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Abstract

The application of metaheuristic search techniques, such as evolutionary algo-

rithms, to the problem of automatically generating software test data has been

a burgeoning interest for many researchers in recent years. To date, work in ap-

plying search techniques to structural test data generation has largely focused

on generating inputs for test objects with input-output behaviour. This thesis

aims to extend the approach for test objects with state behaviour. This presents

several challenges, not least because test goals with state-based test objects may

require input sequences to be generated. Another problem includes generating

test data in the presence of internal variables such as flags, enumerations and

counters. Such variables are often responsible for managing the “state” of the

test object. However, their use can lead to information loss with regards to

the original input conditions that lead to the fulfilment of certain test goals.

Consequently the search receives less guidance, and may fail to find test data.

This thesis proposes an extended evolutionary structural test data genera-

tion approach that allows input sequences to be generated, and tackles internal

variable problems through hybridization of the method with an extended chain-

ing approach. The basic idea of the chaining approach is to find a sequence of

statements, involving internal variables, which need to be executed prior to the

test goal. By requiring that these statements are executed, information pre-

viously unavailable to the search can be made use of, possibly guiding it into

potentially promising and unexplored areas of the test object’s input domain.

A number of experiments show the value of the approach for both test

objects with states and test objects with input-output behaviour. For all test

objects considered, higher levels of branch coverage are obtained.
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Chapter 1

Introduction

Software testing is an important yet extremely laborious and costly process.

It can account for up to 50% of software development budgets [Bei90], but yet

adds nothing to the final product in terms of its functionality. In addition to the

problem of cost, the very nature of testing being that of seeking faults [Mye79]

makes it an essentially destructive process that is not particularly enjoyed by

software engineers. If the testing process could be automated, labour effort

could be reduced, and the costs of testing would fall.

The subject of this thesis is the automatic generation of software test data.

This is a difficult problem, because for a program of any realistic size, the input

domain is too large to be searched exhaustively. On the other hand, random

input generators are unlikely to thoroughly test unusual or exceptional features

of a test object, which are only exercised by a small proportion of its overall

input domain.

Pragmatic approaches, such as the derivation of test data through static

analysis of the program’s source code, are limited by the dynamic nature of

software - for example the presence of unbounded loops and dynamic memory

referencing, such as the use of pointers.

For these reasons, the application of metaheuristic search techniques, such

as evolutionary algorithms, to search a program’s input domain for test data

has been a burgeoning interest for many researchers in recent years.

1.1 Metaheuristic Search Techniques

Metaheuristic search techniques are high-level frameworks which use heuristics

to find solutions to problems without the need to perform a full exhaustive enu-

meration of a search space. In this way, solutions may be found to combinatorial

problems at a reasonable computational cost. Such a problem may have been

1
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(a) x2 − 2x− 10 (b) cost function

Figure 1.1: Searching for x2 − 2x− 10 = 0

classified as NP-complete or NP-hard, or be a problem for which a polynomial

time algorithm is known to exist but is not practical. These frameworks are

not standalone algorithms in their own right, but rather “strategies” that are

ready for adaptation to specific problems.

In order to adapt a metaheuristic search technique to a specific problem, a

number of different decisions have to be made - for example the way in which

solutions should be encoded so that they can be manipulated by the search. A

good choice of encoding will ensure that similar solutions in unencoded space

are also “neighbours” in representational space. In this way, the search will

be allowed to move easily from one solution to another that has a similar set

of properties in common. These movements are dependent on the evaluation

of candidate solutions, performed using a problem-specific objective function.

With feedback from the objective function, the search seeks “better” solutions

based on knowledge and experience of previous ones. A good objective function

is therefore critical to the success of the search. Solutions that are “better” in

some respect should be rewarded with better objective values, whereas poorer

solutions should be punished with poorer objective values. Whether a “better”

objective value is, in practice, a higher value or lower value, is dependent on

whether the search is seeking to minimize or maximize the objective function.

An objective function which is being maximized reflects the relative “good-

ness” of candidate solutions, whereas an objective function to be minimized

(sometimes referred to in this context as a cost function) reflects the relative

undesirability of solutions.

Suppose, for example, the goal of the search is to find a root of the function

x2 − 2x − 10 (Figure 1.1a). The cost function might simply be |x2 − 2x − 10|

(Figure 1.1b). A value of 7 has a better objective value than that of 10, since



INTRODUCTION 3

 Candidate Solutions 

Objective 
Function 

Value 

start 

stop 

Figure 1.2: Hill climbing in an example search space

the output of the function is closer to approaching the positive root at 4.32.

The search is encouraged to search around the value of 7, possibly encountering

further “better” values, for example the values 5 or 6.

Hill climbing is arguably the simplest of metaheuristic search techniques.

Starting with a random point in the search space, the current solution is im-

proved by iteratively jumping to better ones found in its neighbourhood. This

progressional improvement is likened to the climbing of hills in the “landscape”

of a maximizing objective function. In this landscape, peaks characterize solu-

tions with locally optimal objective values, and troughs signify solutions with

the locally poorest objective values. A problem with local search is its tendency

to get stuck in local optima - points in the search space that represent the best

solutions in their neighbourhood, but are not in fact, the globally best solutions

(Figure 1.2).

Simulated annealing attempts to alleviate this problem by moving around

the search space more freely, with the potential to descend from hills in the

objective function in order to explore new, potentially higher ones (Figure 1.3).

This freedom is governed by a parameter known as the “temperature” of the

search. As the temperature cools, the degree of freedom is reduced, until the

search enters a final hill climbing phase.

Evolutionary algorithms are quite different to local searches such as hill

climbing and simulated annealing, in that they maintain a population of so-

lutions, rather than just one solution. During the search, the solutions are

recombined with one another, with a hope of producing new offspring solutions
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start 
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Figure 1.3: Simulated annealing has the potential to escape local optima

that have a blend of the best characteristics of their parents. Evolutionary

algorithms sample several different points of the search space in a single step

(Figure 1.4), and are therefore referred to as global search techniques. Global

search techniques tend to be more robust than local search methods (such as hill

climbing or simulated annealing) in objective function landscapes that contain

local optima or plateaux.

Evolutionary algorithms are the search method of choice of this thesis. The

application of evolutionary algorithms to test data generation is referred to

throughout this thesis as evolutionary test data generation. In the literature,

the use of evolutionary algorithms to automate the testing process is more

generally referred to as evolutionary testing.

1.2 Applying Search Techniques to Test Data Gen-

eration

The application of search techniques to test data generation requires that inputs

can be encoded in such a manner that they can be manipulated by the search

technique. Furthermore, an objective function is required so that the search

technique can find the appropriate test data. The “goodness” of candidate test

data inputs is often expressed in terms of the “closeness” that the input data is

to fulfilling the test goal. The measure of closeness differs depending on whether

the test strategy is of a structural, functional or non-functional nature.

Structural or white-box testing strategies require the coverage of a certain

type of structure in the code of a program, for example all of its statements or
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Figure 1.4: Evolutionary algorithms sample many points of the search space in
a single step

all of its branches. The objective functions used by researchers for this purpose

reward inputs that come close to executing each desired structure, and punish

those that are far away. This closeness can be measured in different ways, for

example on the basis of the control flow graph.

In the control flow graph fragment of Figure 1.5, suppose the goal is to ex-

ecute the statement corresponding to node 3. Inputs which diverge away down

the later true branch from node 2, are rewarded better objective values than

those diverging away down the earlier true branch from node 1. The measure

of closeness to the test goal with respect to control flow through the program

is often referred to as the “approximation level” or “approach level”. This

measure can be combined with the “branch distance” measure. The branch

distance measure rewards solutions that come close to evaluating branch con-

ditions in the desired way. For example, the predicate at the decision at node 2

is b > 0. Inputs that are “closer” to evaluating this condition as false need to

be rewarded better values than those further away. For example, inputs where

b = 2 should be rewarded better objective values that those where b is equal

to 3, 4 or 5 and so on.

The objective function helps guide the search to the required test data. Such

guidance is not a feature of random search. For random test data generation,

input vectors for structures not normally executed by pure chance, i.e. those

only executed by a small number of inputs in comparison to the overall input

domain, may not be found. This is not to say, however, that search-based

approaches will always find test data in all cases.
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s void f1(int a, int b)

{

1 if (a > 0)

// ...

else

2 if (b > 0)

// ...

else

3 // target statement

e }

Figure 1.5: An example program and control flow graph (CFG) for applying
test data search

1.2.1 The Problem of Internal Variables

The use of internal variables in the conditions of programs can result in a degree

of “information loss” when computing the branch distance measure, producing

coarse or flat objective function landscapes for structures within the program.

This in turn results in the search receiving less guidance to the required test

data, making it difficult for the search algorithm to find the inputs that will

evaluate conditions in the program in the desired way.

The degree of difficulty depends on the level of information lost, which in

turn depends on the type of the internal variable and the form of assignments

to it that appear in the program. Some internal variables may only result in a

small amount of information loss, which may not affect the success of the search.

