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Abstract—Recent results in Search-Based Testing show that
the relatively simple Alternating Variable hill climbing method
outperforms Evolutionary Testing (ET) for many programs.
For ET to perform well in covering an individual branch, a
program must have a certain structure that gives rise to a
fitness landscape that the crossover operator can exploit. This
paper presents theoretical and empirical investigations into
the types of program structure that result in such landscapes.
The studies show that crossover lends itself to programs that
process large data structures or have an internal state that is
reached over a series of repeated function or method calls.
The empirical study also investigates the type of crossover
which works most efficiently for different program structures.
It further compares the results obtained by ET with those
obtained for different variants of hill climbing algorithm;
which are found to be effective for many structures considered
favourable to crossover, with the exception of structures with
landscapes containing entrapping local optima.

Keywords-Evolutionary Testing, Crossover, Search-Based
Test Data Generation

I. INTRODUCTION

Researchers in the field of Evolutionary Computation have
devoted much attention to characterising the class of fitness
functions for which different search operators perform well.
The Royal Road fitness functions, proposed by Mitchell et
al. [1], [2], were an early attempt to identify the types of
fitness landscapes in which crossover worked well. Watson
et al. [3] later proposed the H-IFF (‘Hierarchical If-and-
only-if’) fitness functions, which are mutation-deceptive and
result in Genetic Algorithms with crossover outperforming
hill climbing. Later work by Jansen and Ingo Wegener
[4] gave rise to the ‘Real’ Royal Road fitness functions,
for which crossover was shown to be provably essential.
Conversely, recent work by Richter et al. [5] produced the
‘Ignoble Trail’ fitness functions, which are characterisations
of crossover-deceptive landscapes for which crossover is
shown to be provably harmful.

The Search-Based Software Engineering community has
only begun to investigate theoretical issues relating search-
based optimisation to software engineering problems [6], [7],
[8], [9], with the aim of developing a clearer understanding
of why different techniques may be more effective for
different types of problem, and how they might be improved.

This paper concerns the characterisation of programs for
which structural test data search by Genetic Algorithms

(GAs), referred to as Evolutionary Testing (ET), will per-
form well. The primary difference between GAs and simpler
hill climbing approaches is the ability of a GA to exchange
information between candidate solutions in a population,
through the crossover operator. Recent studies by Harman
and McMinn [8], [9] on a selection of open source and
industrial programs revealed that simple hill climbing search
in the form of Korel’s Alternating Variable Method (AVM)
was able to outperform ET in covering the vast majority
of branches considered. For the small number of branches
for which ET outperformed the AVM, a ‘Royal Road’-type
property was found to be present. The constraint-schema
theory for ET was developed, based on the schema theory
of binary GAs, and used to characterise Royal Road-type
landscapes for ET. However, despite the characterisation of
search landscapes for which ET is predicted to do well,
no clear understanding presently exists regarding the types
of programs and program structures that give rise to these
landscapes.

This paper, therefore, is the first to ask the following
research questions:

• What types of programs and program structure enable
ET to perform well, through crossover, and how?

• Which form of crossover is best suited to such programs
and structures, and why?

This paper addresses the above questions with theoretical
and empirical studies. Its primary contributions include:

1. A theoretical analysis of the types of program structure
that will favour crossover in ET. The analysis indicates
that crossover is likely to perform well when a program
has a large number of input variables which discretely
impact conditions surrounding the target with a low
probability. The types of program likely to benefit from
the use of the crossover operator, and therefore search by
GAs, are those that process large data structures or have
an internal state that is reached by a series of repeated
function or method calls.

2. An empirical study involving a number of artificial case
studies designed to validate the theoretical study.

3. An empirical study to determine which type of crossover
operator works best for different programs. The results
show that the operator used by ET is often outperformed
by standard uniform crossover.



4. A further empirical study comparing variants of hill
climbing on the programs used to test the effectiveness
of crossover; including Random Mutation Hill Climb-
ing (RMHC). As with GA Royal Roads [2], RMHC out-
performs ET on landscapes for which crossover performs
well, but are free of deception in the form of entrapping,
local optima. Program structures do exist with the latter
property, for which ET will outperform RMHC.

The paper begins by reviewing important background.

II. BACKGROUND

A. Search-Based Testing (SBT)

Search-Based Testing (SBT) generates test data through
optimisation of a fitness function that underpins the test
criterion of interest. This paper concentrates on branch
coverage, where each uncovered branch is the focus of an
individual test data search. The search space is the input
domain of the program under test. The fitness function scores
input vectors on the basis of how close they were to execut-
ing the branch of interest. The first obstacle for the generated
input is to penetrate the layers of statements in which the
target branch is nested. The approach level [10] measures
the number of control graph nodes on which the branch is
control dependent, but were not executed in the path taken by
a particular input. An example approach level computation
is shown in Figure 1. If the path diverges from the target
at some control dependency, the branch distance calculation
is performed using the values of variables appearing in the
control dependency’s condition. The calculation reflects how
close the conditional was to being executed with the alterna-
tive, desired outcome. For example, if a condition ‘a == b’
needs to be executed as true, the branch distance is found
using the formula |a − b| [11]. The overall fitness function
to be minimised for a branch target t and for assessing
an input vector v is fit(t, v) = approach level(t, v) +
normalise(branch distance(t, v)). When the fitness value
is zero, t is executed by v. Experiments in this paper use
the normalisation function 1− 1.001−d for a distance d.

