

g
io

n
of

th
e

v
er

ti
ca

l
ax

is
d

en
ot

es
an

im
p

ro
ve

m
en

t.
T

h
e

n
u

m
b

er
o
f

ev
a
lu

a
ti

o
n

s
re

q
u

ir
ed

fo
r

ea
ch

ta
rg

et
b

ra
n

ch
is

p
lo

tt
ed

a
s

th
e

av
er

a
g
e

n
u

m
b

er
o
f

ev
a
lu

a
ti

o
n

s
o
n

ly
w

h
en

th
ey

w
er

e
co

ve
re

d
w

it
h

a
10

0%
su

cc
es

s
ra

te
,

b
ot

h
b

ef
o
re

a
n

d
a
ft

er
th

e
re

m
ov

a
l

o
f

ir
re

le
va

n
t

va
ri

a
b

le
s

fr
o
m

th
e

se
a
rc

h
.

T
h

is
is

to
en

su
re

a
fa

ir
co

m
p

a
ri

so
n

.

23

Table 2: Static analysis times for each of the case studies. The static analysis works on a file-by-file
basis, and as the functions tested with the gimp case study appear in two different files, timing figures
are provided for each file. ‘File time’ is the time taken to analyze a file, ‘function time’ is the file time
divided by the number of functions analyzed in that file, while branch time is the file time divided by the
number of branches tested in the file. Times are rounded to the nearest millisecond

Case Study Mean File Time Mean No. of Mean No. of
File Standard Function Functions Branch Branches

Time (ms) Deviation Time (ms) Time (ms)

defroster 4482 859 4482 1 80 56
f2 4741 839 4741 1 198 24
gimp - gimpcolorspace.c 14617 780 1624 9 107 136
gimp - gimpdrawableblend.c 11995 1027 1714 7 250 48
space 42475 2541 4719 9 217 196
spice 6458 1051 3229 2 61 106
tiff 7361 852 3681 2 245 30
totinfo 7680 958 2560 3 192 40

were run without irrelevant input variable removal for an additional amount of time equivalent to 10
times the ‘file time’. The results can be seen in the bar chart of Figure 9. For Evolutionary Testing,
there was no advance on the success rate without irrelevant input variable removal, even after the further
amount of additional time, equivalent to 1.5 million fitness evaluations. In the failing search runs, the
evolutionary process seems to converge on a local optimum that it cannot be shaken out of without the
targeted mutations that occur as part of irrelevant input variable removal. On the other hand, the cases
involving Hill Climbing and the Memetic Algorithm do result in a slight further improvement. In the
case of Hill Climbing, this is only to be expected, as the irrelevant variables only contribute to a ‘slowing
down’ in each cycle of the climb phase of the algorithm, given an identical set of starting points to a
search where the irrelevant variables are removed. Still, the hill climb is more successful with irrelevant
input variable removal than running the search without for an extremely long amount of time.

In conclusion, the evidence suggests that irrelevant input variable removal increases the reliability of
test data generation even when the practical time costs of the static analysis are taken into account.

RQ4. Relative impact

Figure 10 depicts a bar chart of the success rate of each meta-heuristic search with and without ir-
relevant input variable removal over all branches in the empirical study. Success rate figures are also
recorded for the standard approach, i.e. without irrelevant input variable removal, with the additional
times introduced for practical consideration of the techniques using irrelevant input variable removal.
The bar chart shows that the Memetic Algorithm is the most prolific technique at successfully finding
test data with and without irrelevant input variable removal. Interestingly, the Memetic Algorithm with-
out irrelevant input variable removal is approximately equivalent in performance terms to Evolutionary
Testing with irrelevant input variable removal. All searches are more successful with irrelevant input
variable removal, even when the standard approach for each branch is run for the 100,000 evaluations
limit plus the time taken to statically analyze the entire file in which it is contained. Hill Climbing shows
the biggest improvement when irrelevant input variable removal is applied compared to the standard
approach terminated at 100,000 fitness evaluations. However when the search continues past this limit
for the file time, Evolutionary Testing shows the largest improvement. The Memetic Algorithm exhibits
the least improvement at all levels.

The difference in success rate levels is shown to be relatively moderate, varying between a few percent-
age points with each percentage corresponding to approximately 750 searches. However any technique
that improves the reliability of test data generation can only be a good thing in practical terms, since the
costs of machine generating test data are much less than if a human performed the job manually, further
supporting the view that irrelevant input variable removal is a practically useful step to perform before
test data generation using a meta-heuristic search technique.

RQ5. Serendipitous coverage

Of further interest in comparing search techniques with and without irrelevant input variable removal,
is the level of ‘serendipitous’ coverage - the number of branches covered in the course of searching for

24

T
ab

le
3:

B
ra

n
ch

es
fo

r
w

h
ic

h
te

st
d

at
a

se
ar

ch
es

ar
e

si
gn

ifi
ca

n
tl

y
m

o
re

su
cc

es
sf

u
l

w
h

en
ir

re
le

va
n
t

in
p

u
t

va
ri

a
b

le
re

m
ov

a
l

is
a
p

p
li

ed
.

O
n

ly
n

o
n

-t
ri

vi
a
l

b
ra

n
ch

es
a
re

re
p

or
te

d
in

th
e

ta
b

le
;

b
ra

n
ch

es
th

at
w

er
e

n
ot

co
ve

re
d

w
it

h
a

1
0
0
%

su
cc

es
s

ra
te

w
it

h
R

a
n

d
o
m

S
ea

rc
h

.
S
u

cc
es

s
ra

te
(S

R
)

is
re

p
o
rt

ed
fo

r
ir

re
le

va
n
t

in
p

u
t

va
ri

a
b

le
re

m
ov

al
ag

ai
n

st
th

e
se

ar
ch

es
op

er
at

in
g

in
u

n
re

d
u

ce
d

se
a
rc

h
sp

a
ce

s
w

it
h

va
ri

o
u

s
te

rm
in

a
ti

o
n

cr
it

er
ia

.
S

ig
n

ifi
ca

n
t

p
-v

a
lu

es
a
t

a
co

n
fi

d
en

ce
o
f

9
9
.9

%
a
re

g
iv

en
in

b
ol

d
fo

r
th

e
al

te
rn

at
iv

e
h
y
p

ot
h

es
is

co
m

p
ar

in
g

th
e

n
u

m
b

er
o
f

su
cc

es
sf

u
l

st
a
n

d
a
rd

a
p

p
ro

a
ch

se
a
rc

h
es

a
g
a
in

st
th

e
n
u

m
b

er
o
f

su
cc

es
sf

u
l

se
a
rc

h
es

fo
r

w
h

ic
h

ir
re

le
va

n
t

in
p

u
t

va
ri

ab
le

re
m

ov
al

h
ad

b
ee

n
ap

p
li

ed
as

a
p

re
-s

te
p

.
T

h
e

va
lu

es
fo

r
‘fi

le
ti

m
e’