However, in extreme cases, such as in the case of boolean “flag” variables,

almost all useful branch distance information is lost. This is because the flag

variable can only have one of two values - true or false, which in turn means the

branch distance will also only have one of two values - one or zero. This causes

plateaux in the objective function landscape - one plane corresponding to the

“one” distance, or all input vectors that do not cause the target structure to

be covered, and one plane corresponding to the “zero” distance, corresponding

to the required test data. No guidance is provided to the search as to how to

navigate from one plane in the objective function landscape to the other.

This is true in the example of Figure 1.6a. The plateaux corresponding to

the “false” value of the flag can be seen clearly in Figure 1.6b. The flag is only

true when the input value of a is zero, but the search receives no “direction” as

to how to find this value. If the search compares a negative input of a with its



INTRODUCTION 7

CFG
Node

s void f2(int a)

{

1 int flag = 0;

2 if (a == 0)

3 flag = 1;

4 if (flag)

5 // target statement

e }

(a)

 0

 2

 4

 6

 8

 10

-10 -5  0  5  10

br
an

ch
 d

is
ta

nc
e

a

 0

 2

 4

 6

 8

 10

-10 -5  0  5  10

br
an

ch
 d

is
ta

nc
e

a

(b) (c)

Figure 1.6: Branch distances as a result of a flag variable. (a) Program code.
The target statement is node 3 which requires the condition at node 2 to be
evaluated as true. (b) Plot of true branch distance values from node 3, calcu-
lated using |1 - flag|. (c) Plot of potential distances using the original input
value, i.e. |0 - a|.

neighbours, it does not know whether to move towards increased values (closer

to the required zero value of a) or decreased values (further away from the

required zero value of a), since the objective values returned for these inputs are

exactly the same value. The search therefore becomes random. An exhaustive

search could be employed, but if the input domain is very large, this could be

impractical.

Figure 1.6c provides a contrasting landscape which does provide guidance

to the required value of zero.
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1.3 The Problem of this Thesis: States and Evolu-

tionary Test Data Generation

To date, work in the field of search-based structural test data generation has

largely focused on the testing of individual program functions with input-output

behaviour. Test data is generated for atomic function calls.

However functions and components at higher system levels can store internal

data, and can exhibit different behaviours based on the state of that data. This

presents new challenges to the test data generation method. The first challenge

is to generate a sequence of inputs to the test object, since certain program

structures may require the test object to be in a particular state in order for

them to be covered. For example, statements popping a value from a stack

would not normally be covered unless the stack was in a non-empty state. The

second challenge involves the problem of internal variables. State-based test

objects by their very nature contain internal variables in order to manage their

state. This can become problematic when internal variables like flags are used

to manage or query the state, because the search may have difficulties in finding

input sequences in order to cover certain structures within the program.

This thesis considers various possible solutions to the internal variable prob-

lem. One possible solution is to apply ideas from a technique known as the

chaining approach. The basic idea of the chaining approach is to identify a

sequence of statements that need to be executed prior to the target structure.

These statements involve assignments to internal variables. By requiring they

are executed, information previously unavailable to the search can be made

use of, possibly guiding it into potentially promising, unexplored areas of the

test object’s input domain. In this way, the chances of finding input data to

troublesome structural targets may be improved.

1.4 Aims and Objectives of this Thesis

The aims of this thesis encompass the following, general, objectives:

1. To identify the problems that test objects with state behaviour can cause

for evolutionary structural test data generation for procedural programs

written in the C language; and

2. To propose extensions to the evolutionary test data generation framework

so that test data generation might be improved.
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The last section briefly introduced the problems caused by states in test

objects. This thesis aims to improve the evolutionary approach by allowing

it to generate input sequences, as well as incorporating a chaining method

for dealing with problems of internal variables. The finer, detailed, aims and

objectives of this thesis are therefore as follows:

1. Initial hybridization of the evolutionary structural test data generation

approach with the chaining approach;

2. Evaluation of this hybrid approach in the presence of problematic internal

variables;

3. The extension of this hybrid approach to generate input sequences;

4. Evaluation of this extended hybrid approach for test objects with internal

states and internal state variables.

1.5 Contributions of this Thesis

The contributions of this thesis are as follows:

1. The investigation and identification of the problems caused by test objects

with state behaviour for the current, state of the art, evolutionary struc-

tural test data generation approach (referred to as simply the standard

evolutionary approach);

2. The proposal of an encoding of individuals to allow the generation of

input sequences involving multiple callable functions, as part of a method

referred to as the sequence evolutionary approach;

3. The proposal of a method for integration of the chaining approach with

evolutionary search, referred to as the hybrid approach;

4. Demonstration that the hybrid approach can improve on coverage levels

for programs with input-output behaviour and internal variables, when

compared with the standard approach;

5. The addressing of some limitations and weakness of the chaining algorithm

so that further relevant event sequences can be found, and demonstration

of the benefit of these improvements in a number of cases;

6. Extension of the hybrid approach so that input sequences can be gen-

erated, in order for generation of test data for test objects with state

behaviour, referred to as the sequence hybrid approach;
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7. Demonstration that the sequence hybrid approach improves coverage lev-

els for test objects with state behaviour, when compared with the standard

and sequence evolutionary approaches.

1.6 Overview of the Structure of this Thesis

This thesis is organized as follows:

Chapter 2 - Search-Based Software Test Data Generation surveys the

literature in the field. The chapter begins by describing the various meta-

heuristic search techniques used to date in automatically generating test data,

including hill climbing, simulated annealing and evolutionary algorithms. The

chapter then moves on to examine how these techniques have been used to au-

tomate test data generation for structural (white-box), functional (black-box),

non-functional and grey-box test criteria.

Chapter 3 - The State Problem fully introduces and describes the state

problem for evolutionary structural test data generation. Manifestations of the

problem are seen in attempting to generate test data for a handful of test objects

using the standard evolutionary approach. The chapter then reviews some spe-

cific work in the literature relating to evolutionary input sequence generation. A

method for generating input sequences for test objects with a multiple number

of callable functions (for example as part of a module) is proposed. Through a

series of experiments, it is found that this sequence evolutionary approach still

encounters difficulties with test objects containing internal variables.

Chapter 4 - Revisiting the Internal Variable Problem takes another

look at the internal variable problem, with particular focus on test objects with

internal states. Further works in the literature of relevance to the problem

are evaluated. One of these works is the chaining approach. The basic idea

of the chaining approach is to identify a sequence of statements that need to

be executed prior to the target structure, and has potential to overcome the

internal variable problem.

Chapter 5 - Hybridizing Evolutionary Testing with an Extended

Chaining Approach discusses the method for hybridizing evolutionary test

data generation with the chaining approach. Extensions are proposed to the

chaining algorithm to address some weaknesses and limitations present in the

method. Some experiments are performed using nine test objects with simple

input-output behaviour and troublesome internal variables.
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Chapter 6 - Extension of the Hybrid Approach for the State Problem

extends the hybrid approach described in the previous chapter for test objects

with state behaviour, and for the generation of input sequences. This technique

is referred to as the “sequence hybrid approach”. Experiments are performed

which demonstrate the superiority of the approach.

Chapter 7 - Conclusions and Future Work closes the main body of the

thesis with concluding comments and proposals for future work.

The appendices are as follows:

Appendix A - Experimental Framework details the workbench used for

conducting experiments that appear throughout the thesis.

Finally, Appendix B - Program Code for Synthetic Test Objects with

State Behaviour archives the program source code for the state-based test

objects used in experiments conducted in Chapters 3 and 6.
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Chapter 2

Search-Based Software Test

Data Generation: A

Literature Review

2.1 Introduction

This chapter reviews work in the field of automatic test data generation through

the use of metaheuristic search techniques, beginning with an introduction of

each search technique used in automatic test data generation to date. This is

followed by the application of the techniques to various testing types, starting

with structural testing. Here, several basic concepts are introduced that are key

to the remainder of this thesis. The discussion then moves on to the application

of search techniques to other forms of testing, namely black-box (functional)

testing, grey-box testing and non-functional testing.

All examples are presented in the C language [KR88].

2.2 Metaheuristic Search Techniques

Metaheuristic search techniques are high-level frameworks which use heuristics

to find solutions to problems without the need to perform a full exhaustive

enumeration of a search space. They are therefore well suited to finding good

solutions to combinatorial problems at a reasonable computational cost. Such a

problem may have been classified as NP-complete or NP-hard, or be a problem

for which a polynomial time algorithm is known to exist but is not practical.

These frameworks are not standalone algorithms in their own right, but rather

“strategies” that are ready for adaptation to specific problems. Key decisions in

13
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adapting a metaheuristic search strategy include the definition of an encoding

for candidate solutions, so that they can be manipulated by the search. A

good encoding will ensure that candidate solutions sharing a number of similar

properties will be “neighbours” in encoded solution space. Another key decision

is the definition of a problem-specific objective function, which the search uses

as a guide to the quality of candidate solutions.

Chapter 1 briefly introduced some metaheuristic techniques that have been

used in software test data generation, namely hill climbing, simulated annealing

and evolutionary algorithms. This section discusses these methods in more

detail. Further treatment can be found in reference [Ree95].

The last decade has seen the emergence of many new techniques, which

have not been exploited by the test data generation techniques presented here.

