
Search-Based Software Testing: Past, Present and Future

Phil McMinn
University of Sheffield, Department of Computer Science

Regent Court, 211 Portobello, Sheffield, S1 4DP, UK

Abstract—Search-Based Software Testing is the use of a
meta-heuristic optimizing search technique, such as a Genetic
Algorithm, to automate or partially automate a testing task;
for example the automatic generation of test data. Key to the
optimization process is a problem-specific fitness function. The
role of the fitness function is to guide the search to good
solutions from a potentially infinite search space, within a
practical time limit.

Work on Search-Based Software Testing dates back to 1976,
with interest in the area beginning to gather pace in the 1990s.
More recently there has been an explosion of the amount of
work. This paper reviews past work and the current state of
the art, and discusses potential future research areas and open
problems that remain in the field.

I. INTRODUCTION

The first publication on what has become known as
‘Search-Based Software Testing’ appeared in 1976, and was
the work of two American researchers, Webb Miller and
David Spooner [1]. Their approach was a simple technique
for generating test data consisting of floating-point inputs,
and was a completely different approach to the test data
generation techniques being developed at the time, which
were based on symbolic execution and constraint solving.
In Miller and Spooner’s approach, test data were sought
by executing a version of the software under test, with
these executions being guided toward to the required test
data through the use of a ‘cost function’ (hereon referred
to a fitness function), coupled with a simple optimization
process. Inputs that were ‘closer’ to executing a desired path
through the program were rewarded with lower cost values,
whilst inputs with higher cost values were discarded.

Miller and Spooner did not continue their work in test
data generation1, and it was not until 1990 that their re-
search directions were continued by Korel [3], [4]. In 1992,
Xanthakis applied Genetic Algorithms to the problem [5].
Since then there has been an explosion of work, applying
meta-heuristics more widely than just test data generation.
Search-based optimisation has been used as an enabler to a
plethora of testing problems, including functional testing [6],
[7], temporal testing [8], [9], [10], integration testing [11],
regression testing [12], stress testing [13], mutation testing
[14], test prioritisation [15], [16], interaction testing [17],
state machine testing [18] and exception testing [19]. The

1Webb Miller has since gone on to forge a highly-successful career in
computational biology, including award-winning work on algorithms for
analysing DNA sequences. His research on sequencing the wooly mammoth
genome led to his listing in the 2009 Time 100 [2].

0

10

20

30

40

50

60

70

Nu
m

be
r o

f P
ub

lic
at

io
ns

Year
Figure 1. Publications in Search-Based Software Testing, dating back to
1976. The figures for 2010 and 2011 are based on partially complete data
at the time of writing

explosion of interest can be seen in Figure 1, a bar chart
of the number of publications in Search-Based Software
Testing in each year since 1976 where the authors applied
search-based optimisation to a problem in testing. Search-
based approaches have also been applied to problems in
the wider area of software engineering, leading Harman and
Jones to coin the phrase ‘Search-Based Software Engineer-
ing’ [20] in 2001. The term ‘Search-Based Software Testing’
began to be used to refer to a software testing approach that
used a metaheuristic algorithm, with the amount of work in
Search-Based Test Data Generation alone reaching a level
that led to a survey of the field by McMinn in 2004 [21].

This paper provides a brief introduction to the ideas
and behind Search-Based Software Testing, including some
examples of past work. The rest of the paper is devoted
to open problems that still exist in the area and may form
the basis of future work. Section II gives an overview of
the main optimization algorithms that have been applied in
Search-Based Testing, including Hill Climbing, Simulated
Annealing and Genetic Algorithms. Key to any optimisation
approach is the definition of a fitness function - it is
the guidance provided by the fitness function that allows
the search to find good solutions in a reasonable time
frame. Section III details some example fitness functions
used in three example applications of Search-Based Testing:
temporal testing, functional testing and structural testing.

Section IV discusses future directions for Search-Based
Software Testing, comprising issues involving execution
environments, testability, automated oracles, reduction of
human oracle cost and multi-objective optimisation. Finally,
Section V concludes with closing remarks.

II. SEARCH-BASED OPTIMIZATION ALGORITHMS

The simplest form of an optimization algorithm, and
the easiest to implement, is random search. In test data
generation, inputs are generated at random until the goal of
the test (for example, the coverage of a particular program
statement or branch) is fulfilled. Random search is very poor
at finding solutions when those solutions occupy a very small
part of the overall search space. Such a situation is depicted
in Figure 2, where the number of inputs covering a particular
structural target are very few in number compared to the
size of the input domain. Test data may be found faster
and more reliably if the search is given some guidance.
For meta-heurstic searches, this guidance can be provided
in the form of a problem-specific fitness function, which
scores different points in the search space with respect to
their ‘goodness’ or their suitability for solving the problem
at hand. An example fitness function is plotted in Figure
3, showing how - in general - inputs closer to the required
test data that execute the structure of interest are rewarded
with higher fitness values than those that are further away.
A plot of a fitness function such as this is referred to as the
fitness landscape. Such fitness information can be utilized by
optimization algorithms, such as a simple algorithm called
Hill Climbing. Hill Climbing starts at a random point in the
search space. Points in the search space neighbouring the
current point are evaluated for fitness. If a better candidate
solution is found, Hill Climbing moves to that new point,
and evaluates the neighbourhood of that candidate solution.
This step is repeated, until the neighbourhood of the current
point in the search space offers no better candidate solutions;
a so-called ‘local optima’. If the local optimum is not the
global optimum (as in Figure 3a), the search may benefit
from being ‘restarted’ and performing a climb from a new
initial position in the landscape (Figure 3b).