,
‘f

u
n

ct
io

n
ti

m
e’

a
n

d
‘b

ra
n

ch
ti

m
e’

a
re

re
p

o
rt

ed
fo

r
ea

ch
ca

se
st

u
d

y
in

T
a
b

le
2

B
r
a
n
c
h

S
e
a
r
c
h

Ir
r
e
le

v
a
n
t

U
n
r
e
d
u
c
e
d

s
e
a
r
c
h

t
e
r
m

in
a
t
e
d

a
t

U
n
r
e
d
u
c
e
d

s
e
a
r
c
h

t
e
r
m

in
a
t
e
d

a
t

U
n
r
e
d
u
c
e
d

s
e
a
r
c
h

t
e
r
m

in
a
t
e
d

a
t

U
n
r
e
d
u
c
e
d

s
e
a
r
c
h

t
e
r
m

in
a
t
e
d

a
t

-s
e
t
u
p

v
a
r
ia

b
le

1
0
0
,0

0
0

e
v
a
lu

a
t
io

n
s

+
fi
le

t
im

e
1
0
0
,0

0
0

e
v
a
lu

a
t
io

n
s

+
fu

n
c
t
io

n
t
im

e
1
0
0
,0

0
0

e
v
a
lu

a
t
io

n
s

+
b
r
a
n
c
h

t
im

e
1
0
0
,0

0
0

e
v
a
lu

a
t
io

n
s

r
e
m

o
v
a
l

S
R

(
%

)
S
R

(
%

)
S
ig

.
(
le

s
s

/
g
r
e
a
t
e
r
)

S
R

(
%

)
S
ig

.
(
le

s
s

/
g
r
e
a
t
e
r
)

S
R

(
%

)
S
ig

.
(
le

s
s

/
g
r
e
a
t
e
r
)

S
R

(
%

)
S
ig

.
(
le

s
s

/
g
r
e
a
t
e
r
)