The interested reader is directed to reference [CDG99], which gives treatment

to some of these methods - for example ant colony algorithms, scatter search

and memetic algorithms.

2.2.1 Hill Climbing

“Hill climbing” is a well known local search algorithm. Hill climbing works to

improve one solution, with an initial solution randomly chosen from the search

space as a starting point. The neighbourhood of this solution is investigated.

If a better solution is found, then this replaces the current solution. The neigh-

bourhood of the new solution is then investigated. If a better solution is found,

the current solution is replaced again, and so on, until no improved neighbours

can be found for the current solution.

In a “steepest ascent” climbing strategy, all neighbours are evaluated, with

the neighbour offering the greatest improvement chosen to replace the current

solution. In a “random ascent” strategy (sometimes referred to as “first as-

cent”), neighbours are examined at random and the first neighbour to offer an

improvement is chosen. A high level description of the algorithm can be seen

in Figure 2.1.

Hill climbing is simple and gives fast results. However it is easy for the search

to yield sub-optimal results when the hill climbed leads to a solution that is

locally optimal, but not globally optimal. In such cases, the search becomes

trapped at the peak of a hill, unable to explore other areas of the search space.

The search will also become stuck along plateaux in the landscape. In such

circumstances, no neighbouring solution is deemed to offer an improvement over

the current solution, since they all have the same objective value. Therefore, in

non-trivial landscapes, results obtained with hill climbing are highly dependent
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Select a starting solution s ∈ S
Repeat

Select s′ ∈ N(s) such that obj(s′) > obj(s) according to ascent strategy
s← s′

Until obj(s) ≥ obj(s′),∀s′ ∈ N(s)

Figure 2.1: High level description of a hill climbing algorithm, for a problem
with solution space S; neighbourhood structure N ; and obj, the objective func-
tion to be maximized

on the starting solution. A common extension to this algorithm is to incorporate

a series of “restarts” involving different initial solutions, to sample more of the

search space and minimise this problem as much as possible.

2.2.2 Simulated Annealing

It is desirable to have a search framework that is less dependent on the starting

solution. Simulated annealing is similar in principle to hill climbing. However,

by probabilistically accepting poorer solutions, simulated annealing allows for

less restricted movement around the search space. The probability of acceptance

p of an inferior solution changes as the search progresses, and is calculated as:

p = e−
δ

t

where δ is the difference in objective value between the current solution and

the neighbouring inferior solution being considered, and t is a control parameter

known as the temperature. The temperature is cooled according to a cooling

schedule. Initially the temperature is high, in order to allow free movement

around the search space, and so that dependency on the starting solution is

lost. As the search progresses, the temperature decreases. However, if cooling

is too rapid, not enough of the search space will be explored, and the chances of

the search becoming stuck in local optima are increased. The basic algorithm,

for minimising an objective function, can be seen in Figure 2.2.

The name “simulated annealing” originates from the analogy of the tech-

nique with the chemical process of annealing - the cooling of a material in a

heat bath. If a solid material is heated past its melting point, and then cooled

back into a solid state, the structural properties of the cooled solid depend on

the rate of cooling. An algorithm proposed by Metropolis et al. [MRR+53]

simulates the change in energy of the system when subjected to a cooling pro-

cess, until it converges into a steady state. This algorithm was later proposed
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Select a starting solution s ∈ S
Select an initial temperature t > 0
Repeat

it← 0
Repeat

Select s′ ∈ N(s) at random
∆e← obj(s′)− obj(s)
If ∆e < 0

s← s′

Else
Generate random number r, 0 ≤ r < 1

If r < e−
δ

t Then s← s′

End If
it← it + 1

Until it = num solns
Decrease t according to cooling schedule

Until Stopping Condition Reached

Figure 2.2: High level description of a simulated annealing algorithm, for a
problem with solution space S; neighbourhood structure N ; num solns, the
number of solutions to consider at each temperature level t; and obj, the objec-
tive function to be minimized

as the basis of the search mechanism by Kirkpatrick et al. [KGV83].

2.2.3 Evolutionary Algorithms

Evolutionary algorithms use simulated evolution as a search strategy to evolve

candidate solutions, using operators inspired by genetics and natural selection.

Genetic algorithms are probably the most well known form of evolutionary

algorithm, having been conceived by John Holland in the United States during

the late sixties. Genetic algorithms are closely related to evolution strategies,

which were developed independently at the about the same time in Germany by

Ingo Rechenburg and Hans-Paul Schwefel. For genetic algorithms, the search is

primarily driven by the use of recombination - a mechanism of exchange of in-

formation between solutions to “breed” new ones - whereas evolution strategies

principally use mutation - a process of randomly modifying solutions. Although

these different approaches were developed independently, and with different di-

rections in mind, recent work has incorporated ideas from both traditions -

narrowing the differences between the two. The discussion here, however, fo-

cuses on genetic algorithms. For more information on evolution strategies, see

references [BHS91, Bac96, Whi01].
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Genetic Algorithms

The name “genetic algorithm” comes from the analogy between the encoding of

candidate solutions as a sequence of simple components, and the genetic struc-

ture of a chromosome. Continuing with this analogy, solutions are often referred

to as individuals or chromosomes. The components of the solution are some-

times referred to as genes, with the possible values for each component called

alleles, and their position in the sequence the locus. Furthermore, the actual

encoded structure of the solution for manipulation by the genetic algorithm is

called the genotype, with the decoded structure known as the phenotype. For

many applications, the genotype is simply a string of binary digits (this issue

will be revisited in the context of test data generation). For example, a vector

of three integers <112, 255, 52> in the range [0, 255] might be represented

as <01110000, 11111111, 00110100>. For real values, a decision must made

on the precision to be used and what mapping should be used to the binary

strings. One possibility, for example, is to scale real values onto integer values

according to the required precision, and then use an integer encoding.

Genetic algorithms maintain a population of solutions rather than just one

current solution. Therefore, the search is afforded many starting points, and the

chance to sample more of the search space than local searches. The population

is iteratively recombined and mutated to evolve successive populations, known

as generations.

The recombination operator takes two parent solutions and “breeds” them

to produce two new offspring. In one-point recombination, a single crossover

point is chosen at random. A recombination of two individuals <0, 255, 0> and

<255, 0, 255>, 000000001111111100000000 and 111111110000000011111111

in encoded form, with a single-point crossover chosen to take place at locus 12,

would take place as follows:

000000001111 111100000000


000000001111000011111111

111111110000 000011111111 111111110000111100000000

This produces two offspring - <0, 240, 255> and <255, 15, 0>. Multiple point

crossover operators choose a fixed number of loci for recombination. Discrete

recombination [MSV93], on the other hand, produces offspring where every

component value is chosen randomly from one of the parents with equal prob-

ability.

Various selection mechanisms can be used to decide which individuals should

be used to create offspring for the next generation. Key to this is the concept

of the “fitness” of individuals. The fitness of an individual can be the value
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obtained directly from the objective function, or this value scaled in some way.

The idea of selection is to favour the fitter individuals, in the hope of breeding

fitter offspring. However, too strong a bias towards the best individuals will

result in their dominance of future generations, thus reducing diversity and

increasing the chance of premature convergence on one area of the search space.

Conversely, too weak a strategy will result in too much exploration, and not

enough evolution for the search to make substantial progress.

Holland’s original genetic algorithm [Hol75] used fitness-proportionate selec-

tion. In this selection mechanism, the expected number of times an individual

is selected for reproduction is proportionate to the individual’s fitness in com-

parison with the rest of the population. The process is analogous to the use of

a roulette wheel. Each individual is allocated a slice of the wheel in proportion

to its fitness. The wheel is then spun N times in order to pick N parents. At

the end of each spin, the position of the wheel marker denotes an individual

selected to be a parent for the next generation. Fitness-proportionate selec-

tion has difficulties in maintaining a constant selective pressure throughout the

search. Selective pressure is the probability of the best individual being se-

lected, compared to the average probability of selection of all individuals. In

the first few generations of the search, fitness variance is usually high. With

fitness-proportionate selection, selective pressure will also be high, since the

most highly-fit individuals will be granted the greatest opportunities to become

parents. This can lead to premature convergence. Also in later generations,

when fitness values amongst individuals are similar and the fitness variance of

the population is correspondingly low, selective pressure is also low. This can

lead to stagnation of the search.

Linear ranking of individuals is a technique which proposes to circumvent

this problem. Individuals are sorted by fitness, with selection performed ac-

cording to rank, rather than through the direct use of fitness values. A linear

ranking mechanism with bias Z, where 1 < Z ≤ 2, allocates a selective bias

of Z to the top individual, a bias of 1.0 to the median individual, and 2 − Z

to the bottom individual. With a constant bias applied throughout the search,

selective pressure is more constant and controlled [Whi89].

Tournament selection [DG91] is a noisy but fast rank selection algorithm.