An alternative to simple Hill Climbing is Simulated
Annealing [22]. Search by Simulated Annealing is similar to
Hill Climbing, except movement around the search space is
less restricted. Moves may be made to points of lower fitness
in the search space, with the aim of escaping local optima.
This is dictated by a probability value that is dependent
on a parameter called the ‘temperature’, which decreases
in value as the search progresses (Figure 4). The lower
the temperature, the less likely the chances of moving to a
poorer position in the search space, until ‘freezing point’ is
reached, from which point the algorithm behaves identically
to Hill Climbing. Simulated Annealing is named so because
it was inspired by the physical process of annealing in
materials.

Input domain

portion of
input domain

denoting required
test data

randomly-generated
inputs

Figure 2. Random search may fail to fulfil low-probability test goals

Fi
tn

es
s

Input domain

(a) Climbing to a local optimum

Fi
tn

es
s

Input domain
(b) Restarting, on this occasion resulting in a climb to the global optimum

Figure 3. The provision of fitness information to guide the search with
Hill Climbing. From a random starting point, the algorithm follows the
curve of the fitness landscape until a local optimum is found. The final
position may not represent the global optimum (part (a)), and restarts may
be required (part (b))

Fi
tn

es
s

Input domain
Figure 4. Simulated Annealing may temporarily move to points of poorer
fitness in the search space

Fi
tn

es
s

Input domain
Figure 5. Genetic Algorithms are global searches, sampling many points
in the fitness landscape at once

Initialization

Reinsertion

Fitness
evaluation

Mutation

CrossoverSelection

Test data
found

Resources
exhausted

Figure 6. Overview of the main steps of a Genetic Algorithm

Hill Climbing and Simulated Annealing are described
as ‘local’ search approaches, because they consider only
one solution at a time, and make moves only in the local
neighbourhood of those solutions. Genetic Algorithms, on
the other hand, are a form of ‘global’ search, sampling
many points in the search space at once, as shown in Figure
5. Genetic Algorithms are inspired by Darwinian evolution
and the concept of survival of the fittest. Each point in
the search space currently under consideration is referred
to as an ‘individual’ or a ‘chromosome’. The current set
of individuals currently under consideration are collectively
referred to as the current ‘population’. The main loop of
a Genetic Algorithm can be seen in Figure 6. The first
population is randomly generated, and each individual is
evaluated for fitness. A selection mechanism, biased towards
the best individuals, decides which individuals should be
parents for crossover. During crossover, elements of each
individual are recombined to form two offspring individuals
that embody characteristics of their parents. For example,
two strings ‘XXX’ and ‘OOO’ may be spliced at position 2 to
form two children ‘XOO’ and ‘OXX’. Subsequently, elements
of the newly-created chromosomes are mutated at random,
with the aim of diversifying the search into new areas of the
search space. This may, for example, involve overwriting one
of the characters of the above strings with a new character.
For problems involving real values, mutation may instead
involve incrementing or decrementing values pertaining to
one of the elements of the chromosome. Finally, the next
generation of the population is chosen in the ‘reinsertion’
phase, and the new individuals are evaluated for fitness. This
cycle continues, until the Genetic Algorithm finds a solution
or the resources allocated to the search (e.g. a time limit or a
certain number of fitness evaluations) are exhausted. For an
excellent introduction on getting starting with Genetic Algo-
rithms in Search-Based Software Engineering, see Whitley’s
tutorial papers [23], [24].

In general, there are two requirements that need to be ful-
filled in order to apply a search-based optimization technique
to a testing problem [20], [25]:

1) Representation. The candidate solutions for the prob-
lem at hand must be capable of being encoded so that
they can be manipulated by the search algorithm -
usually as sequences of elements as for chromosomes
with a Genetic Algorithm.

2) Fitness function. The fitness function guides the
search to promising areas of the search space by
evaluating candidate solutions. The fitness function
is problem-specific, and needs to be defined for a
new problem. The next section discusses some fitness
functions that have been used by different authors in
Search-Based Software Testing.

Harman [25] argues that software engineers typically
already have a suitable representation of their problem. This
is automatically the case for test data generation, where the
input vector or sequences of inputs to the software under test
can be optimized more or less directly. Harman and Clark
[26] further argue that many software engineers naturally
work with software metrics that can form the basis of fitness
functions, leaving only the application of an optimization
technique the only step left in order to apply a search-
based approach. The next section serves to demonstrate some
of the areas to which search-based optimization has been
applied in testing, and the fitness functions used in each
case.

III. EXAMPLE APPLICATION AREAS
AND FITNESS FUNCTIONS

Temporal Testing

Temporal testing involves probing a component of a
system to find its best-case and worst-case execution times
(BCET and WCET, respectively). Often these can be approx-
imated by static analysis, but these approximations are often
conservative over-approximations in the case of WCET, and
under-approximations in the case of BCET. Only actual
execution of the software can reveal concrete times. BCET
and WCET are of paramount importance in safety-critical
systems. An example is that of an air-bag controller, which
must monitor the deceleration profile of a car and decide
when to launch the air bag. If the air bag is released too
early, the action may be premature, while releasing the air
bag too late may prove fatal to the driver.

Search-Based Software Testing has been found to be an
effective means of finding inputs to a piece of software that
result in long or short execution times [8], [9], [10]. The
fitness function is simply the execution time of the software,
found by simply running it with an input. For BCET, the
search attempts to minimise the fitness function, in order to
find shorter execution times; whilst for WCET, the search
attempts to maximise the fitness function, in order to reveal
longer execution times. Conversely to static analysis, the
times revealed by the search tend to under-approximate
WCET and over-approximate BCET in practice. However,
the timings found can be used in conjunction with those
derived through static analysis to give an interval in which
the actual times must lie [27].

Functional Testing

A famous example of search-based functional testing is
the testing of the car parking controller of DaimlerChrysler
[6], [7]. The parking controller is responsible for identifying
a suitable parking space, and then automatically manoeu-
vring the car into the space without colliding with any
other objects. The controller was tested in simulation using
Search-Based Software Testing. The fitness function used
was simply the shortest distance to a point of collision during
the ‘park’. The search would then attempt to minimize the
distance in order to reveal situations in which the controller
was faulty; i.e. led to a possible collision. The evolutionary
search used generated parking scenarios, which were then
simulated by the controller, and the closest distance to a
collision recorded through the simulation to give a fitness
value. Faults were revealed by the search pertaining to an
initial version of the system, whereby the car began from a
position that was very close to another object situated to its
side.