d
e
fr

o
s
t
e
r

D
e
fr

o
st

e
r

m
a
in

1
8
F

-2
E

v
o
lu

ti
o
n
a
ry

T
e
st

in
g

7
8

4
5

0
.0

0
0
2

/
1
.0

0
0
0

4
5

0
.0

0
0
2

/
1
.0

0
0
0

4
3

0
.0

0
0
0

/
1
.0

0
0
0

4
3

0
.0

0
0
0

/
1
.0

0
0
0

2
2
F

-2
E

v
o
lu

ti
o
n
a
ry

T
e
st

in
g

7
8

3
5

0
.0

0
0
0

/
1
.0

0
0
0

3
5

0
.0

0
0
0

/
1
.0

0
0
0

3
3

0
.0

0
0
0

/
1
.0

0
0
0

3
3

0
.0

0
0
0

/
1
.0

0
0
0

2
4
F

-2
E

v
o
lu

ti
o
n
a
ry

T
e
st

in
g

5
7

1
3

0
.0

0
0
0

/
1
.0

0
0
0

1
3

0
.0

0
0
0

/
1
.0

0
0
0

8
0
.0

0
0
0

/
1
.0

0
0
0

8
0
.0

0
0
0

/
1
.0

0
0
0

2
4
T

-2
E

v
o
lu

ti
o
n
a
ry

T
e
st

in
g

8
3

3
5

0
.0

0
0
0

/
1
.0

0
0
0

3
5

0
.0

0
0
0

/
1
.0

0
0
0

3
3

0
.0

0
0
0

/
1
.0

0
0
0

3
3

0
.0

0
0
0

/
1
.0

0
0
0

4
4
F

-2
E

v
o
lu

ti
o
n
a
ry

T
e
st

in
g

8
7

5
3

0
.0

0
0
0

/
1
.0

0
0
0

5
3

0
.0

0
0
0

/
1
.0

0
0
0

5
3

0
.0

0
0
0

/
1
.0

0
0
0

5
3

0
.0

0
0
0

/
1
.0

0
0
0

4
8
F

-2
E

v
o
lu

ti
o
n
a
ry

T
e
st

in
g

6
5

3
5

0
.0

0
0
9

/
0
.9

9
9
8

3
5

0
.0

0
0
9

/
0
.9

9
9
8

3
2

0
.0

0
0
2

/
0
.9

9
9
9

3
2

0
.0

0
0
2

/
0
.9

9
9
9

4
8
T

-2
E

v
o
lu

ti
o
n
a
ry

T
e
st

in
g

9
2

5
3

0
.0

0
0
0

/
1
.0

0
0
0

5
3

0
.0

0
0
0

/
1
.0

0
0
0

5
3

0
.0

0
0
0

/
1
.0

0
0
0

5
3

0
.0

0
0
0

/
1
.0

0
0
0

4
9
F

-2
E

v
o
lu

ti
o
n
a
ry

T
e
st

in
g

8
2

5
2

0
.0

0
0
4

/
0
.9

9
9
9

5
2

0
.0

0
0
4

/
0
.9

9
9
9

5
0

0
.0

0
0
2

/
1
.0

0
0
0

5
0

0
.0

0
0
2

/
1
.0

0
0
0

4
9
T

-2
E

v
o
lu

ti
o
n
a
ry

T
e
st

in
g

8
5

5
3

0
.0

0
0
2

/
1
.0

0
0
0

5
3

0
.0

0
0
2

/
1
.0

0
0
0

5
3

0
.0

0
0
2

/
1
.0

0
0
0

5
3

0
.0

0
0
2

/
1
.0

0
0
0

6
0
F

-2
E

v
o
lu

ti
o
n
a
ry

T
e
st

in
g

8
7

6
2

0
.0

0
1
6

/
0
.9

9
9
7

6
2

0
.0

0
1
6

/
0
.9

9
9
7

5
8

0
.0

0
0
5

/
0
.9

9
9
9

5
8

0
.0

0
0
5

/
0
.9

9
9
9

f2 F
2

3
2
T

-2
H

il
l

C
li
m

b
in

g
7
3

2
0
.0

0
0
0

/
1
.0

0
0
0

2
0
.0

0
0
0

/
1
.0

0
0
0

2
0
.0

0
0
0

/
1
.0

0
0
0

2
0
.0

0
0
0

/
1
.0

0
0
0

3
2
T

-2
M

e
m

e
ti

c
A

lg
o
ri

th
m

8
7

2
0
.0

0
0
0

/
1
.0

0
0
0

2
0
.0

0
0
0

/
1
.0

0
0
0

2
0
.0

0
0
0

/
1
.0

0
0
0

2
0
.0

0
0
0

/
1
.0

0
0
0

1
1
F

-1
E

v
o
lu

ti
o
n
a
ry

T
e
st

in
g

1
0
0

7
2

0
.0

0
0
0

/
1
.0

0
0
0

7
2

0
.0

0
0
0

/
1
.0

0
0
0

7
2

0
.0

0
0
0

/
1
.0

0
0
0

7
2

0
.0

0
0
0

/
1
.0

0
0
0

1
1
F

-2
E

v
o
lu

ti
o
n
a
ry

T
e
st

in
g

9
3

6
3

0
.0

0
0
0

/
1
.0

0
0
0

6
3

0
.0

0
0
0

/
1
.0

0
0
0

6
3

0
.0

0
0
0

/
1
.0

0
0
0

6
3

0
.0

0
0
0

/
1
.0

0
0
0

1
5
T

-2
E

v
o
lu

ti
o
n
a
ry

T
e
st

in
g

6
0

3
0

0
.0

0
0
8

/
0
.9

9
9
8

3
0

0
.0

0
0
8

/
0
.9

9
9
8

3
0

0
.0

0
0
8

/
0
.9

9
9
8

3
0

0
.0

0
0
8

/
0
.9

9
9
8

s
p
a
c
e

a
d
d
sc

a
n

4
2
T

-2
H

il
l

C
li
m

b
in

g
8
3

1
3

0
.0

0
0
0

/
1
.0

0
0
0

8
0
.0

0
0
0

/
1
.0

0
0
0

8
0
.0

0
0
0

/
1
.0

0
0
0

8
0
.0

0
0
0

/
1
.0

0
0
0

6
2
F

-2
H

il
l

C
li
m

b
in

g
3
5

2
0
.0

0
0
0

/
1
.0

0
0
0

0
0
.0

0
0
0

/
1
.0

0
0
0

0
0
.0

0
0
0

/
1
.0

0
0
0

0
0
.0

0
0
0

/
1
.0

0
0
0

4
2
T

-2
M

e
m

e
ti

c
A

lg
o
ri

th
m

8
3

1
8

0
.0

0
0
0

/
1
.0

0
0
0

1
8

0
.0

0
0
0

/
1
.0

0
0
0

1
8

0
.0

0
0
0

/
1
.0

0
0
0

1
8

0
.0

0
0
0

/
1
.0

0
0
0

6
2
F

-2
M

e
m

e
ti

c
A

lg
o
ri

th
m

2
8

5
0
.0

0
0
5

/
0
.9

9
9
9

3
0
.0

0
0
1

/
1
.0

0
0
0

3
0
.0

0
0
1

/
1
.0

0
0
0

3
0
.0

0
0
1

/
1
.0

0
0
0

2
6
T

-2
E

v
o
lu

ti
o
n
a
ry

T
e
st

in
g

1
0
0

9
8

0
.5

0
0
0

/
1
.0

0
0
0

8
0

0
.0

0
0
1

/
1
.0

0
0
0

7
2

0
.0

0
0
0

/
1
.0

0
0
0

7
2

0
.0

0
0
0

/
1
.0

0
0
0

3
3
T

-2
E

v
o
lu

ti
o
n
a
ry

T
e
st

in
g

1
0
0

7
3

0
.0

0
0
0

/
1
.0

0
0
0

6
5

0
.0

0
0
0

/
1
.0

0
0
0

6
3

0
.0

0
0
0

/
1
.0

0
0
0

6
3

0
.0

0
0
0

/
1
.0

0
0
0

4
2
T

-2
E

v
o
lu

ti
o
n
a
ry

T
e
st

in
g

4
7

2
2

0
.0

0
3
3

/
0
.9

9
9
1

1
3

0
.0

0
0
0

/
1
.0

0
0
0

1
2

0
.0

0
0
0

/
1
.0

0
0
0

1
2

0
.0

0
0
0

/
1
.0

0
0
0

fi
x
se

le
m

3
0
T

-2
H

il
l

C
li
m

b
in

g
1
0
0

1
0
0

1
.0

0
0
0

/
1
.0

0
0
0

7
5

0
.0

0
0
0

/
1
.0

0
0
0

4
8

0
.0

0
0
0

/
1
.0

0
0
0

4
8

0
.0

0
0
0

/
1
.0

0
0
0

3
2
F

-2
H

il
l

C
li
m

b
in

g
1
0
0

1
0
0

1
.0

0
0
0

/
1
.0

0
0
0

7
3

0
.0

0
0
0

/
1
.0

0
0
0

5
0

0
.0

0
0
0

/
1
.0

0
0
0

4
8

0
.0

0
0
0

/
1
.0

0
0
0

3
0
T

-2
M

e
m

e
ti

c
A

lg
o
ri

th
m

1
0
0

1
0
0

1
.0

0
0
0

/
1
.0

0
0
0

8
3

0
.0

0
0
6

/
1
.0

0
0
0

7
0

0
.0

0
0
0

/
1
.0

0
0
0

7
0

0
.0

0
0
0

/
1
.0

0
0
0

3
2
F

-2
M

e
m

e
ti

c
A

lg
o
ri

th
m

1
0
0

1
0
0

1
.0

0
0
0

/
1
.0

0
0
0

8
3

0
.0

0
0
6

/
1
.0

0
0
0

7
0

0
.0

0
0
0

/
1
.0

0
0
0

7
0

0
.0

0
0
0

/
1
.0

0
0
0

3
0
T

-2
E

v
o
lu

ti
o
n
a
ry

T
e
st

in
g

9
7

7
7

0
.0

0
1
1

/
0
.9

9
9
9

7
3

0
.0

0
0
3

/
1
.0

0
0
0

7
0

0
.0

0
0
0

/
1
.0

0
0
0

7
0

0
.0

0
0
0

/
1
.0

0
0
0

3
2
F

-2
E

v
o
lu

ti
o
n
a
ry

T
e
st

in
g

9
7

7
7

0
.0

0
1
1

/
0
.9

9
9
9

7
3

0
.0

0
0
3

/
1
.0

0
0
0

7
0

0
.0

0
0
0

/
1
.0

0
0
0

7
0

0
.0

0
0
0

/
1
.0

0
0
0

fi
x
sg

re
l

1
3
F

-1
E

v
o
lu

ti
o
n
a
ry

T
e
st

in
g

1
0
0

9
8

0
.5

0
0
0

/
1
.0

0
0
0

8
7

0
.0

0
3
0