The population does not need to be sorted into fitness order. Two individuals

are chosen at random from the population. A random number, 0 < r ≤ 1,

is then chosen. If r is less than p (where p is the probability of the better

individual being selected), the fitter of the two individuals ‘wins’ and is chosen

to be a parent, otherwise the less fit individual is chosen. The competing
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individuals are returned to the population for further possible selection. This is

repeated N times until the required number of parents have been selected. In all

probability, every individual is sampled twice, with the best individual selected

for reproduction twice, the median individual once, with the worst individual

remaining unselected. The resulting selective bias is dependent on p. If p = 1,

then in all probability a ranking with a bias of 2.0 towards the best individual

is produced. If 0.5 < p ≤ 1, then the bias is less than 2.0.

Once the set of parents has been selected, recombination can take place

to form the next generation. Crossover is applied to individuals selected at

random with a probability pc (referred to as the crossover rate or crossover

probability). If crossover takes place, the offspring are inserted into the new

population. If crossover does not take place, the parents are simply copied into

the new population. After recombination, a stage of mutation is employed,

which is responsible for introducing or reintroducing genetic material into the

search, in the interests of maintaining diversification. This is usually achieved

by flipping bits of the binary strings at some low probability rate pm, which is

usually less than 0.01.

A high-level description of a genetic algorithm can be seen in Figure 2.3.

The initial population is generated at random, or seeded with pre-set individu-

als. The search is terminated when some stopping criterion has been met, for

example when the number of generations has reached some pre-imposed limit.

Advanced Encodings and Operators

Traditionally chromosomes are represented as a string of binary digits. A prob-

lem with standard binary encoding is the disparity that can occur between

solutions that are close to each other in unencoded solution space, but are far

apart in the encoded binary representation. For example in a standard binary

encoding the integer 7 is represented as 0111, yet 8 is represented as 1000.

Therefore, the crossover and mutation operators must change all four bits to

move from one integer value to the neighbouring other. An alternative is the

use of a gray code. A gray code is a binary representation where adjacent

integers are also hamming distance 1 neighbours in hamming space. For exam-

ple, in standard binary reflected gray code, 7 is represented as 0100, and 8 as

1100. Empirical evidence has shown that gray codes are generally superior to

standard binary encodings [Whi99, WRDM96].

Goldberg argues that binary representation decomposes the chromosome

into the largest number of smallest possible building blocks in order for the re-

combination and mutation operators to work most effectively [Gol89]. However,
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this is disputed by Antonisse [Ant89], who advocates the use of more expressive

alphabets. Davis [Dav96] supports this view. For nine real-world applications

using genetic algorithms over a variety of problem domains, Davis found that

real-valued representations always outperformed binary encodings (real-valued

encodings are also the representational choice of evolution strategies [Whi01]).

Of course, the use of a real-valued encoding raises the question of how recom-

bination and mutation should work. The recombination operator only requires

an underlying sequence representation, and as such can operate as for binary

encodings. Possibilities for the mutation operator include the replacement of a

real number in the chromosome with a new, randomly generated number. More

advanced mutation operators are based on real number creep. These operators

sweep across the chromosome, pushing values up and down by a small amount.

In this way, an element of local search is incorporated [Dav96].

Competition and Migration across Subpopulations

Splitting the overall population into subpopulations is one way to seek improve-

ment to the basic genetic algorithm. Since each initial population will sample

the search space in different ways, each population will explore a different search

trajectory. Thus diversity is encouraged. Subpopulations can compete for re-

sources [SVM94, SVM96]. In this model, successful subpopulations are allowed

to proliferate, receiving a greater proportion of individuals, whereas weaker

subpopulations are punished, with individuals dying off. By employing Mi-

gration [Tan89, SWM91, Gor91], subpopulations can occasionally exchange a

small number of solutions with one another. This trading of genetic material

helps to prevent premature convergence in one population.

The subpopulation model, more commonly referred to as the island model

or course-grained model, is a natural way to parallelize the search. However

the model generally yields improvement even when run on a single processor

[Whi01].

Genetic algorithms have been successfully applied to a wide range of prob-

lems. For introductory texts, see references [Gol89, Mit96]. For shorter overviews

and tutorials, see references [SP94, Whi01, Whi94].

2.3 Structural (White-Box) Testing

Structural or white-box testing is the process of deriving tests from the internal

structure of the software under test. This section summarizes some of the

achievements in automating structural test data generation through the use of
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Randomly generate or seed initial population P
Repeat

Evaluate fitness of each individual in P
Select parents from P according to selection mechanism
Recombine parents to form new offspring
Construct new population P ′ from parents and offspring
Mutate P ′

P ← P ′

Until Stopping Condition Reached

Figure 2.3: High level description of a genetic algorithm

metaheuristic techniques. These are compared with earlier related approaches.

Before this, some basic concepts are reviewed.

2.3.1 Basic Concepts

Many forms of structural testing make reference to the control flow graph (CFG)

of the program in question. A control flow graph for a program F is a directed

graph G = (N,E, s, e), where N is a set of nodes, E is a set of edges, and s and

e are respective unique entry and exit nodes to the graph. Each node n ∈ N

is a statement in the program, with each edge, e = (ni, nj) ∈ E, representing

a transfer of control from node ni to node nj. An example of a control flow

graph can be seen for a version of a triangle classification program in Figure

2.4. The triangle classification program is a benchmark used in many testing

papers. Assuming three non-zero, non-negative integer lengths for the sides of a

triangle, the program decides if the triangle is isosceles, scalene, equilateral, or

invalid. Nodes corresponding to decision statements (for an example an if or a

while statement) are referred to as branching nodes. In the triangle example,

branching nodes are nodes 1, 5, 9, 13, 16 and 18. Outgoing edges from these

nodes are referred to as branches. The condition determining whether a branch

is taken is referred to as the branch predicate. For the true branch from node

1, the branch predicate is a > b.

An input vector I is a vector I = (x1, x2, . . . , xk) of input variables to the

program F . The domain of an input variable xi, 1 ≤ i ≤ k, is the set if all

values that xi can take on. The domain of the program F is the cross product

D = Dx1
×Dx2

× . . .×Dxk
where each Dxi

is the domain for the input variable

xi. A program input x is a single point in the k-dimensional input space D,

x ∈ D.

A path P through a control flow graph is a sequence P =< n1, n2, . . . , nm >,
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such that for all i, 1 ≤ i < m, (ni, ni+1) ∈ E. A path is said to be feasible if

there exists a program input for which the path is traversed, otherwise the path

is said to be infeasible.

A definition of a variable v is a node which modifies the value of v, for

example an assignment statement or an input statement. The variable type

is defined in the triangle program at node 14. A use of a variable v is a

node in which v is referenced, for example in an assignment statement, an

output statement, or a branch predicate expression. In the triangle classification

example, the variables a and b are used at node 1.

A definition-clear path with respect to variable v is a path within which v

is not modified. In the triangle example, all paths from node 13 are definition-

clear with respect to variables a, b and c. However, no path from node 13 is

definition clear with respect to type.

The term control dependency is used to describe the reliance of a node’s

execution on the outcome at previous branching nodes [FOW87]. A node z is

post-dominated by a node y in G if and only if every path from y to the exit

node e contains z. Node z post-dominates a branch (y, x) if and only if every

path from y to the exit node e through (y, x) contains z. The node z is control

dependent on y if and only if z post-dominates one of the branches of y, and z

does not post-dominate y. In the triangle example, node 17 is control dependent

on node 16, which in turn is control dependent on node 13. Node 13 itself has

no control dependencies, other than that of the external condition, entry, that

causes the procedure to be executed. This information can be captured by a

control dependence graph. Figure 2.5 shows the control dependence graph for

the triangle program.

The techniques now described have been implemented for experimentation

with a variety of programming languages. For consistency, however, all exam-

ples here are presented in C.

2.3.2 Static Structural Test Data Generation

Static structural test data generation is based on analysis of the internal struc-

ture of the program, without requiring that the program is actually executed.

Symbolic Execution

Symbolic execution [Kin75, Kin76] is not the execution of a program in its true

sense, but rather the process of assigning expressions to program variables as

a path is followed through the code structure. The technique can be used to
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CFG

s

1

2-4

5

6-8

9

10-12

13

15

1416

18

1719

e

Node
s int tri_type(int a, int b, int c)

{

int type;

1 if (a > b)

2-4 { int t = a; a = b; b = t; }

5 if (a > c)

6-8 { int t = a; a = c; c = t; }

9 if (b > c)

10-12 { int t = b; b = c; c = t; }

13 if (a + b <= c)

{

14 type = NOT_A_TRIANGLE;

}

else

{

15 type = SCALENE;

16 if (a == b && b == c)

{

17 type = EQUILATERAL;

}

18 else if (a == b || b == c)

{

19 type = ISOSCELES;

}

}

e return type;

}

Figure 2.4: A triangle classification program and its corresponding control flow
graph
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entry

1 5 9 13

2-4 6-8 10-12 14 15 16

17 18

19

Figure 2.5: Control dependence graph for the triangle classification program of
Figure 2.4

derive a constraint system in terms of the input variables which describes the

conditions necessary for the traversal of a given path [Cla76, BEL75, RHC76].