Structural Testing

The original use of search-based techniques in testing
was to generate test data for the execution of paths, in the
Miller and Spooner approach [1]. Structural testing has been
the application area that has attracted the most attention in
Search-Based Software Testing. Work has been undertaken
that has developed fitness functions for path coverage,
branch coverage and data flow coverage amongst others [28].
Typically, the program under test is instrumented, and the
program executed with inputs suggested by the search. The
path taken through the program is then compared with some
structure of interest for which coverage is sought. The C
function of Figure 7 is a typical routine for which coverage
might be sought using search-based techniques. The function
checks a registry number assigned by the Chemical Abstracts
Services to uniquely identify every chemical described in the
scientific literature, and involves a checksum calculation.

A popular fitness function used for finding test data
to cover individual branches was proposed by Wegener
et al. [28], and incorporates two metrics, known as the
approach level and the branch distance. The approach level
is the number of the target’s control dependent nodes that
were not executed by the path for a given input. It is
equivalent the number of levels of nesting left unpenetrated
by the path en route to the target for structured programs.
Suppose a valid CAS number string is required for the
execution of the true branch from line 19. For this target,
the approach level is 2 if no invalid characters are found in
the string (i.e. characters that are not digits or hyphens), but
there are too few digits, leading to the false branch is taken
at line 17. If instead the string has too many valid digits,
the true branch is taken at node 17, but the target is then
missed because the false branch was taken at node 18. In

(1) int cas_check(char* cas) {
(2) int count = 0, checksum = 0, checkdigit = 0, pos;
(3)
(4) for (pos=strlen(cas)-1; pos >= 0; pos--) {
(5) int digit = cas[pos] - ’0’;
(6)
(7) if (digit >= 0 && digit <= 9) {
(8) if (count == 0)
(9) checkdigit = digit;
(10) if (count > 0)
(11) checksum += count * digit;
(12)
(13) count ++;
(14) }
(15) }
(16)
(17) if (count >= 4)
(18) if (count <= 10)
(19) if (checksum % 10 == checkdigit)
(20) return 0;
(21) else return 1;
(22) else return 2;
(23) else return 3;
(24) }

(a) Code

if (count >= 4)

if (count <= 10)

if (checksum % 10
== checkdigit)

TARGET

TRUE

approach level = 2
branch distance = 4 - count + K

FALSE

approach level = 1
branch distance = count - 10 + K

 approach level = 0
branch distance =|(checksum % 10) - checkdigit| + K

FALSE TRUE

FALSE TRUE

(b) Fitness computation for coverage of the true branch from line 19

Figure 7. A typical function for which Search-Based Software Testing may
be used to generate structural test data generation, and the accompanying
fitness function computation used for the coverage of a particular branch.
The function is a checksum routine for registry numbers assigned to
chemicals by the Chemical Abstracts Service (CAS)

this instance, the approach level is 1. When the checksum
calculation is reached at line 19, the approach level is zero.

When the execution of a test case diverges from the
target branch at some approach level, the branch distance is
computed. The branch distance is a measure of ‘how close’
an input came to satisfying the condition of the predicate at
which control flow went ‘wrong’; i.e., how near the input
was to executing the required branch and descending to
the next approach level. For example, suppose execution
takes the false branch at node 17 in Figure 7, but it is
the true branch that needs to be executed. Here, the branch
distance is computed using the formula 4− count+K. K

is a constant added when the undesired, alternate branch
is taken. The closer count is to being greater than 4, the
‘closer’ the desired true branch is to being taken. A different
branch distance formula is applied depending on the type of
relational predicate. In the case of y >= x, and the >=
relational operator, the formula is x− y +K. A full list of
branch distance formulae for different relational predicate
types is provided by Tracey et al. [29].

The complete fitness value is computed by normalizing
the branch distance and adding it to the approach level.
Different functions can be used to normalize the branch
distance, and these are evaluated and discussed by Arcuri
[30].

IV. FUTURE DIRECTIONS AND OPEN PROBLEMS

A. Handling the Execution Environment

One open problem with Search-Based Software Test-
ing techniques, and Search-Based Test Data Generation tech-
niques in particular, is lack of handling of the execution
environment that the software under test lives within. Current
state of the art in test data generation, for example, ignores
or fails to handle interactions with the underlying operating
system, the file system, network access and databases on
which they may be dependent. A recent study by Lakhotia
et al. [31], [32] cited some of these factors as sources of
poor coverage with the AUSTIN Search-Based Test Data
Generator. To date, search-based tools have largely generated
test data for primitive types only, such as int, double and
strings of characters. There has also been work dealing with
dynamic data structures [33], and the eToc tool of Tonella
[34] will generate object parameters for Java programs.

The execution environment presents non-standard chal-
lenges for Search-Based Test Data Generation approaches.
Difficulties with the file system include testing code or
generating code coverage for programs that check the ex-
istence of files or directories, reading and validating files,
handle read/write errors or other issues such as a full file
system. Programs using databases tend to include code that
perform tasks such as opening a connection to the database;
inserting, updating and deleting data; testing for the pres-
ence of certain values and combinations in the database,
and handling concurrent updates. The underlying operating
system environment may cause problems when the program
is checking for the amount of available memory, using the
values of environment variables, or rendering graphics to the
display. Code involving network access may need to read or
write values from and to a socket, check for the presence of
services and so on.