The Alternating Variable Method (AVM) [11] was one
of the earliest algorithms used for SBT. An input vector is
initially chosen at random. The algorithm then optimises the
fitness function for each input variable of the vector in turn.
First, an ‘exploratory’ move is performed by increasing and
decreasing the value by a small amount k (k = 1 for exper-
iments with integer types in this paper). If an exploratory
move results in an improvement in fitness, further ‘pattern’
moves are made in the direction of improvement with
increasing step sizes of 2i for the ith successive move.
Pattern moves continue until fitness fails to improve, where
upon exploratory moves are recommenced. If exploratory
moves fail to yield improvement, the focus moves to the
next input variable in the vector. Moves are made until a
target-executing input is found or until exploratory moves

void example1(int a, int b, int c) {
if (a == b) {
if (b >= 100) {
if (c <= 10) {
// target branch

}
//...

if (a == b) if (b >= 100) if (c <= 10) target
TRUE TRUE TRUE

approach level = 2
branch distance = |a-b|

FALSE FALSE FALSE

approach level = 1
branch distance = 100-b

approach level = 0
branch distance = c-10

Figure 1. Approach level and branch distance calculation

have been attempted on each input variable without an
improvement in fitness. At this point the search may be
restarted with a new random input. The search continues
until the target is covered or the pre-determined budget of
fitness evaluations has been exhausted.

Evolutionary Testing (ET) is the name given to
SBT techniques where Evolutionary Algorithms are used
as the optimisation technique. A widely-used GA in the
literature is that of Joachim Wegener et al. [10], which
formed part of DaimlerChrysler’s ET System. Instead of
using a binary encoding, input vectors are optimised directly
with input values forming the ‘genes’ of each individual
chromosome. The overall population of 300 individuals
is initially divided equally over 6 competing subpopulations.
Individuals are linearly ranked [12] for selection with a
pressure Z=1.7, with stochastic universal sampling as the
selection mechanism.

Of particular interest to this paper is the use of discrete
recombination as the crossover operator. Discrete recombi-
nation is similar to uniform crossover, but differs in one
important aspect. With uniform crossover, each gene is
copied into exactly one of the offspring, decided with an
even probability. With discrete recombination, however, a
gene may be copied into both children, one child, or neither
child; with an equal probability.

The Breeder GA [13] mutation operator is used and
applied at an inverse of chromosome length. Genes are
mutated by the addition or subtraction of values chosen
from a range decided by the subpopulation in which the
individual currently resides. The range for a subpopulation
p, 1 ≤ p ≤ 6, is 10−p. Elitist reinsertion is applied, with
the top 10% of the current generation retained, while the
remaining individuals are discarded and replaced with the
best offspring. A progress value, pg = 0.9 · pg−1 + 0.1 · r,
is computed for each subpopulation at the end of the gth

generation, where r is the subpopulation’s average ranked
fitness following linear ranking of its individuals using
Z = 1.7. After every 4th generation, subpopulations are
ranked according to their progress value and a new share
of the overall population computed for each, with weaker
subpopulations transferring individuals to stronger ones. A



subpopulation cannot lose its last 5 individuals, prevent-
ing its extinction. Finally, individuals migrate every 20th

generation, with subpopulations exchanging 10% of their
individuals at random.

B. Evolutionary Testing Constraint-Schemata
Harman and McMinn [8], [9] introduced the concept

of constraint-schemata in order to develop a formal un-
derstanding of the crossover operator for ET. The notion
of a constraint-schema is a generalisation of Holland’s
binary GA schema [14]. Whereas binary GA schemata
are ‘templates’ denoting the possible chromosomes that
the schema may instantiate, constraint-schemata represent
explicit sets of chromosomes, defined in terms of constraints
over the input variables of a program. Example constraint-
schemata for the program of Figure 1, for example, include
P1 = {(a, b, c) | a = b} and P2 = {(a, b, c) | a = 0}.
Constraint-schemata, as with their binary predecessors, al-
low for reasoning about the fitness of chromosomes that
may be prevalent in the current population of the GA. For
example, chromosomes (input vectors) belonging to P1 will
have a higher average fitness than those belonging to P2,
since P1 defines the set of chromosomes traversing the initial
approach level en route to the target. The schema theory [14]
(and its ET generalisation [9]) predicts schemata of above
average fitness will proliferate in successive generations of
the search.

Harman and McMinn show that the crossover operator
will work well for ET when the test data generation problem
has a structure such that chromosomes of simpler constraint-
schemata can be recombined to produce chromosomes of
more specific schemata with higher average fitness. This is
effectively a restating of the building block hypothesis for
ET. Higher fitness, specific schemata are modelled through
the conjunction of the constraints of more general schemata.
For example, with the program of Figure 2, chromosomes
belonging to Q1 = {(a, b, c) | a = b} may be recombined
with those of Q2 = {(a, b, c) | c ≤ 10} to produce
chromosomes belonging to Q = {(a, b, c) | a = b∧c ≤ 10}.
Q has a higher average fitness than either Q1 or Q2, as
the value of count will be at least 2, as opposed to 1;
resulting in a lower and more favourable branch distance
at the condition guarding the target. In general, if some
schemata S1 = {I | c1} and S2 = {I | c2} are combined to
produce a fitter schema S = {I | c}, c = c1 ∧ c2, S must
respect the constraints of the more general schemata from
which it was created. That is, c ⇒ c1 and c ⇒ c2. This is
equivalent to stipulating that S is a subset (subschema) of
S1 and S2; i.e. S ⊂ S1 and S ⊂ S2. Correspondingly, S1

and S2 are referred to as superschemata of S.
Surprisingly, in a study of programs comprising of 760

different branches in open source and production code,
Harman and McMinn [9] found only 8 branches that allowed
the crossover operator to work effectively. As such, although

void example2(int a, int b, int c) {
int count = 0;
if (a == b) count ++;
if (b >= 100) count ++;
if (c <= 10) count ++;

if (count == 3) {
// target branch
// ...

Figure 2. Target branch not nested but reached under the same conditions
as the program of Figure 1

constraint-schemata give a clearer picture regarding the
type of fitness landscape that will allow crossover to work
effectively for ET, the issue of what types of programs result
in such landscapes is less well understood. This is the subject
under investigation for the remainder of this paper.

III. A THEORETICAL ANALYSIS OF PROGRAM
STRUCTURES FAVOURING THE CROSSOVER OPERATOR

This section investigates the factors underlying programs
and target structures which will allow the crossover operator
to work effectively in test data searches. The foundation for
this is the concept of constraint-schemata introduced in the
last section.