A forward traversal (or forward substitution) of a path, can be demonstrated

with the triangle classification program in Figure 2.4. Suppose the path < s,

1, 5, 9, 10, 11, 12, 13, 14, e > is to be executed. The input variables a, b and

c are assigned the constant variables i, j and k respectively. At nodes 1 and

5, the respective false branches are to be taken. Therefore, the first and second

constraints of the constraint system for this path are:

(1) i <= j

(2) i <= k

The path also requires that the true branch be taken from node 9. This requires

the addition of a third constraint:

(3) j > k

The following expressions are assigned at nodes 10 through to 12 respectively:

t = j

b = k

c = t

A fourth and final constraint from node 13 then needs to be added. With a = i,

b now equal to k, and c = t = j, this becomes:

(4) i + k <= j
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Backward path traversal is also possible, starting with the final node and

following the path in a reverse manner to the start node. The resulting con-

straint system is the same as for forward traversal, but no storage is required

for the intermediate symbolic expressions of variables. Forward traversal, how-

ever, allows for early detection of infeasible paths if the constraints generated

are inconsistent. Consider the path < s, 1, 2, 3, 4, 5, 6, 7, 8, 9, 13, . . . , e > which

requires that the true branches are taken from nodes 1 and 5, and that the

false branch from node 9 is taken. The constraints derived from the branching

predicates from the initial section of the path through to node 9 are:

(1) i > j

(2) j > k

(3) i <= j

Clearly constraints 1 and 3 are contradictory, indicating that the path is in-

feasible. Backward traversal would have meant symbolic execution of the path

backwards from e through to 13 first, and then backwards through the nodes

to node 1 before it would be possible to determine this fact.

Solutions to the constraint system are input data which will execute the

path. Constraint satisfaction problems are in general NP-complete [GJ79].

However, if the constraints are linear, linear programming techniques can be

applied [Cla76]. Heuristic methods can be used to attempt the finding of a

solution where this is not the case. For example Boyer et al. [BEL75] employ

hill climbing. Ramamoorthy et al. [RHC76] use a trial and error procedure,

monitoring the effects of random-value assignments to variables in the con-

straint system. It is unlikely, however, that this procedure would be efficient

for non-trivial programs.

If the test goal is the execution of a particular statement, all paths leading

to the statement are explored. This is a problem in the presence of loops, due

to the potential number of paths that may need to be examined. In Clarke’s

test data generator system [Cla76], a path has to be manually selected by the

tester. Many generators symbolically simply execute the loop K times, where

K is specified by the tester or chosen by the system [RHC76]. A large number

of constraints generated using this method, however, are not satisfiable.

Symbolic execution has several other problems, for example resolving com-

puted storage locations such as array subscripts.
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a[i] = 0;

a[j] = 1;

if (a[i] > 0)

{

// perform some action

}

In the above code fragment, it is not known in general whether a[i] and a[j]

refer to the same element, because the variables i and j are not bound to

specific values. This information is important, since if i and j are equal, then

the value of a[i] in the condition is 1 and the branch predicate evaluates to

true. If not, the value of a[i] is 0 and the predicate evaluates to false. Boyer

et al. [BEL75] and Ramamoorthy et al. [RHC76] suggest possible solutions to

this problem. Both methods significantly increase the complexity and memory

requirements of the symbolic execution system. A similar problem occurs with

the use of pointers. In the following example, it is not known if a and b refer

to the same location. Without this knowledge, the expression to assign to c

cannot be determined.

*a = 0;

*b = 1;

c = *a;

Further difficulties include the handling of procedure calls. A common so-

lution is to simply inline the called procedure into the calling routine [RHC76].

However the number of paths can grow very rapidly with this approach.

Although any computable function can be written without the use of arrays,

pointers or procedure calls, it is not normal practice for programmers to avoid

such constructs simply because of the flexibility they offer, and the role they

play in reducing the complexity of program code.

Domain Reduction

Domain reduction is a test data generation technique that was originally em-

ployed as part of constraint-based testing, developed by DeMillo and Offutt

[DO91]. Constraint-based testing builds up constraint systems which describe

the given test goal. The solution to this constraint system brings about sat-

isfaction of the goal. The original purpose of Constraint-based Testing was to

generate test data for mutation testing. Reachability constraints within the

constraint system describe conditions under which a particular statement will

be reached. Necessity constraints describe the conditions under which a mutant
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will be killed. Symbolic execution is used to develop the constraints in terms

of the input variables. Domain reduction is then used to attempt a solution to

the constraints. This procedure begins with the domains of each input variable.

These can be derived from type or specification information, or be supplied by

the tester. The domains are then reduced using information in the constraints,

beginning with those involving a relation operator, a variable and a constant,

and constraints involving a relation operator and two variables. Remaining

constraints are then simplified by back-substituting values. When no further

simplification is possible, the input variable with the smallest remaining do-

main is chosen, and a random value is assigned to it. The value of this variable

is then back-substituted throughout the constraint system, in order to allow

further reduction of the domains of remaining variables. If all variables can

be assigned values in this manner, then the constraint system will have been

satisfied; otherwise the variable assignment stage is repeated, in the hope of

this time successfully selecting appropriate random numbers for the variables.

With constraint-based testing, constraints must be computed before they

are analyzed. Since these constraints are derived using symbolic execution, the

method suffers from similar problems involving loops, procedure calls and com-

puted storage locations. Dynamic domain reduction was introduced by Offutt

et al. [OJP99] with the intent of addressing some of these issues. Although

called dynamic domain reduction, the technique still has the characteristic that

the program is not executed with real input values. As with standard domain

reduction, dynamic domain reduction starts with the domains of the input vari-

ables. However, in contrast to standard domain reduction, these domains are

reduced “dynamically” during the symbolic execution stage, using constraints

composed from branch predicates encountered as the path is followed. If the

branch predicate involves a variable comparison, the domains of the input vari-

ables responsible for the outcome at the decision are split at some arbitrary

“split point”, rather than assigning random input values. For example if the

initial domains of two input variables y and z are [-10...10] and a branch pred-

icate y < z is encountered which needs to be executed as true, the domains

might be split leaving the domain of y to be [-10...0] and z to be [1...10]. A

back tracking procedure can be used to correct any spurious split points if the

execution can only proceed so far down the specified path, and is unable to

continue further due to a bad decision made earlier in the reduction process.

Despite setting out to deal with problems traditionally encountered by tech-

niques based on symbolic execution, dynamic domain reduction still suffers with

difficulties due to computed storage locations and loops. Furthermore, it is not
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clear how domain reduction techniques handle non-ordinal variable types, such

as enumerations.

2.3.3 Dynamic Structural Test Data Generation

As has already been discussed, the relationship between input data and internal

variables for structural test data generation is difficult to analyse statically

in the presence of loops and computed storage locations. Dynamic methods

execute the program in question with some input, and then simply observe the

results via some form of program instrumentation. Since array subscripts and

pointer values are known at run-time, many of the problems associated with

symbolic execution can be circumvented.

Random Testing

Random testing simply executes the program with random inputs and then

observes the program structures executed. This technique works well for simple

programs. However structures that are only executed with a low probability

are often not covered. Consider the triangle classification example once more

(Figure 2.4). The true branch from node 16 requires that the three input values

for a, b and c are all equal. Such a branch is unlikely to be executed by chance.

Even if the domain of integer values for each variable were limited to values

between 1 and 100, the probability of all three variables being selected with the

same value is 1 in 10,000. In such cases a more directed search technique is

required to locate test data.

Applying Local Search

Miller and Spooner [MS76] were the first to combine the results of actual exe-

cutions of the program with a search technique. Their method was originally

designed for the generation of floating-point test data, however the principles

are more widely applicable. The tester selects a path through the program, and

then produces a straight-line version of it, containing only that path. Branch-

ing statements are then replaced with a “path constraint” of the form ci = 0;

ci > 0; or ci ≥ 0; where ci is an estimate of how close the constraint is to

being satisfied. For example, a branch predicate of the form a == b might be

rearranged into the path constraint abs(a − b) = 0. Take the triangle example

and the execution of the path < s, 1, 5, 9, 10, 11, 12, 13, 14, e > again. The

straight-line program with its respective path constraints would be re-arranged

as follows:
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int tri_type(int a, int b, int c)

{

int type;

(c1 = (b− a)) >= 0

int t = a; a = b; b = t;

(c2 = (c− a)) >= 0

(c3 = (b− c)) > 0

(c4 = (c− (a + b))) >= 0

type = NOT_A_TRIANGLE;

}

Note that the value of c2, c3 and c4 are dependent on the computations

between c1 and c2. However, this information is not required for the derivation

of the path constraints, as it would be for the process of test data generation

using symbolic execution.

Using these constraints, a function f is constructed. The value of f provides

a real-valued estimate of how close all of the constraints are to being satisfied,

being negative when one or more of the constraints remains unsatisfied, and

positive when all of the constraints are satisfied. Input values of a, b and c

are then sought through the use of numerical maximisation techniques, which

attempt to push the value of f closer and closer to zero, in the hope of eventually

making it positive.