/
1
.0

0
0
0

8
3

0
.0

0
0
6

/
1
.0

0
0
0

8
3

0
.0

0
0
6

/
1
.0

0
0
0

1
3
T

-1
E

v
o
lu

ti
o
n
a
ry

T
e
st

in
g

9
8

6
0

0
.0

0
0
0

/
1
.0

0
0
0

5
2

0
.0

0
0
0

/
1
.0

0
0
0

4
5

0
.0

0
0
0

/
1
.0

0
0
0

4
3

0
.0

0
0
0

/
1
.0

0
0
0

2
7
F

-1
E

v
o
lu

ti
o
n
a
ry

T
e
st

in
g

1
0
0

1
0
0

1
.0

0
0
0

/
1
.0

0
0
0

8
5

0
.0

0
1
4

/
1
.0

0
0
0

7
3

0
.0

0
0
0

/
1
.0

0
0
0

7
3

0
.0

0
0
0

/
1
.0

0
0
0

2
7
T

-1
E

v
o
lu

ti
o
n
a
ry

T
e
st

in
g

9
7

7
2

0
.0

0
0
1

/
1
.0

0
0
0

6
3

0
.0

0
0
0

/
1
.0

0
0
0

5
7

0
.0

0
0
0

/
1
.0

0
0
0

5
7

0
.0

0
0
0

/
1
.0

0
0
0

9
6
F

-1
E

v
o
lu

ti
o
n
a
ry

T
e
st

in
g

1
0
0

9
2

0
.0

2
8
7

/
1
.0

0
0
0

7
8

0
.0

0
0
0

/
1
.0

0
0
0

7
5

0
.0

0
0
0

/
1
.0

0
0
0

7
5

0
.0

0
0
0

/
1
.0

0
0
0

fi
x
sg

ri
d

5
9
F

-2
H

il
l

C
li
m

b
in

g
8
8

1
7

0
.0

0
0
0

/
1
.0

0
0
0

7
0
.0

0
0
0

/
1
.0

0
0
0

3
0
.0

0
0
0

/
1
.0

0
0
0

3
0
.0

0
0
0

/
1
.0

0
0
0

7
1
F

-2
H

il
l

C
li
m

b
in

g
4
3

1
3

0
.0

0
0
2

/
1
.0

0
0
0

7
0
.0

0
0
0

/
1
.0

0
0
0

3
0
.0

0
0
0

/
1
.0

0
0
0

3
0
.0

0
0
0

/
1
.0

0
0
0

5
9
F

-2
M

e
m

e
ti

c
A

lg
o
ri

th
m

1
0
0

9
3

0
.0

5
9
4

/
1
.0

0
0
0

3
0

0
.0

0
0
0

/
1
.0

0
0
0

1
7

0
.0

0
0
0

/
1
.0

0
0
0

1
5

0
.0

0
0
0

/
1
.0

0
0
0

7
1
F

-2
M

e
m

e
ti

c
A

lg
o
ri

th
m

1
0
0

8
7

0
.0

0
3
0

/
1
.0

0
0
0

2
3

0
.0

0
0
0

/
1
.0

0
0
0

1
7

0
.0

0
0
0

/
1
.0

0
0
0

1
5

0
.0

0
0
0

/
1
.0

0
0
0

5
9
F

-2
E

v
o
lu

ti
o
n
a
ry

T
e
st

in
g

7
2

4
3

0
.0

0
1
5

/
0
.9

9
9
6

3
3

0
.0

0
0
0

/
1
.0

0
0
0

3
3

0
.0

0
0
0

/
1
.0

0
0
0

3
3

0
.0

0
0
0

/
1
.0

0
0
0

7
1
F

-2
E

v
o
lu

ti
o
n
a
ry

T
e
st

in
g

6
7

4
2

0
.0

0
5
0

/
0
.9

9
8
4

3
3

0
.0

0
0
2

/
0
.9

9
9
9

3
3

0
.0

0
0
2

/
0
.9

9
9
9

3
3

0
.0

0
0
2

/
0
.9

9
9
9

se
q
ro

tr
g

1
7
T

-1
E

v
o
lu

ti
o
n
a
ry

T
e
st

in
g

5
2

9
5

1
.0

0
0
0

/
0
.0

0
0
0

6
3

0
.9

3
0
4

/
0
.1

3
3
9

5
5

0
.7

0
8
4

/
0
.4

2
7
5

5
3

0
.6

4
2
6

/
0
.5

0
0
0

1
7
T

-2
E

v
o
lu

ti
o
n
a
ry

T
e
st

in
g

5
2

9
3

1
.0

0
0
0

/
0
.0

0
0
0

6
3

0
.9

3
0
4

/
0
.1

3
3
9

5
5

0
.7

0
8
4

/
0
.4

2
7
5

5
3

0
.6

4
2
6

/
0
.5

0
0
0

2
2
T

-1
E

v
o
lu

ti
o
n
a
ry

T
e
st

in
g

5
2

9
3

1
.0

0
0
0

/
0
.0

0
0
0

6
3

0
.9

3
0
4

/
0
.1

3
3
9

5
5

0
.7

0
8
4

/
0
.4

2
7
5

5
3

0
.6

4
2
6

/
0
.5

0
0
0

2
2
T

-2
E

v
o
lu

ti
o
n
a
ry

T
e
st

in
g

5
2

9
3

1
.0

0
0
0

/
0
.0

0
0
0

6
2

0
.9

0
1
5

/
0
.1

7
8
5

5
5

0
.7

0
8
4

/
0
.4

2
7
5

5
3

0
.6

4
2
6

/
0
.5

0
0
0

2
7
F

-1
E

v
o
lu

ti
o
n
a
ry

T
e
st

in
g

7
7

1
0
0

1
.0

0
0
0

/
0
.0

0
0
0

9
0

0
.9

8
7
2

/
0
.0

4
2
3

8
7

0
.9

5
1
4

/
0
.1

1
8
9

8
7

0
.9

5
1
4

/
0
.1

1
8
9

2
7
F

-2
E

v
o
lu

ti
o
n
a
ry

T
e
st

in
g

7
7

1
0
0

1
.0

0
0
0

/
0
.0

0
0
0

9
0

0
.9

8
7
2

/
0
.0

4
2
3

8
7

0
.9

5
1
4

/
0
.1

1
8
9

8
7

0
.9

5
1
4

/
0
.1

1
8
9

t
iff

P
la

c
e
Im

a
g
e

1
6
T

-1
H

il
l

C
li
m

b
in

g
7
8

6
8

0
.1

5
1
0

/
0
.9

2
6
1

5
5

0
.0

0
5
7

/
0
.9

9
8
3

4
5

0
.0

0
0
2

/
1
.0

0
0
0

4
3

0
.0

0
0
0

/
1
.0

0
0
0

2
0
T

-2
H

il
l

C
li
m

b
in

g
4
0

2
8

0
.1

2
4
0

/
0
.9

3
8
4

2
0

0
.0

1
3
8

/
0
.9

9
5
5

1
2

0
.0

0
0
3

/
0
.9

9
9
9

1
2

0
.0

0
0
3

/
0
.9

9
9
9

1
6
T

-1
M

e
m

e
ti

c
A

lg
o
ri

th
m

8
7

8
5

0
.5

0
0
0

/
0
.6

9
9
2

7
7

0
.1

1
8
9

/
0
.9

5
1
4

4
2

0
.0

0
0
0

/
1
.0

0
0
0

4
0

0
.0

0
0
0

/
1
.0

0
0
0

1
6
T

-2
M

e
m

e
ti

c
A

lg
o
ri

th
m

5
3

5
5

0
.6

4
2
9

/
0
.5

0
0
0

4
5

0
.2

3
2
7

/
0
.8

6
3
4

2
3

0
.0

0
0
6

/
0
.9

9
9
8

2
2

0
.0

0
0
3

/
0
.9

9
9
9

25

0

10

20

30

40

50

60

70

80

90

100

Su
cc

es
s

ra
te

 (%
)

Branch

With irrelevant variable removal
Standard approach + 10 * file time
Standard approach + file time

Figure 9: Success rate for cases of search technique and branch where the standard approach,
without irrelevant input variable removal, is allowed to continue past the 100,000 fitness evaluations
termination criterion for the amount of time equivalent to performing the static analysis on the file
containing the branch 10 times

78

78.5

79

79.5

80

80.5

81

81.5

82

Hill Climbing Evolutionary Testing Memetic Algorithm

Su
cc

es
s

Ra
te

 (%
)

With irrelevant variable removal
Standard approach + file time
Standard approach + function time
Standard approach + branch time
Standard approach

Figure 10: Overall success rate of each search technique, with and without irrelevant input variable
removal, for all of the branches in all of the case studies considered

26

test data for another specific branch. Although irrelevant variables are removed from the search process,
the test object remains unchanged, and as such random values are assigned for the purposes of fitness
evaluation. In a normal search process, including all variables, only certain variable values are changed at
any one time. Thus, irrelevant input variable removal has the potential to cover more branches through
unconstrained random search at the same time as concentrating on the search for test data for some other
specific branch.