A. Number of conjuncts in the input condition
The input condition for covering a structural target in a

program, such as a branch, is a constraint over a program’s
input variables that describes when the target will be exe-
cuted. The input condition for the target of the program of
Figure 2, for example, is a = b∧b ≥ 100∧c ≤ 10. The input
condition is equivalent to the constraint of the schema that
describes the chromosomes (input vectors) that will cover a
target structure:

Definition 1 (Covering Constraint-Schema). A constraint-
schema S is said to be the covering constraint-schema for
a target t if all chromosomes of S execute t (and there do
not exist superschemata of S for which this is also true).

Depending on the structure of the program concerned,
the covering constraint-schema may be generalisable into a
number of distinct superschemata; the constraints of which
denote simpler sub-test data generation problems that must
be solved individually in order to reach the final solution (a
target-executing input vector). A schema that defines a set
of chromosomes which make a step towards the test goal is
said to be fitness-affecting:

Definition 2 (Fitness-affecting Constraint-Schema). Let w
be the worst fitness value for a structure t in a program p
obtained by an input vector drawn from p’s input domain.
A constraint-schema S is fitness-affecting if there does not
exist some chromosome l ∈ S where fit(l, t) = w.

The simplest, most general fitness-affecting schemata
encapsulate the building blocks of the test data generation
problem.



Definition 3 (Building Block Constraint-Schema). Let
vars(S) be the set of input variables involved in the con-
straint c of a constraint-schema S = {I | c}. Recall w
from Definition 2. A constraint-schema S1 = {V | c1} is
said to be a building block constraint-schema if it is fitness-
affecting (Definition 2) and for all superschemata S2 of
S1, S2 = {V | c2}, c1 ⇒ c2, vars(S1) ⊃ vars(S2), there
exists some chromosome l ∈ S2, fit(l, t) = w.

For example, the covering schema {(a, b, c) | a = b∧ b ≥
100 ∧ c ≤ 10} for the target of the program of Figure
2, may be generalised into three distinct building block
schemata: {(a, b, c) | a = b}, {(a, b, c) | b ≥ 100} and
{(a, b, c) | c ≤ 10}.

The covering constraint-schema for a target must be
generalisable into at least two distinct building blocks in
order for crossover to have the opportunity to do any work
and contribute to the progress of an ET search. In practice,
this is still not enough to guarantee that crossover will have
any discernible effect in progressing the search; chromo-
somes of the covering constraint-schema may be more easily
discoverable through mutation. However, it follows that the
larger the number of distinct building block constraint-
schemata inherent in a test data generation problem the more
opportunity crossover has to positively impact the progress
of the search. This is because there is greater scope for
crossover to arrive at the covering constraint-schema through
the recombination of building block constraint-schemata;
potentially via intermediate schemata that act as stepping
stones between building blocks and final solutions.

The number of building block constraint-schemata inher-
ent in the test data generation problem is closely linked to the
target’s input condition. It follows that the larger the number
of conjuncts it has, the larger the number of building blocks
may be involved in arriving at a solution.

B. Input condition conjuncts over disjoint sets of variables
If two chromosomes are recombined from two constraint-

schemata that reference different input variables in their
respective constraints, more specific constraint-schema may
be reached by simply copying the genes of input vari-
ables referenced in the constraints of each of the original
schemata. The constraint-schemata {(a, b, c) | a = b} and
{(a, b, c) | c ≤ 10} for the program of Figure 2, for
example, and the input vectors <a = 10, b = 10, c = 105>
and <a = 50, b = 20, c = 5> belonging to the former and
latter schemata respectively, may be crossed over to produce
the offspring <a = 10, b = 10, c = 5>, a member of the more
specific schema {(a, b, c) | a = b ∧ c ≤ 10}.

Recombination is more awkward for contending
constraint-schemata, however, where one or more input
variables are referenced in the respective constraints of
each schema.
Definition 4 (Contending Constraint-Schemata). Recall the
function vars(S) from Definition 3. Two constraint-schema

S1 and S2 are said to be contending if their constraints refer-
ence one or more of the same input variables, i.e. vars(S1)∩
vars(S2) 6= ∅.

The ability of the crossover operator may be impaired
if contending superschemata are inherent in a test data
generation problem. The target of the program of Figure
2, for example, involves the contending schemata R1 =
{(a, b, c) | a = b} and R2 = {(a, b, c) | b ≤ 0}, which
both contain references to the variable b in their respective
constraints. Crossover of chromosomes of these schemata is
not guaranteed to respect the conjunction of their constraints.
For example, recombination of <a = 10, b = 10, c = 5> of
R1 and <a = 50, b = 20, c = 105> of R2 cannot result in
offspring that satisfy a = b ∧ b ≤ 0.

As such, for a target structure to have a fitness landscape
easily exploitable by crossover, not only should the number
of input condition conjuncts be numerous, but the conjuncts
should involve disjoint sets of variables. This further implies
that the input vector to the program under test should also
be numerous.

C. Difficulty of discovering input variable values

The harder the input values belonging to fitness-affecting
constraint-schemata are to discover, the scarcer they will be
in any given generation of a test data search. This situation
favours the crossover operator, since it has the capability
to build larger pieces of a solution from building blocks
that are in existence across different chromosomes in the
population. The chances of mutation generating solutions
containing from all the required building blocks for an
individual chromosome are much smaller. However, if the
discovery of individual building blocks is too hard, the
genetic material will not come into existence in the first
place for crossover to then be able to make use of it.

The difficulty of discovering chromosomes belonging to
a constraint-schema depends on two factors. The first factor
is the probability of generating inputs at random that satisfy
the schema’s constraint. Some types of constraint are easy
to satisfy at random, e.g. the constraint a > b for two input
variables a and b of type int, which has a probability of
0.5 of being satisfied randomly. A constraint such as a = 0,
however, is harder to satisfy through random generation of
values for a as its domain size increases.