Under normal conditions, execution of the complete path is not possible

until branch predicates encountered along the path are evaluated in the required

manner. However, in the straight-line version of the program, it is possible for

run-time errors to occur which would not have been possible in the original

program. In the following segment of code, if execution is allowed to proceed

down the true branch with values of i less than zero, or greater than size, an

error will be induced, because the array index used in the assignment statement

will be out of bounds:

if (i >= 0 && i < size)

{

a[i] = 0;

}

It was not until 1990 that the ideas of Miller and Spooner were extended

by Korel [Kor90] for Pascal programs. In this work, the test data generation

procedure worked on an instrumented version of the original program without

the need for a straight-line version to be produced. The search targeted the
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satisfaction of each branch predicate along the path in turn, circumventing

issues encountered by the work of Miller and Spooner. To execute some desired

path, the program is initially executed with some arbitrary input. If during

execution an undesired branch is taken - one which deviates from the desired

path - a local search for program inputs is invoked, using an objective function

derived from the predicate of the desired, alternative branch. This objective

function describes how “close” the predicate is to being true. The value obtained

is referred to as the branch distance.

Take the triangle example and the execution of the path < s, 1, 5, 9, 10,

11, 12, 13, 14, e > again. If the function is executed with the program input

(a=10, b=20, c=30), control flow successfully follows the false branches from

nodes 1 and 5. However control flow diverges away from the intended path

down the false branch at node 9. At this point the local search is invoked to

change the program inputs so that the alternative true branch is taken. If, in

general, the branch predicate is assumed to be of the form a op b, where a

and b are arithmetic expressions and op is a relational operator, an objective

function of the form f rel 0 is derived, where f and rel are given in Table 2.1.

The function is to be minimized, being positive (or zero if rel is ‘<’) when the

current branch predicate for the required branch is false, and negative (or zero

if rel is ‘=’ or ‘≤’) when it is true. For the predicate of the true branch from

node 9, the objective function is c - b > 0. The value of this function for the

program input (a=10, b=20, c=30) is 30 - 20 = 10. The program must be

instrumented so that objective values can be computed. This can be performed

within the branching expression, for example as follows:

if (eval_obj(9, b, c))

{

...

Here, the program function eval_obj reports branch distances at node 9

using the local values of b and c. This function will then return a boolean value

corresponding to the evaluation of the original branching expression, in order

for program execution to resume as normal.

The local search for deriving input values in accordance with the objective

function is known as the alternating variable method. Each input variable is

taken in turn and its value adjusted, keeping the other variable values constant.

The first stage of manipulating an input variable is called the exploratory phase.

This probes the neighbourhood of the variable by increasing and decreasing its

original value. If either move leads to an improved objective value, a pattern

phase is entered. In the pattern phase, a larger move is made in the direction
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Table 2.1: Korel’s objective functions for relational predicates

Relational predicate f rel

a > b b− a <
a ≥ b b− a ≤
a < b a− b <
a ≤ b a− b ≤
a = b abs(a− b) =
a 6= b −abs(a− b) <

of the improvement. A series of similar moves is made until a minimum for the

objective function is found for the variable. The next input variable is then

selected for an exploratory phase.

Return to the triangle example again, for which execution had diverged from

the intended path at node 9. Decreases and increases of a have no effect on the

objective value. Therefore b is chosen. A decrease of b leads to a worse objective

value, but an increase leads to an improvement. The pattern phase is entered

for b, which will be increased until b > c. Suppose the value 31 is reached.

The new input vector is now (a=10, b=31, c=30). Control flow now proceeds

through branching node 9 as desired, however execution now diverges away at

node 13, since the value of a + b at the node is greater than the value of c. The

local search is invoked again, this time to adjust the input values so that the

true branch is taken from node 13, whilst maintaining the already correct sub-

path up to this node. The new objective function, derived from the true branch

predicate, is (a + b) - c <= 0. A decrease of the input value of b leads to a

violation of the sub-path up to node 9, yet an improved value of the objective

function is found for an increase of b (since the internal values of b and c are

swapped at nodes 10-12). Eventually the input vector (a=10, b=40, c=30)

will be found. This input vector evaluates branching node 13 as true, and the

complete path is executed.

As with all local searches, the final result is dependent on the starting so-

lution. Consider the example of Figure 2.6. If the input is initially selected as

(a=10, b=10, c=10), control flow proceeds directly down to the final branch-

ing node. However the variable c cannot be changed to a value less than 0,

because the already successful sub-path up to the final branching node will be

violated. In this case, the search will fail.

Heuristic search methods have the potential to make moves through variable

values that cannot lead to an improvement in the value of the current cost

function. This can lead to many wasteful and costly executions of the program.



32 CHAPTER 2

void nested_example(int a, int b, int c)

{

if (a == b)

if (b == c)

if (c < 0)

// target

}

Figure 2.6: Example program with nested structures

In the triangle example, changing the value of the input variable c does not

have an effect on branching node 1. In order to make the search more efficient,

Korel’s work makes use of extra information derived from the program, in the

form of an “influences” graph. An influences graph is used to detect which input

variables are able to influence the outcome at the current branching node, as

determined using dynamic data flow analysis. A risk analysis of input variables

is also undertaken in order to decide if they could potentially violate the already

successful sub-path. For example at node 5, it is more attractive to manipulate

c rather than a or b, since changing a or b may change the current successful

sub-path through node 1.

Gallagher and Narasimhan [GN97] built on Korel’s work for programs writ-

ten in Ada. In particular, this was the first work to record support for the use of

logical connectives within branch predicates. For predicates of the form A and

B, the overall objective value is formed from the summation of the individual

objective values of the expressions A and B. For predicates of the form A or

B, the objective value is the minimum value of the individual objective values

of the expressions.

The Goal-Oriented Approach

In his paper published in 1992, Korel developed what became known as the goal-

oriented approach [Kor92]. All of the techniques concentrate on the execution of

a path. For fulfilling a structural coverage criterion like statement coverage, this

means a path has to be selected for each individual uncovered statement. The

goal-oriented approach removes this requirement. This is achieved through the

classification of branches in the control flow graph of the program with respect

to a target node as either critical, semi-critical or non-essential. This can be

performed automatically on the basis of the program’s control flow graph.

For branches leaving a node on which the target is control dependent, a

critical branch is the edge which leads the execution path away from the target
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node. If control flow is driven down a critical branch, there is no prospect of the

target being reached. Therefore, an objective function, of the form outlined in

the previous section, is associated with the branch predicate of the alternative

branch. The alternating variable search method is then employed to seek inputs

so the alternative branch is taken instead. If the required inputs cannot be

found, the overall process terminates, with the target remaining unexecuted.

A semi-critical branch is one which leads to the target node, but only via

the backward edge of a loop. The alternative branch from the same branching

node leads directly to the target node. In the case where the execution is driven

down a semi-critical branch, the alternating variable method is again invoked

to seek inputs for the execution of the alternative branch. If suitable input

values cannot be found, however, the process does not terminate. Execution

is allowed to flow down the semi-critical branch, in the hope of taking the

alternative branch in the next iteration of the loop.

Finally, a non-essential branch is neither critical or semi-critical. Non-

essential branches do not determine whether the target will be reached, regard-

less of their position in the control flow graph. Therefore, execution is allowed

to proceed unhindered through these branches.

Take the example of Figure 2.7, with the target being the execution of node

5. The classification of each branch can be seen from the control flow graph

in Figure 2.8. The false branches from nodes 1 and 3 are critical since node

5 cannot be reached if they are executed. The false branch from condition 4

is semi-critical, because although control flow diverges away from the target at

this point, the target may still be reached in the next iteration of the loop. If

the input vector is (a=0) the false branch from condition 1 is taken, and so

the search procedure is invoked to change the value of a. Control flow proceeds

through down the true branch from node 1, but from node 4 the false branch is

taken. However, the search cannot change the outcome at this branch, and so

the flow of control is allowed to continue around the loop a further nine times

upon which the true branch from node 4 is taken, and the target is reached.

As the goal-oriented method also employs the alternating variable local

search, it suffers from similar problems to those of Korel’s original approach.

The removal of the requirement to select a path, although relieving some effort

on behalf of the tester, introduces new ways in which the test data search can

fail. Take the example of Figure 2.9 and the execution of the true branch from

node 4. The true branch is only taken for objective values less than or equal

to zero. Consider what happens when the initial input vector is selected so

that a is less than zero (approximately half of the input domain). With such
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Node

s void goal_oriented_example(int a)

{

1 if (a > 0)

{

2 int b = 10;

3 while (b > 0)

{

4 if (b == 1)

{

5 // target

}

6 b --;

}

}

e return;

}

Figure 2.7: Example program for demonstrating the goal-oriented approach

a starting point, the critical false branch from node 4 is taken. The search

will fail, since small exploratory moves of a will have no effect on the objective

function associated with this condition, which is concerned only with the value

of the internal variable b. The landscape of the objective function in this region

of the search space is flat (Figure 2.10).

In this example, one could attribute the failure to the use of a local search

technique. A global search technique such as a genetic algorithm is likely to

sample the input domain more thoroughly and find the required value of a. The

local search could incorporate a series of restarts. However, it may be that the

required path up to the target node is found with some very low probability.

Even genetic algorithms will have trouble with these search spaces (see Section

2.3.5).