Serendipitous coverage was monitored in the experiments. Using the Wilcoxon Rank-Sum test, num-
bers of serendipitous branches covered where compared for significance with and without irrelevant input
variable removal, for each branch with each meta-heuristic search technique. The results are depicted
in the bar charts of Figure 11. For all case studies, more branches were covered serendipitously with
irrelevant input variable removal than without it. In many cases, higher serendipitous coverage levels
were recorded for a branch without irrelevant input variable removal merely because it had more fitness
evaluations in which to do it (i.e. the search for the actual targeted branch was more inefficient). Thus
the bar chart also records the number of branches for which the search covered a significantly higher
number of other branches significantly, but did not also take a significantly larger number of fitness
evaluations in which to do it, comparing numbers of fitness evaluations with and without irrelevant in-
put variable removal using the Wilcoxon Rank-Sum test. Even after such branches are removed from
consideration, there are still cases where the search without irrelevant input variable removal still covers
significantly more other branches. In such cases it appears that constraining irrelevant variables may
help serendipitous coverage of closely related branches executed with similar but not identical test data.

In terms of search techniques, it appears that Hill Climbing has the most to gain in terms of serendip-
itous coverage with respect to irrelevant input variable removal. This is because Hill Climbing tends
to be poorer than Random Search at covering trivially easy branches with a high domain-to-execution
ratio. Unlike Evolutionary Testing and the Memetic Algorithm, which begin with a certain quantity
of randomly-generated input vectors, only the first input vector generated for Hill Climbing is random
following initialisation and each restart, with each individual input variable manipulated in turn in a con-
strained manner. Allowing the irrelevant variables to take on random values for each fitness evaluation
allows Hill Climbing to cover more other branches at random which it would not have done otherwise.

5.5 Threats to validity

This section discusses the potential threats to validity with respect to the empirical study, and details how
they were addressed. The hypotheses studied in this paper concerned relationships between irrelevant
input variable removal and the performance of search algorithms employed for branch coverage. Therefore,
one issue to address is the so-called internal validity, that is, to check whether there has been a bias in
the experimental design that could affect the causal relationship under study.

In order to determine the appropriate size of the search space by eliminating contributions due to
irrelevant variables, the CodeSurfer tool was scripted using Scheme functions. As these scripts represent
research prototypes, a manual check was performed on results obtained to ensure that the tool had
correctly identified the variables that could potentially affect the predicates of interest.

Another potential source of bias comes from the inherent stochastic behaviour of the meta-heuristic
search algorithms under study. A common and reliable technique for overcoming this source of variability
is to perform tests for statistical significance on a sufficiently large sample of result data. Such a test is
required whenever one wishes to make the claim that one technique produces superior results to another.
A set of results are obtained from a set of runs (essentially sampling from the population of random
seeds). To show that one technique is more effective than another, Fisher’s Exact Test for categorical
data was used to compare the number of successful searches. The Wilcoxon rank-sum test was used to
compare numbers of serendipitous branches covered. Both tests were applied with the confidence level
set at 99.9%, to see if there is a statistical significant difference in the means of each set of results.
Both tests are non-parametric, which was a deliberate choice in order to avoid making assumptions or
having to perform additional analysis showing that the conditions for a parametric test have been met
(i.e. normality of the sample means). Such additional analysis could introduce further possible sources
of error into the study. The R package [39] was used to run the statistical tests.

Another source of bias comes from the selection of the programs to be studied. This impacts upon the
external validity of the empirical study. That is, the extent to which it is possible to generalize from the
results obtained. Naturally, it is impossible to sample a sufficiently large set of programs such that the
full diversity of all possible programs could be captured. The rich and diverse nature of programs makes
this an unrealistic goal. However, where possible, a variety of programming styles and sources have been

27

0

20

40

60

80

100

120

Hill Climbing Evolutionary
Testing

Memetic
Algorithm

All

N
o.

 o
f b

ra
nc

he
s

With reduction

With reduction, minus
significantly greater
evaluations

Without reduction

Without reduction, minus
significantly greater
evaluations

0

20

40

60

80

100

120

Hill Climbing Evolutionary
Testing

Memetic
Algorithm

All

N
o.

 o
f b

ra
nc

he
s

With reduction

With reduction, minus
significantly greater
evaluations

Without reduction

Without reduction, minus
significantly greater
evaluations

(a) defroster case study (b) f2 case study

0

20

40

60

80

100

120

Hill Climbing Evolutionary
Testing

Memetic
Algorithm

All

N
o.

 o
f b

ra
nc

he
s

With reduction

With reduction, minus
significantly greater
evaluations

Without reduction

Without reduction, minus
significantly greater
evaluations

0

20

40

60

80

100

120

Hill Climbing Evolutionary
Testing

Memetic
Algorithm

All

N
o.

 o
f b

ra
nc

he
s

With reduction

With reduction, minus
significantly greater
evaluations

Without reduction

Without reduction, minus
significantly greater
evaluations

(c) gimp case study (d) space case study

0

20

40

60

80

100

120

Hill Climbing Evolutionary
Testing

Memetic
Algorithm

All

N
o.

 o
f b

ra
nc

he
s

With reduction

With reduction, minus
significantly greater
evaluations

Without reduction

Without reduction, minus
significantly greater
evaluations

0

20

40

60

80

100

120

Hill Climbing Evolutionary
Testing

Memetic
Algorithm

All

N
o.

 o
f b

ra
nc

he
s

With reduction

With reduction, minus
significantly greater
evaluations

Without reduction

Without reduction, minus
significantly greater
evaluations

(e) spice case study (f) tiff case study

0

20

40

60

80

100

120

Hill Climbing Evolutionary
Testing

Memetic
Algorithm

All

N
o.

 o
f b

ra
nc

he
s

With reduction

With reduction, minus
significantly greater
evaluations

Without reduction

Without reduction, minus
significantly greater
evaluations

0

50

100

150

200

250

300

350

400

Hill Climbing Evolutionary
Testing

Memetic
Algorithm

All

N
o.

 o
f b

ra
nc

he
s

With reduction

With reduction, minus
significantly greater
evaluations

Without reduction

Without reduction, minus
significantly greater
evaluations

(g) totinfo case study (h) All case studies

Figure 11: Number of branches which were significant when comparing, with and without irrelevant
input variable removal, the number of additional branches covered serendipitously in the same
program while searching for test data for the target branch. A branch is included in the total twice
if it is significant for both domain setups detailed in Table 1

28

used. The study draws upon code from real world programs, both from industrial production code and
from open source. Furthermore, it should be noted that the number of different branches considered is
636, providing a relatively large pool of subjects from which to make observations.