The second factor is the shape of the fitness landscape.
Where the landscape has a smooth gradient, providing the
search with good guidance to inputs satisfying the constraint,
the search will easily find the required input values (genes),
regardless of the probability of finding inputs by pure
chance. Figure 3 shows a program which takes an array as
input. When an individual array value is in a certain range,
the count variable is incremented. When every value of
the array is in range, i.e. count equals the size of the
array, the target branch is executed. The first variant of the
program increments the count variable by a whole amount,



resulting in a fitness landscape with flat steps down to the
global optimum, as depicted in part B of the figure. Array
elements are found to be in range through the pure trial and
error of mutation. As such the ratio of ‘in-range’ values to
the size of the domain of each array element decides the rate
of success the mutation operator will have in finding building
block genes that contribute to the overall final solution.
The alternative version of the program increments count
by an amount proportional to the nearest in-range value.
This feeds into the branch distance calculation of the target
branch, and the corresponding fitness landscape (part C of
the figure) is instead formed of downward gradients to the
global optimum. The target of the program is executed under
exactly the same conditions, yet this variant of the program
will ultimately be ‘easier’ for the search than its counterpart.

D. Absence or Limited Use of Nesting and Short-Circuiting

Nested structures and conditions composed using short-
circuiting operators are known to cause problems for
SBT [15], [16]. This is because the input condition for
executing the target is only revealed to the fitness function
step-by-step, as each individual condition is satisfied in turn.
For the program of Figure 1, for example, inputs cannot
be optimised to fulfil the condition b ≥ 100 until it is
reached in the code, i.e. the predicate a = b has been
satisfied. This is reflected in the fitness function. It is not
until a = b is satisfied that later predicates become the
subject of the branch distance calculation, and chromosomes
close to evaluating them as true are rewarded.

This impacts the crossover operator. Chromosomes satis-
fying (or close to satisfying) constraint-schemata for ‘later’
conditionals will not be rewarded by the fitness function, and
as such will not proliferate in the population for eventual
use in recombination. This can be explained in terms of
constraint-schemata and the schema theorem: consider a
target inner with input condition c nested inside a structure
outer with input condition a. Let b represent the part of
the input condition particular to inner, i.e. c = a ∧ b.
For crossover to produce inputs to cover inner, there must
exist constraint-schemata present in the current population
Sa = {V | a} and Sb = {V | b}, which can be combined to
produce chromosomes belonging to the required constraint-
schemata Sc = {V | a∧ b}. Sb must contain some chromo-
some of worst possible fitness, since {V | ¬a ∧ b}, whose
chromosomes cannot traverse the initial approach level, is a
subschema of Sb. Therefore Sb cannot be fitness-affecting
(Definition 2) for inner. Consequently, chromosomes of Sb

will not be of above average fitness and not prevalent in the
population for recombination with chromosomes of Sa. This
reasoning can easily be re-phrased for conditions co-joined
using the short-circuiting ‘and’ operator (‘&&’ in C).

Nesting and short-circuiting limit the search to solving
one condition at a time, rather than as parallel sub-problems
whose solutions may be recombined.

E. Summary Variables and Internal States
Since nesting and short-circuiting can hinder a search,

it follows that crossover will be at its most effective if
input variables influence one atomic condition guarding a
target, rather than being spread over several co-joined or
nested conditions. If more than two input variables are
to affect one condition, giving rise to multiple building
block constraint schemata, those inputs must do so via an
intermediate variable. The target branch of Figure 2, for
example, is covered under exactly the same circumstances as
Figure 1, except that all inputs directly impact one condition
guarding the target through the count variable. This allows
the search to find solutions to each individual sub-condition
necessary to cover the target in parallel. This is because input
vectors satisfying b ≥ 100 and c ≤ 10 are now rewarded by
the fitness function regardless of whether other conditions
were previously satisfied. The reward comes in the form of a
lower branch distance at the branching condition concerned.
Crossover may then recombine these input vectors to find
an overall solution; i.e. a target-executing input vector.

The types of programs that involve large numbers of
inputs and utilising intermediate variables, include programs
that process large data structures, storing the results in ‘sum-
mary’ variables, or programs with an internal state that is
only reached via long sequences of function or method calls.
Furthermore, the conditions under which these intermediate
values are modified may give rise to coarse landscapes (as
with the program of Figure 3A and the landscape in Figure
3B) further favours crossover since the building blocks are
more difficult to discover, as discussed in Section III-C.

F. Conclusions of the Theoretical Analysis
In conclusion, the theoretical analysis predicts that for the

crossover operator to be most effective in test data searches:

• The overall input condition for a target must be decompos-
able into a number of sub-problems, whose solutions can
be sought in parallel. These partial solutions form building
blocks that can be used by crossover. Ideally then, the
target program structure needs to have an input
condition composed of several different conjuncts.

• To avoid clashes of input vector values during crossover,
each conjunct should reference different input variables.
Therefore the program needs to have several input
variables to accompany an abundant number of conjuncts.

• Input condition conjuncts cannot be solved in parallel if
they are nested, and conjuncts should be relatively hard
to solve randomly, suggesting that inputs affect a single
condition guarding the target via internal variables
modified under ‘special’ circumstances.

Although the theoretical analysis can suggest conditions
favourable for crossover, only an empirical study can es-
tablish the extent to which they are true. The results of such
a study are presented in the next section.



IV. EMPIRICAL STUDY

A. Research Questions

An empirical study was designed to answer a number of
research questions to validate the claims of the theoretical
analysis presented in the previous section.
Q1: Number and difficulty of input condition conjuncts.
The theory predicts that the more conjuncts in the input
condition for covering a target, the more crossover will be
able to exploit the resulting fitness landscape. Is this the case
in practice, and how many conjuncts are required before
crossover noticeably impacts the search? The theory also
predicts that the greater difficulty of satisfying individual
conjuncts, the more beneficial crossover will be to progress-
ing the search. Is this the case in practice, and under what
circumstances does this effect occur?
Q2: Input condition conjuncts with non-disjoint sets of
variables. The theory predicts that crossover will be less
effective for test data generation problems involving ‘con-
tending’ constraint-schemata. Is this the case in practice?
Q3: Nested conditionals. The theory predicts that nesting
prevents input condition conjuncts from being solved in par-
allel, thus reducing the number of building blocks available
to crossover and rendering it less effective. Is this the case
in practice?
In addition to those raised by the theoretical analysis, two
further research questions were investigated:
Q4: Performance of ET compared to hill climbing.
Over a range of different search problems designed to test
crossover for ET, how does hill climbing perform? In what
situations will ET outperform hill climbing and vice-versa?
Q5: Crossover type. Across a range of different search
problems, which type of crossover performs best for ET?