Some of these issues might be dealt with by generat-
ing test data that is then copied to a file or a database,
to be read back in by the program under test. In unit
testing, the common solution is to use mock objects. For
example, the Java method of Figure 8 involves reading
information from a database. The skeleton mock objects

public String readPeople(MyDatabase db) {

MyRecordset r = db.executeQuery(
"SELECT name, age FROM people");

String result = "";
int num = 0;

while (r.next()) {
String name = r.getString("name");
int age = r.getInt("age");
result += num+": "+name+", age "+age+"\n";

}

return result;
}

Figure 8. Snippet of code that reads values from a database

public MockDatabase extends MyDatabase {

public MyRecordset executeQuery(String query) {
// ...

}
}

public MockRecordset extends MyRecordset {

public boolean next() {
//

}
}

Figure 9. Skeleton mock objects for the example of Figure 8

void readFile(MyFile f) {

if (f.readInt() == 0) {
if (f.readChar() == ",") {
if (f.readInt() == 1) {
// target

}
}

}
}

Figure 10. Snippet of code from reading values from a file

public class MockFile extends MyFile {

int readIntCall = 0;

int readInt() {
if (readIntCall == 0) return 0;
else return 1;
readIntCall ++;

}

String readChar() {
return ",";

}
}

Figure 11. Mock object required for executing the target in the program
of Figure 10

void original(double a, double b) {
if (a == b) {
double c = b + 1;
if (c == 0) {

// target
}

}
}

void transformed(double a, double b) {
double _dist = 0;
_dist += distance(a == b);
double c = b + 1;
if (_dist == 0.0) {
// target

}
}

(a) Original program (b) Transformed version

(c) Landscape for original program (b) Landscape for transformed version

Figure 12. Demonstrating the nesting testability transformation (taken from [35])

that might be generated by such a tool can be seen in
Figure 9, which comprise the MockDatabase and the
MockRecordset classes. MockDatabase provides a
stub method for executeQuery() in Database, while
MockRecordset stubs next() in Recordset. How-
ever, as can be seen, there is usually still a burden on the
tester, in that they must provide the values that must be
returned by each method in the right order, in order to test
some aspect of the code.

Figure 10 is another example of where a mock object
might be required. In the code snippet, an object representing
a file is passed to the method. Specific values need to be
read from the file in order for the target to be executed.
Could these values be automatically generated using Search-
Based Techniques? Or, could Genetic Programming be used
to complete the mock object skeletons generated by other
tools? The mock object generated for the file example of
Figure 10 might look something like the code in Figure 11.
The traditional structural testing fitness function might be
re-used in this context. The approach level metric informs
the search that a certain sequence of values is required,
while the branch distance metric may help guide the Genetic
Programming search to the generation of the required values.

B. Advanced Approaches to Improving Testability
Because fitness functions are heuristics, there are cases in

which they fail to give adequate guidance to the search. A
classic case is the so-called ‘flag’ problem in structural test
data generation [36], [37], [38], [39], [40]. This situation
occurs when a branch predicate consists of a boolean value
(the ‘flag’), yielding only two branch distance values; one
for when the flag is true, and one for when it is false. The

fitness landscape essentially consists of two plateaux, with
no gradient for directing the search process, which becomes
unguided and random. Harman et al. introduced the concept
of a ‘Testability Transformation’ [40], [37], [39] to deal
with this problem. A Testability Transformation produces
a temporary version of the program under test to remove
the awkward landscape feature for Search-Based Test Data
Generation. Once test data has been generated, using the
transformed version of the program, it can be discarded.
For programs with flags, the boolean variable is removed
from the conditional and replaced with a condition that leads
to the flag becoming true, giving a wider range of branch
distance values and making the program more amenable to
search-based techniques.

Testability Transformations have also been applied to
nested targets in Search-Based Test Data Generation. In
the search-based approach, the branch distance for each
conditional, at each approach level, is minimised one after
the other. This can cause the search to be inefficient, or cause
it to over-fit to early information, as is the case with the
example in Figure 12a. Initially, to generate test data to reach
the target, the condition ‘a == b’ must be made true. It is
only when this occurs that the search must then satisfy c ==
0, which requires the input value of b to be -1. However, it
is unlikely that this value will be generated for b by chance,
and in making moves or mutations on b, the search is likely
to break the previous condition, i.e. a == b. The points in
the search landscape where a == b where a and b are not
equal to -1 represent local optima in the search landscape
(Figure 12c). The Testability Transformation proposed by
McMinn et al. [41], [35] flattens the nesting structure of

the program, so that all branch distances may be collected.
The transformed version of the program of Figure 12a can
be seen in Figure 12b. This produces a dramatic change in
the fitness landscape, as can be seen in Figure 12d; local
optima are removed and replaced with smooth gradients to
the required test data. Note however, that the transformed
version is no longer equivalent to the original program. This
does not necessarily matter, so long as the test data that
executes the target for the transformed version also executes
the target in the original. McMinn et al. performed a large
empirical study, the results of which can be seen in Figure
13. Due to the stochastic nature of the search algorithms,
each search with each branch was re-performed a number
of times to even out random variation. From this, the success
rate is found; the percentage of runs in which test data was
successfully found for the branch. While the success rate
improved for the majority of branches, cases existed where
the transformation caused the search to become worse.

The nesting Testability Transformation is speculative,
in that it is likely to improve the reliability of test data
generation, but may also make the search worse in certain
cases. Another such speculative transformation was pro-
posed by Korel et al. [42], for programs with complex
data dependencies. In such situations, it may make sense to
perform the search with both transformed and untransformed
versions of the program. Furthermore, there is no limit to the
number of potential speculative testability transformations
that could be performed, each of which may represent a
particular ‘tactic’ for improving the reliability of the test
data generation process.

In addition, each transformation could be attempted in
parallel as ‘Co-Testability Transformations’ [43], each oc-
cupying a portion of search resources. Each transformation
could potentially compete for search resources, obtaining a
large share of the individuals of the population of a Genetic
Algorithm, for example, if that transformation led to large
increases in fitness. Resources allocated to transformation
that perform poorly could be removed, until the portion of
the population designated to it dies out.