Nonetheless, caution is required before making any claims as to whether these results would be
observed on other programs, possibly from different sources and in different programming languages.
The experiments studied search techniques commonly used in Search-Based Software Testing, complete
with their usual parameter settings; but likewise, care should be taken in generalizing the results to their
respective families (local search, Genetic Algorithms and Memetic Algorithms) as a whole.

As with all such experimental software engineering, further experiments are required in order to
replicate the results contained here. However, the results show that cases do indeed exist where there is a
statistically significant relationship between search space reduction and improved performance of search
algorithms for test data generation.

6 Related work

Although the search space reduction question has been asked and answered for other search problems
[12, 43] there has been little work addressing the issue for Search-Based Test Data Generation. The
question is a highly timely one, as the last ten years have experienced an explosion in work in the area,
resulting in a survey by McMinn in 2004 [33]. The field began in 1976 with the work of Miller and Spooner
[36], who applied numerical maximization techniques to generate floating point test data for paths. Korel
was the first to apply the technique referred to as Hill Climbing in this paper [26], whilst Xanthakis
et al. were the first to apply GAs [52]. Harman and McMinn [23] applied a theoretical analysis and
empirical comparison of Random Search, Hill Climbing, Evolutionary Testing and Memetic Algorithms
for branch coverage. The present paper is the first to undertake a detailed theoretical analysis of input
domain reduction via irrelevant input variable removal for Search-Based Software Testing and conduct a
large empirical study assessing its impact on Random Search, Hill Climbing, Evolutionary Testing and
Memetic Algorithms on a series of wide-ranging test subjects.

In previous work, Harman et al. [19] were the first to consider search space reduction for Search-
Based Test Data Generation. The authors investigated the impact of irrelevant input variable removal on
Random Search, Hill Climbing and Evolutionary Testing. In the present paper, the empirical study is
broadened to include further test subjects, while also investigating the impact of irrelevant input variable
removal on Memetic Algorithms. The present paper also considers the impact of serendipitous coverage
of non-targeted branches and investigates the impact of domain reduction on the trade off between test
effectiveness and test effort.

This paper also performs an in-depth theoretical analysis of the impact of search space reduction
on Search-Based Test Data Generation. Aspects of problem difficulty are investigated for search-based
techniques and how these factors are impacted by removing irrelevant input variables from the search
space. This analysis assumes that each branch is attempted by the search in serial, although in practice,
other branches may be executed serendipitously. Arcuri et al. [7] have recently undertaken work per-
forming a theoretical analysis of Random Testing, in which several branches are sought by the search at
once. Arcuri [5] has also undertaken a theoretical analysis of the use of local search in software test data
generation, proving that it is better than Random Testing for certain classes of program. Lammermann
et al. [29] were the first to investigate problem difficulty for Evolutionary Testing. An empirical study
was performed by testing the correlation between traditional software metrics and branches with which
the evolutionary search struggled to find test data. No correlation was found, pointing to the need for
specific metrics to be developed for search-based testability.

Irrelevant variable removal is one strategy for reducing the size of the input domain for search-based
test data generation. Ribeiro et al. [41] have investigated input domain reduction strategies for testing
object-oriented software, which typically involves generating sequences of method calls to objects to
change their state so that test goals can be attained. The reduction strategy used involves removing
methods from consideration by the search if they only query the state of an object, rather than mutating
it, and thus being irrelevant for constructing a test sequence that changes the state of an object so
that a test target can be executed. Harman et al. [20] investigated test data generation and search
space reduction for aspect-oriented programs, reporting a decrease in search effort with reduction and an
increase in the number of branches covered. As with the results presented in this paper, they also find
the number of non-targeted branches covered also increased with search space reduction.

Korel proposed a method [26] closely related to the search space reduction technique proposed here,

29

but for path coverage. In his approach, each input variable in the search underwent a risk analysis using an
influences graph, constructed using dynamic data-flow information. The value of an input variable would
remain fixed if it was highly likely that changes would impact current segments of the path that were
currently being traversed correctly, or, if the input variable did not affect the path at all. Unfortunately,
however, the method was not empirically evaluated.

Sagarna and Lozano [42] use a new search technique for branch coverage that works in a reverse
fashion to input domain reduction. The size of the search space is iteratively increased, from an initially
small domain, until the optimal objective value is reached. The technique is based on the Estimation
of Distribution Algorithm (EDA) [30]. EDAs differ from the search algorithms considered in this paper;
they are a type of meta-heuristic search algorithm, but differ from a Genetic Algorithm with respect to
the procedure of breeding new individuals.

The tool used in our experiments to reduce the search space produces dependence information as a
by-product of static program slicing [50]. Source code analysis techniques such as symbolic execution
[25] or abstract interpretation [13] could further support search space reduction by finding constraints or
defining ranges on the input variables relevant to the branch under investigation. However, this remains
a topic for future work.

7 Conclusions and future work

Search-Based Software Testing is a dramatically growing research field in which optimizing search tech-
niques are used to automate aspects of the testing process, one such aspect being test data generation.
Despite the large volume of work in this area, there has been little work investigating tactics for reducing
the potentially very large input domain of a test object, which the optimization technique must search
for test data.

This paper presented the irrelevant input variable removal strategy as means of reducing input domain
dimensionality for search-based structural test data generation techniques. Irrelevant input variables are
input variables that do not influence whether a target structure will be executed or not, and thus can
be safely removed from the search process without making the target infeasible by doing so. The paper
theoretically assessed and empirically evaluated the impact of input domain reduction for search-based
structural test data generation by removing irrelevant input variables; variables that do not influence
whether a structure can be executed or not. By studying the principles of problem difficulty for search-
based test data generation techniques, the theory predicted that irrelevant input variable removal would
have no impact on Random Search, but had the potential to enhance the performance of so-called meta-
heuristic search techniques, which are guided by a fitness function, including Hill Climbing, Evolutionary
Testing and a Memetic Algorithm. These theoretical findings were validated by a broad empirical study,
which analysed 636 branches in seven pieces of software, including two embedded controller systems
supplied by DaimlerChrysler. The empirical study revealed several statistically significant cases in which
irrelevant input variable removal improved the performance of the meta-heuristic search.

Future work intends to further reduce the input domain by concentrating on relevant variables as
well. Here, overall input domain size may be decreased by reducing the set of values from the domain to
be searched, through the use of further static analysis.

This paper has only considered the effects of input domain reduction on the generation of test data
and not its evaluation. The techniques may also impact the cost of assessing whether the corresponding
outputs were correct for the inputs generated. This is referred to as the oracle cost [21, 35]. The
removal of irrelevant variables may help simplify test cases and reduce oracle cost. However, the values of
these irrelevant variables may be important if each test case should cover as many branches as possible,
i.e. causing a reduction in the number of test cases to be evaluation. This potential trade-off is an issue
for further work.

Of further interest is the issue of serendipitous coverage, i.e. branches that were executed in the
course of a specific target branch. The paper found that serendipitous coverage tended to increase with
irrelevant input variable removal. Further work should investigate and characterise the situations when
irrelevant input variable removal is likely to result in higher serendipitous collateral coverage, and where
it is not.