Korel realized that the problem might be solved by simply identifying a

sequence of nodes which need to be executed prior to the test goal. In the

example, if node 3 were to be executed before node 4, then the search would

focus on the sloping part of the objective function surface. This concept is the

basis of the chaining approach.
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Figure 2.8: Control flow graph and branch classification for example program
demonstrating the goal-oriented approach (Figure 2.7). Node 5 is the target.
C represents a critical branch; S, a semi-critical branch; and N , a non-essential
branch
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Node

s void chaining_approach_example(int a)

{

1 int b = 0;

2 if (a > 0)

{

3 b = a;

}

4 if (b >= 10)

{

5 // target

}

// ...

}

Figure 2.9: Example program for demonstrating the chaining approach
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Figure 2.10: Objective function landscape for execution of node 4 as true for
the example program for demonstrating the chaining approach of Figure 2.9
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The Chaining Approach

The chaining approach [FK96a, Kor96, FK96b] uses the concept of an event

sequence to find the sequence of program nodes that need to be executed prior

to the target structure. The program nodes added to the event sequence are

identified using data dependency analysis. This section briefly introduces the

approach, which is central to this thesis, and discussed in finer detail in Chapter

4.

Recall from the last section that the search for inputs to execute the branch-

ing node 4 as true for the program of Figure 2.9 can fail when the value of a is

negative, for example when a = -10. In this case the false branch from node 4

becomes critical. However, the local search is unable to find an input value of a

so that the alternative true branch is taken, since exploratory moves from -10

yield no change in values of the objective function associated with this branch.

When inputs cannot be found to change the flow of control so that a critical

branch (p, q) is avoided, p is declared as a “problem” node. Event sequences

are generated by searching for “last definition” statements for variables used

at the problem node. A last definition statement is simply a program node n

that assigns a value to a variable which may be potentially used at the problem

node p. For it to be a last definition therefore, a definition-clear path must exist

between n and p. In the example, the variable used at node 4 is the internal

variable b. This variable is defined at nodes 1 and 3. Therefore, two differ-

ent event sequences are generated, one inserting an event where node 1 should

be executed before node 4, avoiding node 3; and one where node 3 should be

executed before node 4.

The latter event sequence (execution of node 3 before node 4) leads to

success. Assume the input vector is still (a = -10). Control flow is driven

down the false branch at node 2. Now that the search aims to execute each

node in the current event sequence in succession, this branch is now regarded

as critical. The alternating variable method is invoked so that the true branch

might be taken. Increments in a have a positive effect on the objective function

associated with the true branch. Eventually the input (a = 1) is found. Flow

of control is now driven down the critical false branch at node 4. However,

exploratory moves of a now have an effect on the objective function associated

with this branch. An increment of a leads to an improvement in the cost

function, until eventually the vector (a = 10) can be found, and the goal node

- node 5 - is executed.

It was found that the chaining approach could generate test data for a larger

class of test goals in programs than the goal-oriented approach [Kor96, FK96a].
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However the use of local search means that test data cannot always be found

for complex structures that have complex search spaces.

2.3.4 Applying Simulated Annealing

The work of Tracey and co-authors [TCMM98, TCM98b] applies simulated

annealing to structural test data generation, in the hope of overcoming some of

the problems associated with the application of local search. In this work, test

data can be generated for specific paths, or for specific statements or branches.

In order to apply simulated annealing, a neighbourhood structure has to

be defined for the various different input variable types. For integer and real

variables, the neighbourhood is simply a defined range of values around each

individual value. Since the ordering of values is not significant for boolean and

enumerated types, all values for these variables are considered as neighbours.

The objective function is simply the branch distance of the required branch

when control flow diverges away from the intended path, or away from the

target structure down a critical branch. The objective functions used (Table

2.2) are in principle identical to those employed by Korel, except the use of

a non-zero positive failure constant K - which is always added if the branch

predicate evaluates to false - removes the need to use a relation rel within the

function. In this way, the objective function always returns a value above zero

if the predicate is false, and zero when it is true.

In order to reduce the chances of the search becoming stuck in local op-

tima, Tracey drops the constraint employed by Korel that the newly generated

solution must conform to an already successful sub-path. However, the means

of doing this results in the search losing some information about its progress.

This is because solutions which diverge away from the target down earlier crit-

ical branches are assigned similar objective values to those diverging away at a

later stage. This can be demonstrated with the example of Figure 2.11. For the

target statement at node 3, the false branches from nodes 1 and 2 are critical.

Under Korel’s scheme, if the current solution is (i=10, j=-1), diverging down

the critical branch from node 2, the vector (i=9, j=-1) would not be given

consideration, because the already successful sub-path up to node 2 is violated.

This is due to the fact that this input vector takes the earlier critical branch at

node 1. However in Tracey’s method, a move can take place between solutions,

and furthermore, the solutions are rewarded identical objective values - since

the distance values taken at the different branching nodes are the same.
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Table 2.2: Tracey’s objective functions for relational predicates. The value K,
K > 0, refers to a constant which is always added if the term is not true

Relational Predicate Objective Function obj

Boolean if TRUE then 0 else K
a = b if abs(a− b) = 0 then 0 else abs(a− b) + K
a 6= b if abs(a− b) 6= 0 then 0 else K
a < b if a− b < 0 then 0 else (a− b) + K
a ≤ b if a− b ≤ 0 then 0 else (a− b) + K
a > b if b− a < 0 then 0 else (b− a) + K
a ≥ b if b− a ≤ 0 then 0 else (b− a) + K
¬a Negation is moved inwards and propagated over a

CFG
Node

s void landscape_example(int i, int j)

{

1 if (i >= 10 && i <= 20)

{

2 if (j >= 0 && j <= 10)

{

3 // target statement

// ...

}

}

}

Figure 2.11: Example program for comparing different objective functions
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Structure-Oriented

Evolutionary Structural Test Data Generation

Coverage-Oriented
(Watkins 1995, Roper 1997)

Branch-Distance-Oriented
(Xanthakis et al. 1992, Jones et al. 1996,

McGraw et al. 1997)

Combined Control and Branch Distance Approaches
(Tracey 2000, Wegener et al. 2001)

Control-Oriented
(Pargas et al. 1999)

Figure 2.12: Classification of dynamic structural test data generation techniques
using evolutionary algorithms

2.3.5 Applying Evolutionary Algorithms

The first work applying evolutionary algorithms to generate structural test data

is that of Xanthakis et al. [XES+92]. Up until this point, work on structural test

data generation had largely focused on finding input data for specific paths or

individual structures with programs, such as branches or statements. Initially,

however, techniques using genetic algorithms took slightly different directions.

A Classification of Techniques

Different techniques applying evolutionary algorithms to structural test data

generation can be categorized on the basis of objective function construction

(Figure 2.12).

Coverage-oriented approaches reward individuals on the basis of covered

program structures. In the work of Roper [Rop97], an individual is rewarded on

the basis of the number of structures executed in accordance with the coverage

criterion. Under this scheme, however, the search tends to reward individuals

that execute the longest paths through the test object. Guidance is not given for

structures that are unlikely to be covered by chance, for example deeply nested

structures, or branch predicates that are only true when an input variable has

to be a specific value from a large domain.

The work of Watkins [Wat95] attempts to obtain full path coverage for pro-

grams. The objective function penalizes individuals that follow already covered

paths, by assigning a value that is the inverse of the number of times the path

has already been executed during the search. The direction of the search, there-
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fore, is under constant adaptation. However, the penalisation of covered paths,

in itself, provides little guidance to the discovery of new, previously unfound

paths. The results show that in comparison with random testing, the genetic

algorithm approach required an order of magnitude fewer tests to achieve path

coverage for two experimental programs. However, both of these programs are

of a simple nature, containing no loops. Furthermore, the input domains were

artificially restricted for the search.

In general, the problem with coverage-oriented approaches is the lack of

guidance provided for structures which are only executed with values from a

small portion of the overall input domain. Therefore, it is difficult to expect

full coverage with these techniques for any non-trivial program.

Structure-oriented approaches follow similar lines to the earlier work of Ko-

rel, and take a ‘divide and conquer’ approach to obtaining full coverage. A

separate search is undertaken for each uncovered structure required by the cov-

erage criterion. Structure-oriented techniques differ in the type of information

used by the objective function. These can be categorized as either branch-

distance-oriented, control-oriented, or combined approaches.

Branch-distance-oriented approaches exploit information from branch pred-

icates, in a similar style to earlier work by Miller and Spooner, and later Korel.

In the work of Xanthakis et al. [XES+92], genetic algorithms are employed to

generate test data for structures not covered by random search. A path is cho-

sen, and the relevant branch predicates are extracted from the program. The

genetic algorithm is then used to find input data that satisfies all the branch

predicates at once, with the objective function summing branch distance val-

ues. However, this scheme suffers from similar problems suffered by the work

of Miller and Spooner. Furthermore, the need to select a path is a burden on

the tester. In the work of Jones et al. [JSE96] for obtaining branch coverage, a

path does not need to be selected. The objective function is simply formed from

the branch distance of the required branch. However, no guidance is provided

so that the branch is actually reached within the program structure in the first

place. McGraw et al. [MMS01] alleviate this problem for condition coverage, by

delaying an attempt to satisfy a condition within a branching expression until

previous individuals have been already found which reach the branching node

in question. The initial generation for the target condition is then seeded with

these individuals. This scheme, however, is inefficient if test data is required

for the coverage of one, specific condition.