B. Case studies

In order to answer the research questions above, four case
studies were designed.
Q1 - Case Study 1 (Figure 3). With this case study, the
target branch is executed when every integer in an array
is within a certain range. The input conditions conjuncts
therefore correspond to individual array elements that are
‘in-range’, i.e. {(x[i])|x[i] ≥ MIN RANGE ∧ x[i] ≤
MAX RANGE}. The satisfaction of each individual con-
junct forms an individual building block for the search.

The domain size of each array element is artificially fixed
to 1,000 elements (set from -500 to 499). The variables
MIN_RANGE and MAX_RANGE are adjusted to generate the
desired level of probability for generating an input satisfying
an input condition conjunct; i.e. an ‘in-range’ array element,
a building block for the test data search.

The case study has two variants. When the count
variable is incremented by whole amounts, a flat fitness
landscape results (Figure 3B). In order to investigate the

(1) void case_study_1(int x[SIZE]) {
(2) double count = 0; int i;
(3) for (i=0; i < SIZE; i++) {
(4) if (x[i] >= MIN_RANGE && x[i] <= MAX_RANGE)
(5) count ++;
(6) else if (x[i] < MIN_RANGE)
(7) count += 1 - ((MIN_RANGE - x[i]) /
(8) (MIN_RANGE - MIN_VAL));
(9) else
(10) count += 1 - ((x[i] - MAX_RANGE) /
(11) (MAX_VAL - MAX_RANGE));
(12) }
(13)
(14) if (count == SIZE) {
(15) // target branch
(16) }
(17) } A. CODE
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C. FITNESS LANDSCAPE (LINES 6-11 INCLUDED) WITH DOWNWARD GRADIENT

Figure 3. Case study 1: code to assess the impact of different forms
of crossover with different numbers of input condition conjunct (through
varying array size) and conjunct satisfaction probability (through varying
MIN_RANGE and MAX_RANGE). Lines 6-11 appearing in grey are omitted
from the flat landscape version of the experiment, which is pictured for
two array elements in part B. Part C depicts the gradient landscape where
lines 6-11 are included in the second version of the experiments

effect of ‘easier’ landscapes on crossover, a smooth gradient
landscape (Figure 3C) can be generated through the inclu-
sion of lines 6-11, where count is instead increased by an
amount proportional to the distance to the nearest in-range
value for a particular array element.

Q2 - Case Study 2 (Figure 4). With this case study, the
integer elements of the array must be in descending order for
the target branch to be executed. The variable count keeps
track of how many pairs of array elements are in descending
order before the branch can be executed. In this way, input
condition conjuncts reference one variable appearing in



another; i.e. x[0] > x[1], x[1] > x[2]. etc. As such, the
building block schemata are contending. The domain size
for each array element is -500 to 499, as for case study 1.
Q3 - Case Study 3 (Figure 5). The target branch of case
study 3 is executed under exactly the same circumstances as
case study 1, but instead of using a count variable, each
conjunct of the input condition is nested.
Q4 - Case Study 4 (Figure 6). Case study 4 was
deliberately designed as an example to thwart local hill
climbing searches. The code is as for case study 1, except
that count is reset to zero immediately before the array
is full of elements that are in-range. This results in a local
optimum, as depicted in Figure 6B. ET can overcome the
local optimum through crossover, as shown in Figure 6C.
Q5 was assessed using data from each of the above studies.

C. Search Types and Variants Investigated

ET with variants of crossover. ET was applied using the
setup described in Section II (with discrete recombination
as the crossover operator). To compare ET with and without
crossover, ET was also applied without a crossover operator.
Parents selected for recombination simply become their
offspring. In order to answer Q5, ET was also applied with
uniform and one-point crossover.
ET with the Headless Chicken Test (HCT). The ‘Head-
less Chicken Test’ (HCT) [17] is used to assess whether
GA progress is not merely the result of crossover simply
functioning as a macro-mutation operator. The HCT in
this paper is ET with discrete recombination, but using
a new, randomly-generated individual not drawn from the
population, as one of the parents. If ET cannot perform better
than the HCT, the search is not actually benefiting from the
random exchange of genes between individuals.
Alternating Variable Method (AVM). The AVM was
applied as described in Section II.
Random Mutation Hill Climbing (RMHC). With Random
Mutation Hill Climbing (RMHC), an input vector is initially
selected from the search space at random. Mutations are then
by replacing genes with a new value selected at uniform
random, with genes mutated at a probability that is the
inverse of the chromosome’s length. The mutated individual
replaces the current individual if it is of improved fitness.
When used by Forrest and Mitchell [2], it was found to
outperform GAs on Royal Road fitness functions. RMHC is
the equivalent of a (1+1) EA.
Random Mutation AVM (RM-AVM). The Random
Mutation-Alternating Variable Method (RM-AVM) is a new
search novel to this paper, combining the AVM with random
mutation re-starts. When the AVM becomes ‘stuck’, random
mutations are made until a better solution is found. RM-
AVM therefore incorporates the best features of AVM and
RMHC; the ability of the AVM to accelerate down gradients
with the ability of RMHC to escape certain local optima.

void case_study_2(int x[SIZE]) {
int count = 0, i;
for (i=0; i < SIZE-1; i++) {

if (x[i] > x[i+1])
count ++;