This is similar to the ‘Species per path’ approach of
McMinn et al. [44]. In this work, the population of a Genetic
Algorithm for covering a search target was split up. Each
sub-population was given a different fitness function for
finding test data for a branch, based on the execution of
a particular path through the program. The progress for one
of these searches can be seen in Figure 14. Some of the
species (e.g. species 5) corresponded to infeasible paths, and
so further improvements in fitness were not possible after
a certain point. On the basis of this information, resources
(numbers of individuals in a population) could be reallocated
to species that were making continual improvements (such
as species 7), and so speed up the discovery of test data.

-100

-80

-60

-40

-20

0

20

40

60

80

100

Nested branches

Ch
an

ge
 in

 s
uc

ce
ss

 ra
te

 a
fte

r a
pp

ly
in

g
tr

an
sf

or
m

at
io

n
(%

)

Figure 13. Results with the nesting testability transformation (taken from
[35]). The transformation is ‘speculative’, in that while it improves the
success of test data generation for the majority of branches, cases exist
where the chances of test data generation are reduced

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1 21 41 61 81 101 121 141 161 181
Generation

N
or

m
al

iz
ed

 A
ve

ra
ge

 B
es

t F
itn

es
s Species 1 Species 2

Species 3 Species 4

Species 5 Species 6

Species 7 Species 8

Figure 14. The progress of each species in the ‘Species per Path Approach’
to test data generation (taken from [44]). Some species are attempting to
find test data for infeasible paths for executing the target, and so progress
can only be made up to a certain point in the search process. Other species
correspond to feasible paths, for which test data are successfully generated

C. Automated Oracles via Testability Transformation

Another way in which transformation may be utilized is to
produce alternative versions of a program that can be used to
check the original. This is similar to the idea of N-versioning
[46], [47], except that each different version of the program
is produced automatically, and is designed to target a particu-
lar type of fault. For example, McMinn presented a transfor-
mation designed to test the reliability of code with floating
point numbers [45]. The IEEE standard used by both C and
Java for representing numbers of type double, is incapable
of representing certain numbers of finite decimal represen-
tation, such as 0.1 [48]. For example in Java, the operation
0.1 + 0.1 + 0.1 yields ‘0.30000000000000004’
rather than simply 0.3 (Figure 15). Such small numerical
errors may accumulate into larger errors. Additional further
errors can exist, for example through premature rounding.

Using the double primitive type Using the java.math.BigDecimal class
Java statement: System.out.println(0.1 + 0.1 + 0.1); System.out.println(new BigDecimal("0.1").add(

new BigDecimal("0.1")).add(
new BigDecimal("0.1")));

Output: 0.30000000000000004 0.3

Figure 15. Comparing floating-point arithmetic in Java (version 6) using double compared to BigDecimal (taken from [45])

The transformed version of the program replaced the type of
all double variables with variables of type BigDecimal,
a Java class designed to handle floating-point numbers with
high precision and accuracy. The output of the transformed
version of the program can then be compared alongside
the original. Technically, the outputs of the two programs
should be identical; i.e., the transformation is expected to be
equivalent to the original. However if there is a discrepancy,
a fault may exist in the original. It could also be that there
is a problem with the transformed version of the program.
In this way, the transformed version is effectively operating
as a pseudo-oracle, as defined by Davis and Weyuker [49];
a program that has been produced to perform the same task
as its original counterpart, where any discrepancy in output
between the two represents either a failure on the part of the
original program or its pseudo-oracle. However, the pseudo-
oracles proposed by Davis and Weyuker were not produced
automatically, and had to be written manually.

The pseudo-oracle transformation encapsulates some as-
pect of a program that should not produce any difference
in behaviour when transformed, but in practice may do so
in certain circumstances, and in which case may indicate a
fault with the original program. Can further types of pseudo-
oracle transformation be defined, and how can better fitness
functions be designed to automatically reveal discrepancies
between different versions of the same program? In the work
of McMinn [45], differences could only be found at random,
with the search was used instead to maximize the ‘size’ of
the difference in behaviour.

D. Searching to Judge the Success of Code Migration and
Refactoring

After pseudo-oracle transformation, the role of the search
technique is to demonstrate a difference in the behaviour
between the two versions of the program. Fitness functions
are therefore still required that provide guidance to differ-
ences in behaviour. The idea of searching for differences
between two components that are supposed to behave the
same is extendable to other areas of software engineering
and testing. These include searching to check that a code
migration step has been performed correctly, that a particular
refactoring has maintained the behaviour of the original
system; and so on.

E. Minimizing Human Oracle Cost

Despite the work devoted by the software engineering
community to automated oracles - in the form of modelling,

specifications, contract driven development and metamor-
phic testing - it is still often the case that a human tester
is left to evaluate the results of automatically generated test
cases. However, little attention has been paid to minimizing
the effort that the human tester needs to expend in this task.

Quantitative Cost. One angle on this problem is reducing the
number of test cases that the human must evaluate. Harman
et al. [50] investigated a number of fitness functions that
aim to maximise structural coverage, while minimising the
number of test cases need to do so. Arcuri and Fraser [51]
achieve a similar effect with a ‘whole coverage’ approach,
whereby the fitness function rewards inputs that come close
to executing as many branches as possible. Higher coverage
is obtained for Java programs than comparable techniques
with fewer tests. Another aspect is test case size. Some
automatically generated test cases may be unnecessarily
long, particularly for object-oriented tests, where a sequence
of test statements must be found that construct the relevant
objects required for the test, and put them into the required
tests. Arcuri and Fraser [52] have investigated the problem
of controlling test case ‘bloat’ (i.e. unnecessary statements in
tests for object-oriented programs) while Leitner et al. [53]
have investigated minimizing unit tests using an approach
based on Delta-Debugging [54], which is used to identify
ineffectual statements in the test case.