Finally, the search techniques appearing in this paper have been replicated from the work of other
researchers [26, 47, 48]. An issue for future work, therefore, is whether the parameters of these algorithms
(for example population size, mutation rate etc.) may be tuned in order to obtain better results following
the application of input domain reduction. In addition, this paper only considered the effects of irrelevant

30

input variable removal on branch coverage; future work will also seek to study its effects for other types
of coverage.

Acknowledgements

The authors would like to thank the anonymous referees for their comments on earlier versions of this
paper. The authors are also grateful to Lorna Anderson, Hamilton Gross and Becky McMinn for proof
reading.

Phil McMinn is supported, in part, by EPSRC grants EP/G009600/1 (Automated Discovery of Emer-
gent Misbehaviour), EP/F065825/1 (REGI: Reverse Engineering State Machine Hierarchies by Grammar
Inference) and EP/I010386/1 (RE-COST: REducing the Cost of Oracles in Software Testing).

Mark Harman is supported, in part, by EPSRC grants EP/G060525 (CREST Platform grant),
EP/F059442 (SLIM : SLIcing state based Models) and EP/D050863 (SEBASE: Software Engineering
By Automated SEarch) EP/I010165 (RE-COST: REducing the Cost of Oracles for Software Testing).

Youssef Hassoun and Kiran Lakhotia are supported by the EPSRC CREST Platform Grant (EP/G060525)
and Kiran Lakhotia is also supported by the European Union project FITTEST (ICT-2009.1.2 no 257574).

References

[1] The Software-artifact Infrastructure Repository (http://sir.unl.edu/portal/index.html).

[2] W. Afzal, R. Torkar, and R. Feldt. A systematic review of search-based testing for non-functional
system properties. Information and Software Technology, 51(6):957–976, 2009.

[3] S. Ali, L. C. Briand, H. Hemmati, and R. K. Panesar-Walawege. A systematic review of the ap-
plication and empirical investigation of search-based test-case generation. IEEE Transactions on
Software Engineering, 2010. To appear.

[4] L. O. Andersen. Program Analysis and Specialization for the C Programming Language. PhD thesis,
DIKU, University of Copenhagen, May 1994. (DIKU report 94/19).

[5] A. Arcuri. Theoretical analysis of local search in software testing. In Proceedings of Symposium on
Stochastic Algorithms, Foundations and Applications (SAGA 2009), pages 156–168. Lecture Notes
in Computer Science, Volume 5792, Springer Verlag, 2009.

[6] A. Arcuri. It does matter how you normalise the branch distance in search based software testing. In
Proceedings of the International Conference on Software Testing, Verification and Validation (ICST
2010), pages 205–214. IEEE, 2010.

[7] A. Arcuri, M. Z. Iqbal, and L. Briand. Formal analysis of the effectiveness and predictability of
random testing. In Proceedings of the International Symposium on Software Testing and Analysis
(ISSTA 2004), pages 219–230. ACM, 2010.

[8] J. E. Baker. Reducing bias and inefficiency in the selection algorithm. In Proceedings of the 2nd
International Conference on Genetic Algorithms and their Application, Hillsdale, New Jersey, USA,
1987. Lawrence Erlbaum Associates.

[9] D. W. Binkley, N. Gold, and M. Harman. An empirical study of static program slice size. ACM
Transactions on Software Engineering and Methodology, 16(2):1–32, 2007.

[10] L. C. Briand, J. Feng, and Y. Labiche. Using genetic algorithms and coupling measures to devise
optimal integration test orders. In 14th IEEE Software Engineering and Knowledge Engineering
(SEKE 2002), pages 43–50, Ischia, Italy, 2002.

[11] O. Buehler and J. Wegener. Evolutionary functional testing of an automated parking system. In
International Conference on Computer, Communication and Control Technologies and The 9th Inter-
national Conference on Information Systems Analysis and Synthesis (CCCT 2003 and ISAS 2003),
Orlando, Florida, USA, 2003.

31

[12] S. Chen and S. Smith. Improving genetic algorithms by search space reductions. In Proceedings
of the Genetic and Evolutionary Computation Conference (GECCO 1999), pages 135–140. Morgan
Kaufmann, 1999.

[13] P. Cousot and R. Cousot. Abstract interpretation frameworks. Journal of Logic and Computation,
2(4):511–547, 1992.

[14] H. Do, S. Elbaum, and G. Rothermel. Supporting controlled experimentation with testing techniques:
An infrastructure and its potential impact. Empirical Software Engineering, 10(4):405 – 435, 2005.

[15] J. W. Duran and S. C. Ntafos. An evaluation of random testing. IEEE Transactions on Software
Engineering, 10(4):438–444, 1980.

[16] Grammatech Inc. The Codesurfer Slicing System, 2002.

[17] M. Harman. The current state and future of search based software engineering. In L. Briand and
A. Wolf, editors, Future of Software Engineering 2007, pages 342–357, Los Alamitos, California,
USA, 2007. IEEE Computer Society Press.

[18] M. Harman, C. Fox, R. M. Hierons, L. Hu, S. Danicic, and J. Wegener. Vada: A transformation-
based system for variable dependence analysis. In IEEE International Workshop on Source Code
Analysis and Manipulation (SCAM 2002), pages 55–64, Los Alamitos, California, USA, Oct. 2002.
IEEE Computer Society Press.

[19] M. Harman, Y. Hassoun, K. Lakhotia, P. McMinn, and J. Wegener. The impact of input domain
reduction on search-based test data generation. In Proceedings of the ACM SIGSOFT Symposium
on the Foundations of Software Engineering (FSE 2007), pages 155–164, Cavat, near Dubrovnik,
Croatia, 2007. ACM Press.

[20] M. Harman, F. Islam, T. Xie, and S. Wappler. Automated test data generation for aspect-oriented
programs. In Proceedings of the 8th International Conference on Aspect-Oriented Software Develop-
ment (AOSD 2009), pages 185–196. ACM, 2009.

[21] M. Harman, S. G. Kim, K. Lakhotia, P. McMinn, and S. Yoo. Optimizing for the number of tests
generated in search based test data generation with an application to the oracle cost problem. In
Proceedings of the 3rd International Workshop on Search-Based Testing. IEEE digital library, 2010.

[22] M. Harman, A. Mansouri, and Y. Zhang. Search based software engineering: A comprehensive
analysis and review of trends techniques and applications. Technical Report TR-09-03, Department
of Computer Science, King’s College London, April 2009.

[23] M. Harman and P. McMinn. A theoretical and empirical study of search-based testing: Local, global
and hybrid search. IEEE Transactions on Software Engineering, 36:226–247, 2010.

[24] S. Horwitz, T. Reps, and D. W. Binkley. Interprocedural slicing using dependence graphs. In ACM
SIGPLAN Conference on Programming Language Design and Implementation (PLDI 1988), pages
25–46, Atlanta, Georgia, June 1988. Proceedings in SIGPLAN Notices, 23(7), pp.35–46, 1988.

[25] J. King. Symbolic execution and program testing. Communications of the ACM, 19(7):385–394,
1976.

[26] B. Korel. Automated software test data generation. IEEE Transactions on Software Engineering,
16(8):870–879, 1990.