}
if (count == SIZE-1) {
// target branch

}
}

Figure 4. Case study 2: code to assess the impact of contending constraint-
schemata. The target branch is executed if the array elements are sorted in
descending order. Results with this case study can be found in Table II

void case_study_3(int x[SIZE]) {
if (x[0] >= MIN_RANGE && x[0] <= MAX_RANGE) {
if (x[1] >= MIN_RANGE && x[1] <= MAX_RANGE) {

...
// target branch

Figure 5. Case study 3: code to assess the impact of crossover on nested
structures. The target is executed under exactly the same conditions as case
study 1 (Figure 3). Results with this case study can be found in Table III

void case_study_4(int x[SIZE]) {
int count = 0, i;
for (i=0; i < SIZE; i++) {
if (x[i] >= MIN_RANGE && x[i] <= MAX_RANGE)
count ++;

}
if (count > SIZE-4 && count < SIZE)
count = 0;

if (count == SIZE) {
// target branch

}
} A. CODE
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B. FITNESS LANDSCAPE COLLAPSED TO ONE DIMENSION
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C. CROSSOVER OF TWO CHROMOSOMES TO REACH THE GLOBAL OPTIMUM

Figure 6. Case study 4: a branch designed to defeat hill climbing but for
which ET can succeed with crossover. Part A shows the program code. All
integer values in an array must be in a given range to execute the branch,
which uses the variable count to record the number of array elements for
which this is true. However, just before the global optimum is reached, the
value of count is set to zero, forming a local optimum depicted in part B,
a graph plotting branch distance against the number of array values in range
(for an array size of 16). ET can successfully execute the branch through
crossover of two individuals at the local optimum as illustrated in part C,
where an ‘O’ represents an array value in range, while an ‘X’ represents a
value out of range. Results with this case study can be found in Table IV



Table I
RESULTS FOR THE PROGRAM OF FIGURE 3. AS ARRAY LENGTH INCREASES, SO DO THE NUMBER OF INPUT CONDITION CONJUNCTS AND POTENTIAL
BUILDING BLOCK CONSTRAINT-SCHEMATA. THE IMPACT OF CROSSOVER IS GREATER AS THE POTENTIAL NUMBER OF BUILDING BLOCKS INCREASES

AND THE PROBABILITY OF THEIR RANDOM GENERATION THROUGH MUTATION DECREASES

Success rate (percentage of times the branch was covered over the 50 runs) is reported unless the branch was covered with 100% success, in which case the average number
of fitness evaluations is reported. A figure appears in bold if ET (using discrete recombination) was shown to be significantly better than another search when the one-sided
Wilcoxon rank-sum test was applied to numbers of fitness evaluations over the respective sets of 50 trials. Conversely, a figure appears in italics if an alternative search was
significantly better than ET. Statistical tests were not performed if the success rate for one of the searches fell below 60% (i.e. 30 runs).

A. FLAT FITNESS LANDSCAPE B. GRADIENT FITNESS LANDSCAPE

Build. block Search Array length
probability 2 4 8 16 32 64 128

0.5 ET 5 14 209 1,247 2,674 4,947 8,660
ET, uniform crossover 5 14 208 1,228 2,684 4,882 8,062
ET, 1-point crossover 5 14 202 1,498 3,902 8,985 48%
ET, headless chicken test 5 14 215 4,540 6% 0% 0%
ET, no crossover 5 14 2,803 38% 2% 0% 0%
AVM 29 327 10,963 4% 0% 0% 0%
RMHC 6 14 56 123 318 775 1,819
RM-AVM 22 91 662 2,742 13,816 98% 0%

0.2 ET 24 408 1,381 3,103 5,612 9,919 88%
ET, uniform crossover 24 408 1,417 2,969 5,304 8,879 14,638
ET, 1-point crossover 24 411 1,713 4,339 98% 14% 0%
ET, headless chicken test 24 431 7,239 2% 0% 0% 0%
ET, no crossover 24 88% 24% 0% 0% 0% 0%
AVM 214 10,709 0% 0% 0% 0% 0%
RMHC 21 74 163 499 1,200 2,756 6,338
RM-AVM 77 425 1,663 8,875 40,426 0% 0%

0.1 ET 106 921 2,186 4,339 7,502 96% 10%
ET, uniform crossover 103 894 2,072 3,993 6,840 11,564 58%
ET, 1-point crossover 103 919 2,698 6,367 70% 0% 0%
ET, headless chicken test 106 1,713 29,371 0% 0% 0% 0%
ET, no crossover 178 60% 6% 0% 0% 0% 0%
AVM 617 56% 0% 0% 0% 0% 0%
RMHC 50 115 394 1,027 2,702 6,116 14,375
RM-AVM 172 651 3,645 17,211 78% 0% 0%

0.01 ET 2,587 94% 78% 46% 2% 0% 0%
ET, uniform crossover 2,293 94% 78% 52% 10% 0% 0%
ET, 1-point crossover 5,076 94% 74% 36% 0% 0% 0%
ET, headless chicken test 1,727 21,255 0% 0% 0% 0% 0%
ET, no crossover 82% 16% 0% 0% 0% 0% 0%
AVM 86% 0% 0% 0% 0% 0% 0%
RMHC 446 1,438 4,439 11,204 27,885 94% 2%
RM-AVM 1,342 6,861 98% 16% 0% 0% 0%

Array length
2 4 8 16 32 64 128

5 14 205 1,388 3,366 6,697 12,143
5 14 206 1,319 3,171 6,396 11,376
5 14 215 1,672 5,171 12,512 36,438
5 14 219 6,025 0% 0% 0%
5 14 709 10,324 26,387 63,863 0%

11 21 42 86 173 345 693
6 15 56 127 339 787 1,980

11 21 42 86 173 345 693

24 450 1,850 4,536 8,540 16,197 33,393
24 394 1,942 4,245 8,147 14,528 26,256
24 434 2,142 6,105 14,808 36,349 90%
24 431 10,666 2% 0% 0% 0%
24 1,747 9,100 24,779 57,088 0% 0%
19 38 76 157 318 651 1,340
23 75 192 529 1,283 3,030 7,120
19 38 76 157 318 651 1,340