Qualitative Cost. The above approaches tackle the quantitive
aspects of the human oracle cost problem. McMinn et
al. [55] were the first to address the qualitative aspects,
i.e. how easy the scenario underpinning a test case is to
understand by a tester, so that they can quickly and easily
judge whether the test case succeeded or not. The example
given is that of a calendar program. Usually a human would
expect recognisable dates, such as 1/1/2010, as inputs. How-
ever, automatic test data generators will produce test data
capable of merely executing the test goal at hand, producing
very strange dates such as 4/10/-29141 and 10/8/6733; and
then requiring the human tester to check that the outputted
number of days between the two days is correct. McMinn et
al. [55] propose several means of alleviating this problem:

a) Seeding domain knowledge. The starting point of any
search-based approach may be explicitly set rather than been
generated at random, with the intention of providing the
search with some known examples or domain knowledge.
This is known as ‘seeding’. This initial biasing of the search
tends to produce results that are in the neighbourhood of
those starting points. To reduce human oracle cost, the tester
could be asked to provide a few test cases of their own.

Since these test cases are likely to contain ‘recognisable’
data, the newly generated test data are also likely to have
this characteristic. Since the programmer is likely to have
run their program at least once with a ‘sanity’ check, the
provision of human-generated test cases is not a unreason-
able requirement. Indeed, the tester may wish to bias the
search process with their own favourite example or corner
cases.

b) Extracting information from the program. The program
itself may be a rich source of information that gives clues
as to the types of inputs that may be expected. For example
the identifier names ‘day’, ‘month’ and ‘year’ imply a
certain range of integers or string values, depending on the
types of their variables. Further identifier analysis might be
performed using the identifier extrapolation work of Lawrie
et al. [56].

c) Re-using test data. Finally, test data may be re-used from
one program to another. If a test suite exists for functions,
routines or programs similar to the program under test, they
could be used as the starting point for further test data
generation.

One possible objection to this work is that the reduction
in fault-finding capability of the test suites produced. No
studies have been performed to date that show whether
this is or is not the case. However, low human oracle cost
test suites may be augmented with generated cases in the
traditional fashion, or some trade-off sought to balance fault-
finding capability with oracle cost. This is essentially a two-
objective approach. Search-based approaches are well placed
to handle such problems, as discussed in the next section.

F. Multiple Test Objectives

One overlooked aspect of Search-Based approaches is the
ability to optimize more than one fitness function at once.
This allows for the search to seek solutions that satisfy
more criteria than just for example, structural coverage.
The result of multi-objective search [57] is a set of Pareto-
optimal solutions, where each member of the set is not
better than any of the others for all of the objectives.
Multi-objective search provides an advantage over traditional
testing techniques that are only capable of doing ‘one thing’,
e.g. generating test sets that cover as much of the software
as possible. To date multi-objective search has been applied
in Search-Based Software Testing to produce test sets that
cover as much of the code as possible while also maximising
memory consumption [58]. Other applications have included
prioritising tests that cover as much of the software as
possible whilst minimising the amount of time of the tests
take to run [16]. There are several other potential application
areas, including producing test sets that produce as include
as much coverage (or fault finding power) as possible whilst
minimising oracle cost, maximising coverage and test case
diversity (in the hope of trapping more faults), and so on.

V. CONCLUSIONS

Since the cost of manual testing in practice is very high,
research into automated software testing is of high concern.
Search-Based Software Testing is a very generic approach in
which solutions may be sought for software testing problems
automatically, using optimisation algorithms.

This paper has reviewed some common search algorithms,
and some of the classic testing problems to which the
search-based approach has been applied. The paper has also
discussed several avenues worthy of future investigation.

ACKNOWLEDGEMENTS

This paper is a brief account of author’s keynote
given at the 4th International Workshop on Search-Based
Software Testing, in Berlin, Germany, March 2011. Al-
though it is a single-author paper, some of ideas pre-
sented have been the result of discussions and conversations
with several colleagues, including John Clark, Robert Hi-
erons, Mark Harman, Gregory Kapfhammer, Kiran Lakho-
tia, Marc Roper and Mark Stevenson. I am also grate-
ful to Yuanyuan Zhang for collating and supplying the
data for Figure 1 from the SEBASE publication repository
(http://www.sebase.org/sbse/publications).

The ideas presented in Section IV-E are the basis of on-
going work supported by the EPSRC-funded project RE-
COST - REducing the Cost of Oracles in Software Testing
(EP/I010386/1) (http://recost.group.shef.ac.uk).

The author is further supported by the EPSRC
grants ‘Automated Discovery of Emergent Misbehaviour’
(EP/G009600/1) and ‘REGI: Reverse Engineering State Ma-
chine Hierarchies by Grammar Inference’ (EP/F065825/1).

REFERENCES

[1] W. Miller and D. Spooner, “Automatic generation of floating-
point test data,” IEEE Transactions on Software Engineering,
vol. 2, no. 3, pp. 223–226, 1976.

[2] http://www.time.com.

[3] B. Korel, “Automated software test data generation,” IEEE
Transactions on Software Engineering, vol. 16, no. 8, pp.
870–879, 1990.

[4] ——, “Dynamic method for software test data generation,”
Software Testing, Verification and Reliability, vol. 2, no. 4,
pp. 203–213, 1992.

[5] S. Xanthakis, C. Ellis, C. Skourlas, A. Le Gall, S. Kat-
sikas, and K. Karapoulios, “Application of genetic algorithms
to software testing (Application des algorithmes génétiques
au test des logiciels),” in 5th International Conference on
Software Engineering and its Applications, Toulouse, France,
1992, pp. 625–636.

[6] O. Buehler and J. Wegener, “Evolutionary functional testing
of an automated parking system,” in International Conference
on Computer, Communication and Control Technologies and
The 9th International Conference on Information Systems
Analysis and Synthesis, Orlando, Florida, USA, 2003.

[7] ——, “Evolutionary functional testing,” Computers & Oper-
ations Research, vol. 35, pp. 3144–3160, 2008.