[27] J. Krinke and G. Snelting. Validation of measurement software as an application of slicing and
constraint solving. Information and Software Technology Special Issue on Program Slicing, 40(11
and 12):661–675, 1998.

[28] K. Lakhotia, P. McMinn, and M. Harman. An empirical investigation into branch coverage for C
programs using CUTE and AUSTIN. Journal of Systems and Software, 83:2379–2391, 2010.

[29] F. Lammermann, A. Baresel, and J. Wegener. Evaluating evolutionary testability with software-
measurements. In Proceedings of the Genetic and Evolutionary Computation Conference (GECCO
2004), Lecture Notes in Computer Science vol. 3103, pages 1350–1362, Seattle, USA, 2004. Springer-
Verlag.

32

[30] P. Larrañaga and J. A. Lozano. Estimation of Distribution Algorithms. Kluwer, 2002.

[31] N. Mansour and M. Salame. Data generation for path testing. Software Quality Journal, 12(2):121–
134, 2004.

[32] G. McGraw, C. Michael, and M. Schatz. Generating software test data by evolution. IEEE Trans-
actions on Software Engineering, 27(12):1085–1110, 2001.

[33] P. McMinn. Search-based software test data generation: A survey. Software Testing, Verification
and Reliability, 14(2):105–156, 2004.

[34] P. McMinn, M. Harman, D. Binkley, and P. Tonella. The species per path approach to search-
based test data generation. In Proceedings of the International Symposium on Software Testing and
Analysis (ISSTA 2006), pages 13–24, Portland, Maine, USA, 2006. ACM.

[35] P. McMinn, M. Stevenson, and M. Harman. Reducing qualitative human oracle costs associated with
automatically generated test data. In Proceedings of the 1st International Workshop on Software
Test Output Validation (STOV 2010), pages 1–4, Trento, Italy, 2010. ACM.

[36] W. Miller and D. Spooner. Automatic generation of floating-point test data. IEEE Transactions on
Software Engineering, 2(3):223–226, 1976.

[37] H. Mühlenbein and D. Schlierkamp-Voosen. Predictive models for the breeder genetic algorithm: I.
continuous parameter optimization. Evolutionary Computation, 1(1):25–49, 1993.

[38] R. Pargas, M. Harrold, and R. Peck. Test-data generation using genetic algorithms. Software Testing,
Verification and Reliability, 9(4):263–282, 1999.

[39] R Development Core Team. R: A Language and Environment for Statistical Computing. R Founda-
tion for Statistical Computing, Vienna, Austria, 2009. ISBN 3-900051-07-0.

[40] O. Räihä. A survey on search based software design. Technical Report D-2009-1, Department of
Computer Sciences, University of Tampere, 2009.

[41] J. Ribeiro, M. Zenha-Rela, and F. de Vega. Test case evaluation and input domain reduction strate-
gies for the evolutionary testing of object-oriented software. Information and Software Technology,
51:1534–1548, 2009.

[42] R. Sagarna and J. Lozano. Dynamic search space transformations for software test data generation.
Computational Intelligence, 24(1):23–61, 2008.

[43] F. Schmiedle, R. Drechsler, and B. Becker. Exact routing with search space reduction. IEEE
Transactions on Computers, 52(6):815–825, 2003.

[44] B. Steensgaard. Points-to analysis in almost linear time. In Conference Record of the 23rd ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL’96), pages 32–41,
St. Petersburg, Florida, Jan. 1996. ACM Press.

[45] N. Tracey, J. Clark, K. Mander, and J. McDermid. An automated framework for structural test-
data generation. In Proceedings of the International Conference on Automated Software Engineering
(ASE 1998), pages 285–288, Hawaii, USA, 1998. IEEE Computer Society Press.

[46] J. Voas and K. Miller. Software testability: The new verification. IEEE Software, 12(3):17–28, May
1995.

[47] H.-C. Wang and B. Jeng. Structural testing using memetic algorithm. In Proceedings of the Second
Taiwan Conference on Software Engineering, Taipei, Taiwan, 2006.

[48] J. Wegener, A. Baresel, and H. Sthamer. Evolutionary test environment for automatic structural
testing. Information and Software Technology, 43(14):841–854, 2001.

[49] J. Wegener and M. Grochtmann. Verifying timing constraints of real-time systems by means of
evolutionary testing. Real-Time Systems, 15(3):275–298, 1998.

[50] M. Weiser. Program slicing. IEEE Transactions on Software Engineering, 10(4):352–357, 1984.

33

[51] D. Whitley. The GENITOR algorithm and selection pressure: Why rank-based allocation of repro-
ductive trials is best. In J. D. Schaffer, editor, Proceedings of the International Conference on Genetic
Algorithms (ICGA 1989), pages 116–121, San Mateo, California, USA, 1989. Morgan Kaufmann.

[52] S. Xanthakis, C. Ellis, C. Skourlas, A. Le Gall, S. Katsikas, and K. Karapoulios. Application of ge-
netic algorithms to software testing (Application des algorithmes génétiques au test des logiciels). In
5th International Conference on Software Engineering and its Applications, pages 625–636, Toulouse,
France, 1992.

Author biographies

Phil McMinn

Phil McMinn has been a Lecturer in Computer Science at the University of Sheffield, UK, since October
2006. He was awarded his PhD from Sheffield in January 2005, which was funded by DaimlerChrysler
Research and Technology. He has published several papers in the field of search based testing. His
research interests cover software testing in general, program transformation and agent-based systems
and modelling. He is currently funded by the UK Engineering and Physical Science Research Council
(EPSRC) to work on reducing oracles costs of testing, testing techniques for agent-based systems and
the automatic reverse engineering of state machine descriptions from software.

Mark Harman

Mark Harman is professor of Software Engineering in the Department of Computer Science at University
College London, where he is also the director of the CREST centre. He is widely known for work on source
code analysis and testing and he was instrumental in the founding of the field of Search Based Software
Engineering. He has given 18 keynote invited talks and is the author of over 170 refereed publications
(including 9 in this journal). He serves on the editorial board of 7 international journals and has served
on the programme committees of 90 conferences.

Kiran Lakhotia

Kiran Lakhotia is a Research Associate in the CREST centre at University College London. He is working
in the field of Search-Based Testing and in particular automated test data generation. In 2009 he received
his PhD in Computer Science from King’s College London.

Youssef Hassoun

Youssef Hassoun worked as research associate at King’s College London and Imperial College before
moving to industry where he works as consultant. His main research interests include program analysis
and modelling.

Joachim Wegener

Dr. Joachim Wegener studied Computer Science at the Technical University Berlin and obtained his PhD
on the evolutionary testing of real-time systems at the Humboldt University of Berlin. This work gained
him the Software Engineering Prize 2002, awarded by the Ernst Denert Foundation and the German
Informatics Society. Dr. Wegener is the local representative of Berner & Mattner Systemtechnik GmbH
in Berlin, where he leads the automotive department and is responsible for the further development of the
classification-tree method and editor (CTE XL Professional). Previously, Joachim Wegener worked for
Daimler AG, where he led the development of the world’s first Industrial Evolutionary Testing System.
Additionally, he was team leader for advanced techniques in software engineering and static and dynamic
analysis techniques.

34