104 1,227 3,460 7,025 14,393 26,569 53,286
107 1,114 3,092 6,696 12,113 22,483 43,717
105 1,188 4,033 10,435 22,862 50,760 6%
106 2,216 88% 0% 0% 0% 0%
129 4,153 12,117 31,605 71,617 0% 0%
25 49 98 200 401 805 1,624
48 126 390 1,289 2,818 6,652 16,164
25 49 98 200 401 805 1,624

1,876 5,255 10,723 19,746 35,979 66,253 0%
1,910 5,054 9,970 17,593 32,711 57,981 6%
1,788 5,415 11,988 24,792 49,411 60% 0%
2,575 37,259 0% 0% 0% 0% 0%
3,172 9,755 23,919 56,270 0% 0% 0%

38 76 152 315 632 1,285 2,632
618 1,894 4,859 13,597 34,947 82% 0%

38 76 152 315 632 1,285 2,632

D. Experimental setup

Each experiment was run 50 times using an identical list
of random seeds. Each search method was given a budget
of 100,000 fitness evaluations. If test data were not found
within this limit, the search was deemed to have failed. The
success rate is the reported percentage of the 50 runs for
which a search found test data for a branch. Where success
rate is 100% the average number of fitness evaluations
is reported in each table of results. This figure is the
mean number of fitness evaluations that were taken to
find test data. Statistical tests were performed with the
non-parametric Wilcoxon rank-sum test to compare search
performance using numbers of fitness evaluations obtained
from each of the 50 runs.

E. Answers to Research Questions

Q1: Number and difficulty of input condition conjuncts.
Case study 1 (Figure 3) was run with different array sizes;
2, 4, 8, 16, 32, 64 and 128. A domain of -500 to 499 for
each array element, coupled with settings of (MIN_RANGE,
MAX_RANGE) as (-250, 249), (-100, 99), (-50, 49), (-5, 4)

and (0, 0) respectively, enabled the testing of different
probabilities of finding an array element in range from 0.5
down to 0.01. Each setup was run with both variants of the
code to produce flat and gradient landscape types.

The results can be found in Table IA. They show that as
the length of the array increases (and the number of input
condition conjuncts and potential building block constraint-
schemata), the search not only becomes harder (as evidenced
by higher average numbers of fitness evaluations and lower
success rates) but also the impact of crossover increases.

At a building block generation probability of 0.5, ET with
crossover is always 100% successful at generating test data.
With small array sizes, test data is generated easily at
random, the average number of fitness evaluations is not
greater than 300, i.e. inputs were found within the first
generation on average.

For larger array sizes, the HCT and ET without crossover
were not always 100% successful. Where they were, ET with
crossover had statistically significantly better performance,
with the difference in performance becoming greater and
in favour of ET with crossover as array size increases. For
large array sizes, the HCT and ET without crossover always



Table II
RESULTS FOR THE PROGRAM OF FIGURE 4 WITH ‘CONTENDING’

CONSTRAINT-SCHEMATA∗

Search Array length
4 5 6 7 8 9 10 11 12

ET 22 125 399 1,202 96% 88% 66% 44% 32%
ET, uniform crossover 22 126 391 1,074 2,023 84% 78% 48% 38%
ET, 1-point crossover 22 119 385 977 98% 96% 68% 56% 36%
ET, headless chicken test 22 122 434 2,072 9,984 90% 62% 26% 6%
ET, no crossover 22 896 64% 26% 10% 10% 2% 0% 0%
AVM 461 2,421 19,497 42% 12% 0% 0% 0% 0%
RMHC 32 75 198 324 810 2,669 4,300 9,947 12,685
RM-AVM 229 585 1,753 3,075 8,240 98% 84% 70% 48%

Table III
RESULTS FOR THE PROGRAM OF FIGURE 5 WITH NESTING∗

Build. Search Array length
block 2 4 8 16 32 64 128
prob.

0.5 ET 5 14 220 2,308 9,985 52% 0%
ET, uniform 5 14 200 2,174 8,334 76% 0%
ET, 1-point 5 14 211 3,014 35,493 0% 0%
ET, HCT 5 14 221 8,480 0% 0% 0%
ET, no crossover 5 14 1,289 22,449 84% 0% 0%
AVM 11 21 42 86 173 345 693
RMHC 6 19 99 302 1,312 5,182 21,281
RM-AVM 11 21 42 86 173 345 693

0.01 ET 3,139 14,778 45,149 0% 0% 0% 0%
ET, uniform 3,102 12,528 43,668 0% 0% 0% 0%
ET, 1-point 3,268 14,056 52,174 0% 0% 0% 0%
ET, HCT 2,365 22,237 0% 0% 0% 0% 0%
ET, no crossover 4,796 17,050 58,131 0% 0% 0% 0%
AVM 55 137 394 1,300 4,598 17,052 65,592
RMHC 526 2,578 10,818 45,337 2% 0% 0%
RM-AVM 55 137 394 1,300 4,598 17,052 65,592

Table IV
RESULTS FOR THE PROGRAM OF FIGURE 6 WITH LOCAL OPTIMUM∗

Search Array length
16 32 64 128

ET 2,923 4,087 6,201 10,485
ET, uniform crossover 2,912 3,761 6,010 9,455
ET, 1-point crossover 70% 54% 22% 2%
ET, headless chicken test 20,236 0% 0% 0%
ET, no crossover 0% 0% 0% 0%
AVM 4% 0% 0% 0%
RMHC 6% 2% 0% 0%
RM-AVM 0% 0% 0% 0%

∗Success rate (percentage of times the branch was covered over the 50 runs) is reported
unless the branch was covered with 100% success, in which case the average number
of fitness evaluations is reported. A figure appears in bold if ET (using discrete
recombination) was shown to be significantly better than another search when the
one-sided Wilcoxon rank-sum test was applied to numbers of fitness evaluations over
the respective sets of 50 trials. Conversely, a figure appears in italics if an alternative
search was significantly better than ET. Statistical tests were not performed if the
success rate for one of the searches fell below 60% (i.e. 30 runs).

failed to find test data.
As the probability of building block generation decreases,

a similar pattern emerges; ET with crossover has an in-
creasingly higher success rate than the HCT and ET without
crossover, or, the average number of fitness evaluations for
ET with crossover is significantly better, with the difference
becoming greater in favour of ET with crossover.