[8] P. Puschner and R. Nossal, “Testing the results of static worst-
case execution-time analysis,” in Proceedings of the 19th
IEEE Real-Time Systems Symposium. Madrid, Spain: IEEE
Computer Society Press, 1998, pp. 134–143.

[9] J. Wegener, H. Sthamer, B. F. Jones, and D. E. Eyres, “Testing
real-time systems using genetic algorithms,” Software Quality
Journal, vol. 6, no. 2, pp. 127–135, 1997.

[10] J. Wegener and M. Grochtmann, “Verifying timing constraints
of real-time systems by means of evolutionary testing,” Real-
Time Systems, vol. 15, no. 3, pp. 275–298, 1998.

[11] L. C. Briand, J. Feng, and Y. Labiche, “Using genetic algo-
rithms and coupling measures to devise optimal integration
test orders,” in 14th IEEE Software Engineering and Knowl-
edge Engineering (SEKE), Ischia, Italy, 2002, pp. 43–50.

[12] Z. Li, M. Harman, and R. M. Hierons, “Search algorithms for
regression test case prioritization,” vol. 33, no. 4, pp. 225–
237, 2007.

[13] L. C. Briand, Y. Labiche, and M. Shousha, “Stress testing
real-time systems with genetic algorithms,” in Proceedings
of the Genetic and Evolutionary Computation Conference
(GECCO 2005). Washington DC, USA: ACM Press, 2005,
pp. 1021–1028.

[14] Y. Jia and M. Harman, “Constructing subtle faults using
higher order mutation testing,” in 8th International Work-
ing Conference on Source Code Analysis and Manipulation
(SCAM 2008. Beijing, China: IEEE Computer Society, 2008,
to appear.

[15] K. R. Walcott, M. L. Soffa, G. M. Kapfhammer, and R. S.
Roos, “Time aware test suite prioritization,” in International
Symposium on Software Testing and Analysis (ISSTA 06).
Portland, Maine, USA: ACM Press, 2006, pp. 1–12.

[16] S. Yoo and M. Harman, “Pareto efficient multi-objective
test case selection,” in International Symposium on Software
Testing and Analysis (ISSTA’07). ACM Press, July 2007, pp.
140–150.

[17] M. B. Cohen, P. B. Gibbons, W. B. Mugridge, and C. J.
Colbourn, “Constructing test suites for interaction testing,” in
Proceedings of the 25th International Conference on Software
Engineering (ICSE-03). IEEE Computer Society, 2003, pp.
38–48.

[18] K. Derderian, R. Hierons, M. Harman, and Q. Guo, “Auto-
mated unique input output sequence generation for confor-
mance testing of FSMs,” The Computer Journal, vol. 39, pp.
331–344, 2006.

[19] N. Tracey, J. Clark, K. Mander, and J. McDermid, “Auto-
mated test data generation for exception conditions,” Software
- Practice and Experience, vol. 30, no. 1, pp. 61–79, 2000.

[20] M. Harman and B. Jones, “Search-based software engineer-
ing,” Information and Software Technology, vol. 43, no. 14,
pp. 833–839, 2001.

[21] P. McMinn, “Search-based software test data generation: A
survey,” Software Testing, Verification and Reliability, vol. 14,
no. 2, pp. 105–156, 2004.

[22] S. Kirkpatrick, C. D. Gellat, and M. P. Vecchi, “Optimization
by simulated annealing,” Science, vol. 220, no. 4598, pp. 671–
680, 1983.

[23] D. Whitley, “A genetic algorithm tutorial,” Statistics and
Computing, vol. 4, pp. 65–85, 1994.

[24] ——, “An overview of evolutionary algorithms: Practical
issues and common pitfalls,” Information and Software Tech-
nology, vol. 43, no. 14, pp. 817–831, 2001.

[25] M. Harman, “The current state and future of search based
software engineering,” in Future of Software Engineering
2007 (FOSE 2007). IEEE Computer Society, 2007, pp. 342–
357.

[26] M. Harman and J. Clark, “Metrics are fitness functions too,”
in International Software Metrics Symposium (METRICS
2004). IEEE Computer Society, 2004, pp. 58–69.

[27] J. Wegener and F. Mueller, “A comparison of static anal-
ysis and evolutionary testing for the verification of timing
constraints,” Real-Time Systems, vol. 21, no. 3, pp. 241–268,
2001.

[28] J. Wegener, A. Baresel, and H. Sthamer, “Evolutionary test
environment for automatic structural testing,” Information and
Software Technology, vol. 43, no. 14, pp. 841–854, 2001.

[29] N. Tracey, J. Clark, K. Mander, and J. McDermid, “An
automated framework for structural test-data generation,” in
Proceedings of the International Conference on Automated
Software Engineering. Hawaii, USA: IEEE Computer Soci-
ety Press, 1998, pp. 285–288.

[30] A. Arcuri, “It does matter how you normalise the branch
distance in search based software testing,” in Proceedings of
the International Conference on Software Testing, Verification
and Validation. IEEE, to appear, 2010.

[31] K. Lakhotia, P. McMinn, and M. Harman, “Automated test
data generation for coverage: Haven’t we solved this problem
yet?” in Proceedings of the Testing: Academic & Industrial
Conference - Practice And Research Techniques (TAIC PART
2009). IEEE Computer Society, 2009, pp. 95–104.

[32] ——, “An empirical investigation into branch coverage for
C programs using CUTE and AUSTIN,” Journal of Systems
and Software, vol. 83, pp. 2379–2391, 2010.

[33] K. Lakhotia, M. Harman, and P. McMinn, “Handling dynamic
data structures in search based testing,” in Proceedings of the
Genetic and Evolutionary Computation Conference (GECCO
2008). Atlanta, USA: ACM Press, 2008, pp. 1759–1766.

[34] P. Tonella, “Evolutionary testing of classes,” in Proceedings
of the International Symposium on Software Testing and
Analysis. Boston, USA: ACM Press, 2004, pp. 119–128.