The search becomes easier for all variants of ET when
the landscapes has a downward gradient, as seen in part
B of Table I, as opposed to when it is flat (part A).

However, the effect on crossover follows the same pattern.
While average numbers of fitness evaluations are lower (and
success rates higher), ET with crossover is increasingly
better than the HCT and ET without crossover, or, it achieves
an increasingly higher success rate.

The empirical results therefore confirm the theoretical
prediction that the higher number of input condition con-
juncts, the more useful crossover can be. Also, as predicted,
crossover becomes more useful as a search operator the
greater the difficulty of generating building blocks.

Q2: Input condition conjuncts with non-disjoint sets
of variables. Case study 2 (Figure 4) was run with a
domain size of -500 to 499 for each array element (the
probability of generating a building block at random is
thus fixed at approximately 0.5), with array sizes of 4-12.
Table II reports the results. All searches struggle as array
size increases, due to the problem becoming more tightly
constrained. Despite the presence of contending schemata,
ET still outperforms the HCT and ET without crossover with
an increasing margin as array size increases (i.e. the number
of building blocks increase), and is statistically significantly
better in many cases.

Thus, in conclusion, contending schemata may reduce the
effectiveness of crossover, but the inclusion of the crossover
operator may still result in a significantly better evolutionary
search.

Q3: Nested conditionals. Case study 3 (Figure 5) was
run with the same array sizes and building block generation
probabilities as study 1. Table III reports the results for
probabilities of 0.5 and 0.01. Although the input condition
for reaching the target branch is identical to that of study 1,
all searches clearly have difficulty in finding test data, due
to nesting. This can easily be seen by comparing the results
in Table III with those for study 1 reported in Table I.

Perhaps surprisingly, crossover still has a discernible
impact on the search that is statistically significant in many
cases. Crossover seems to allow the population to be filled
quickly with many ‘good’ solutions for the current approach
level, which increase the probability of it being penetrated
through later mutations. When building block probability
is low, there are fewer building blocks in existence, and
crossover cannot fill the population so quickly. This leads
to a smaller margin of increased performance for ET, in
contrast with crossover’s behaviour when conditionals are
not nested (as with the answer to research question 1). At
a probability level of 0.01, the aggressive mutation involved
in the HCT leads it to significantly outperform ET at the
small array size of 2.

In conclusion, although nesting limits the crossover oper-
ator, crossover still has a useful role to play in finding test
data by causing ‘good’ genes to proliferate in the population.

Q4: Performance of ET compared to Hill Climbing. As
expected, the AVM performs poorly whenever the fitness



landscape is flat, but is significantly superior to all other
searches when a gradient exists. The only exception is the
descending sort-check branch of case study 2, where the
search becomes stuck due to poor starting positions, coupled
with an inability to change the value of more than one
input at a time. RMHC, on the hand, performs well on flat
landscapes and case study 2, and is significantly better when
compared to ET. The RM-AVM, being a combination of
RMHC and the AVM, always performs somewhere between
the two. For studies 1-3, it is always the case that at least
one of the hill climbers outperforms ET with crossover.

Case study 4 was specifically designed to contain a local
optimum (Figure 6), as a ‘proof of concept’ that cases can
exist where ET will outperform both the AVM and RMHC
(whether such code exists for ‘real’ is another issue). The
results are shown in Table IV with domain size as for case
study 1 and a building block generation probability of 0.5.
As illustrated in Figure 6C, it is possible for ET to reach the
global optimum through crossover of two individuals on the
edge of the local optimum. Conversely, the chasm between
optima is bridged by mutation alone with an extremely low
probability, resulting in a low success rate for RMHC.

The conclusion for this research question, therefore, is
that test data generation problems for ‘crossover-friendly’
programs are not necessarily better solved by ET than a hill
climber. Cast study 4, however, does show that test data
generation problems can exist where ET can find test data,
but which are highly challenging for hill climbers.

Q5: Crossover type. Over all of the case studies, uniform
crossover is significantly better than discrete recombination
on exactly 35 occasions. Conversely, discrete recombination
never outperforms uniform crossover. It seems that discrete
recombination is responsible for destroying building blocks,
slowing down the progress of the search. Whereas with uni-
form crossover, genes are always preserved in the offspring,
discrete recombination may opt to copy a gene into both
children and destroy the other.

Discrete recombination usually outperforms one-point
crossover, with the exception of four configurations of case
study 2 and the sort-check branch. Adjacent array values
are dependent on one another, due to ‘contending’ building
block constraint-schemata. As such discrete recombination
can destroy some of the local context through the exchange
of short sequences of genes, some of which can be preserved
by less-disruptive one-point crossover.

In conclusion, the results strongly indicate that uniform
crossover is a better choice of crossover operator than
discrete recombination for test data generation. One-point
crossover is best suited for test data generation problems
involving a high degree of cohesion across input variables.

V. CONCLUSIONS

This paper has investigated the types of program structure
that cause the crossover operator to progress the search for

Evolutionary Testing (ET), both theoretically and empiri-
cally. The paper found that program structures executed by
an input condition with a high number of conjuncts, each of
which are hard to satisfy, result in fitness landscapes that are
more easily exploitable by crossover than through mutation
alone. This lends ET to programs that process large data
structures or have internal states reached through sequences
of function or method calls. Although nesting hinders a test
data search, crossover may still be useful. Hill climbers can
also be efficient on these programs, however program struc-
tures exist that result in entrapping local optima, for which
local searches are not very effective. Finally, it was found
that the discrete recombination operator of ET does not
represent the best crossover operator for test data searches,
as it is frequently outperformed by uniform crossover.
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