[35] P. McMinn, D. Binkley, and M. Harman, “Empirical evalu-
ation of a nesting testability transformation for evolutionary
testing,” ACM Transactions on Software Engineering Method-
ology, vol. 3, 2009.

[36] L. Bottaci, “Instrumenting programs with flag variables for
test data search by genetic algorithm,” in Proceedings of the
Genetic and Evolutionary Computation Conference (GECCO
2002). New York, USA: Morgan Kaufmann, 2002, pp. 1337
– 1342.

[37] M. Harman, L. Hu, R. Hierons, A. Baresel, and H. Sthamer,
“Improving evolutionary testing by flag removal,” in Proceed-
ings of the Genetic and Evolutionary Computation Confer-
ence (GECCO 2002). New York, USA: Morgan Kaufmann,
2002, pp. 1359–1366.

[38] A. Baresel and H. Sthamer, “Evolutionary testing of flag
conditions,” in Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO 2003), Lecture Notes in
Computer Science vol. 2724. Chicago, USA: Springer-
Verlag, 2003, pp. 2442 – 2454.

[39] A. Baresel, D. Binkley, M. Harman, and B. Korel, “Evolution-
ary testing in the presence of loop-assigned flags: A testability
transformation approach,” in Proceedings of the International
Symposium on Software Testing and Analysis (ISSTA 2004).
Boston, Massachusetts, USA: ACM, 2004, pp. 43–52.

[40] M. Harman, L. Hu, R. Hierons, J. Wegener, H. Sthamer,
A. Baresel, and M. Roper, “Testability transformation,” IEEE
Transactions on Software Engineering, vol. 30, no. 1, pp. 3–
16, 2004.

[41] P. McMinn, D. Binkley, and M. Harman, “Testability trans-
formation for efficient automated test data search in the
presence of nesting,” in Proceedings of the UK Software
Testing Workshop (UKTest 2005). University of Sheffield
Computer Science Technical Report CS-05-07, 2005, pp.
165–182.

[42] B. Korel, M. Harman, S. Chung, P. Apirukvorapinit, and
G. R., “Data dependence based testability transformation in
automated test generation,” in 16th International Symposium
on Software Reliability Engineering (ISSRE 05), Chicago,
Illinios, USA, 2005, pp. 245–254.

[43] P. McMinn, “Co-testability transformation,” in Proceedings
of the Testing: Academic & Industrial Conference: Practice
And Research Techniques (TAIC PART 2008), Fast Abstract,
2008.

[44] P. McMinn, M. Harman, D. Binkley, and P. Tonella, “The
species per path approach to search-based test data gener-
ation,” in Proceedings of the International Symposium on
Software Testing and Analysis (ISSTA 2006). Portland,
Maine, USA: ACM, 2006, pp. 13–24.

[45] P. McMinn, “Search-based failure discovery using testability
transformations to generate pseudo-oracles,” in Proceedings
of the Genetic and Evolutionary Computation Conference
(GECCO 2009). Montreal, Canada: ACM Press, 2009, pp.
1689–1696.

[46] A. Avizienis and L. Chen, “On the implementation of N-
version programming for software fault-tolerance during ex-
ecution,” in Proceedings of the First International Computer
Software and Application Conference (COMPSAC ’77), 1977,
pp. 149–155.

[47] A. Avizienis, “The N-version approach to fault-tolerant soft-
ware,” IEEE Transactions on Software Engineering, vol. 11,
pp. 1491–1501, 1985.

[48] D. Goldberg, “What every computer scientist should know
about floating-point arithmetic,” ACM Computing Surveys,
vol. 21, no. 1, pp. 5–48, 1991.

[49] M. Davies and E. Weyuker, “Pseudo-oracles for non-testable
programs,” in Proceedings of the ACM ’81 Conference, 1981,
pp. 254–257.

[50] M. Harman, S. G. Kim, K. Lakhotia, P. McMinn, and S. Yoo,
“Optimizing for the number of tests generated in search based
test data generation with an application to the oracle cost
problem,” in Proceedings of the 3rd International Workshop
on Search-Based Testing. IEEE digital library, 2010.

[51] G. Fraser and A. Arcuri, “Whole suite test data generation,” in
International Conference On Quality Software (QSIC 2011),
to appear, 2011.

[52] ——, “It is not the length that matters, it is how you control
it,” in IEEE International Conference on Software Testing,
Verification and Validation (ICST 2011), 2011.

[53] A. Leitner, M. Oriol, A. Zeller, I. Ciupa, and B. Meyer,
“Efficient unit test case minimization,” in Automated Software
Engineering (ASE 2007). Atlanta, Georgia, USA: ACM
Press, 2007, pp. 417–420.

[54] A. Zeller and R. Hildebrandt, “Simplifying and isolating
failure-inducing input,” IEEE Transactions on Software En-
gineering, vol. 28, pp. 183–200, 2002.

[55] P. McMinn, M. Stevenson, and M. Harman, “Reducing
qualitative human oracle costs associated with automatically
generated test data,” in Proceedings of the 1st International
Workshop on Software Test Output Validation (STOV 2010).
Trento, Italy: ACM, 2010, pp. 1–4.

[56] D. Lawrie, D. Binkley, and C. Morrell, “Normalizing source
code vocabulary,” in International Working Conference on
Reverse Engineering (WCRE 2010). IEEE Computer Society,
2010, pp. 3–12.

[57] K. Deb, “Multi-objective evolutionary optimization: Past,
present and future,” in Proceedings of the Fourth International
Conference on Adaptive Computing in Design and Manufac-
ture (ACDM’2000). University of Plymouth, UK: Springer,
London, 2000, pp. 225–236.

[58] M. Harman, K. Lakhotia, and P. McMinn, “A multi-objective
approach to search-based test data generation,” in Proceedings
of the Genetic and Evolutionary Computation Conference
(GECCO 2007). London, UK: ACM Press, 2007, pp. 1098–
1105.