The earlier work of Korel had already removed the need for the tester to

select a path. Since new test data considered by the search had to conform
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to the successful sub-path already found, explicit control-oriented information

regarding the target did not need to be included in the objective function.

However, such rigid constraints increase the chances of the search becoming

stuck in local optima, and it would be better if more feedback could be provided

via the objective function. This is the problem addressed by control-oriented

approaches.

With Control-oriented approaches, the objective function considers the branch-

ing nodes that need to be executed in some desired way in order to bring about

execution of the desired structure. The approach of Jones et al. [JSE96] to

loop testing falls into this category. Here, the objective function is simply the

difference between the actual and desired number of iterations. In the work

of Pargas et al. [PHP99], for statement and branch coverage, the control de-

pendence graph of the test object is used. The sequence of control dependent

nodes is identified for each structure. These are the branching nodes that must

be executed with a specific outcome in order for the structure to be reached.

The objective value of an individual is simply assigned as the number of control

dependent nodes executed as intended. Recall that the branch leading away

from the target at a control dependent node is identified as a critical branch in

Korel’s work. The measure used by Pargas et al. is therefore equivalent to the

number of critical branches successfully avoided by the individual.

The problem with using control information only for the purposes of the

objective function are the plateaux that form on the objective function land-

scape. The objective function gives no guidance as to how to change the flow of

execution at control dependent nodes, since no distance information is exploited

from branch predicates. Take the simple example of Figure 2.11. The target

is node 3, which is control dependent on node 2, which in turn is control de-

pendent on node 1. Let dependent be the number of control dependent nodes

for the current target, and executed the number of control dependent nodes

successfully executed in the required manner. A minimising version of the ob-

jective function of Pargas et al., can be computed as (dependent − executed).

However, in this scheme, every individual diverging away from the target at

node 1 receives an objective value of 2, with every individual diverging at node

2 receiving a value of 1. The landscape for the minimising version of the objec-

tive function for the example is seen in Figure 2.13. This landscape has three

plateaux. For individuals not satisfying one or more of the branch predicates,

no guidance is given as to how to descend down the landscape to solutions that

are closer to executing the target. Along these horizontal planes, the search

becomes random.
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Figure 2.13: The objective function landscape of Pargas et al. [PHP99] for
example of Figure 2.11
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Combined approaches make use of both branch distance and control infor-

mation for the objective function. The work of Tracey [Tra00] builds on previous

work which used simulated annealing. The strategy for combining both tech-

niques is as follows. The control dependent nodes for the target structure are

identified. If an individual takes a critical branch from one of these nodes, a

distance calculation is performed using the branch predicate of the required,

alternative branch. This is computed using the functions of Table 2.2 (and

Table 2.3 for and and or logical connectives). Tracey then uses the number of

successfully executed control dependent nodes to scale branch distance values.

Let branch dist be the branch distance calculation performed at the branch-

ing node where a critical branch was taken. The formula used by Tracey for

computing the objective function is:

(

executed

dependent

)

× branch dist

Unfortunately, this scheme can lead to unnecessary local optima in the objective

function landscape. For the example of Figure 2.11, this is evident by the valleys

in the objective function landscape along i = 9 and i = 21 where −3 ≤ j and

j ≥ 13, as seen in Figure 2.14.

The objective function of Wegener et al. [WBS01, WBP02] normalizes

branch distance values branch dist into the range 0-1 using the following func-

tion [Bar02]:

normalize bd(branch dist) = 1− 1.001−branch dist (2.1)

This is combined with another value called the approximation level, referred

to throughout this thesis as the approach level, calculated as follows:

approach level = dependent− executed − 1 (2.2)

The minimising objective function is zero if the target structure is executed,

otherwise, the objective value is computed as:

approach level + normalize bd(branch dist) (2.3)

The resulting objective function landscape has a similar form to that of

Pargas et al. (Figure 2.15). However, the extra information provided by the

branch distance calculation prevents the formation of plateaux at each approach

level. For this example, the result is a sweeping landscape from each level to

the next level downwards.
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Objective Functions for Different Structural Coverage Criteria

The work detailed so far for structural test data generation has mainly ad-

dressed statement, branch or condition coverage. In the work of Wegener et al.

[WBS01], several new structure-oriented objective functions were introduced

for previously unexplored coverage types. For this purpose, structural criteria

are divided into four categories:

• node-oriented

• path-oriented

• node-path-oriented

• node-node-oriented

The basic form of the (minimising) objective function is:

approach level + normalize bd(branch dist)

The strategy in which approach level and branch dist are computed varies

according to the coverage type in question.

Node-oriented criteria aim to cover specific nodes of the control flow graph,

for example statement coverage. The strategy for node-oriented methods was

discussed in the last section. The approach level is calculated on the basis

of the number of control dependent nodes for the target lying between nodes

covered by the individual and the target node itself. At the point where control

flow diverges down a critical branch, the branch distance is calculated using the

predicate of the alternative branch.

Path-oriented criteria require the execution of specific paths through the

control flow graph. There are two possible ways to calculate the objective

function. One method is to calculate the approach level on the basis of the

length of identical initial path section, with the branch distance calculation

performed using the predicate at the first diverging branch. An alternative

strategy considers all identical path sections for the approach level, with the

branch distance calculation an accumulation of distance calculations made at

each point of divergence from the intended path. Wegener et al. report superior

results with the latter method [WBS01].

Node-path-oriented criteria include branch coverage and LCSAJ (linear code

sequence and jump) coverage, where a node and a specific subsequent path must

be executed. The objective function is a combined node-oriented and path-

oriented calculation. Calculations for individuals not reaching the initial node
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are treated as for node-oriented criteria. For individuals reaching the initial

node, a path-oriented calculation is additionally applied.

Node-node-oriented criteria aim to execute a certain sequence of nodes

through the control flow graph, without the specification of a concrete path

between each node. This includes data-flow-oriented coverage types such as

all-defs and all-uses criteria. In this case, the objective function is a cumula-

tive node-oriented strategy. Calculations for individuals failing to reach the first

node are carried out as for node-oriented methods, with individuals reaching

the subsequent node having additional calculations carried out at these further

nodes.

Control-Related Problems for Objective Functions

The provision of guidance to structures nested within loops presents a problem

which can be demonstrated with Figure 2.16. The target is the execution of

node 3. Node 3 is control dependent on node 2, but the false branch from

node 2 can also lead to the execution of node 3 via iteration of the loop. The

calculation of the branch distance at node 2 in the first iteration of the loop,

therefore, may not provide a good objective measure. In the example, if the

input variable i is 1, the objective value is taken in the first iteration, when n

is 0. However, the individual is closest to executing the target statement in the

last iteration of the loop, when n is 10. Furthermore, when the input value of i

is 0, the individual will be deemed to have missed the target, when the target is

actually executed in the last iteration of the loop. In order to circumvent this

problem, Tracey [Tra00] examines the branch distance during each iteration of

the loop and uses the minimum branch distance obtained for the purposes of

computing the final objective value.

A further problem is the assignment of approach levels for some classes of

program with unstructured control flow. Baresel et al. [BSS02] present the

example of Figure 2.17. The target of the search is node 6. However, there are

three different control dependent paths through to node 6 from node 1 (Figure

2.18), and two control dependent paths from node 2 (control dependency was

defined on page 22). Consequently there are two approach level possibilities for

node 1 (since two of the three paths are of the same length), and two possibilities

for node 2. Two plausible solutions to this problem include optimistic and

pessimistic approach level allocation strategies. In an optimistic strategy, a

control dependent branching node is allocated its approach level on the basis of

the shortest control dependent path from itself to the target node. In this way

node 4 is assigned an approach level of 0 on the basis of the direct path through
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e

3

Node
s void loop_example(int i)

{

int n;

1 for (n=0; n <= 10; n++)

{

2 if (n == 10 && i == 0)

{

3 // target statement

}

}

e }

Figure 2.16: Program with a loop and its control flow graph

to 6, thereby receiving the same level as node 5. In a pessimistic strategy, a

branching node is allocated its approach level on the basis of the longest control

dependent path to the target node. In this scheme node 4 would be assigned

an approach level of 1 on the basis of the path through node 5. Both optimistic

and pessimistic schemes were put to the test in initial experiments by Baresel

et al. [BSS02]. Whilst they show that the different schemes have different

effects on the progress of the search, they were unable to conclude from the

experiments which strategy works best in general. Thus, this problem is still

open to question.

Branch-Distance-Related Problems for Objective Functions

Although global search techniques are more robust than local searches in ob-

jective function landscapes containing local optima and plateaux, they will still

struggle in hostile search landscapes containing large plateaux or several local

optima.

In particular, plateaux can be induced on the search space through the use

of internal “flag” variables in branch predicates. A flag is simply a boolean

variable. When flag variables are involved in branch predicates, the resulting

objective function landscape consists of two plateaux - one for the true value

and one for the false value. In such situations, the evolutionary search performs

no better than a random search.

Figure 2.19 demonstrates this with an example. For the true branch to

be executed, the flag must be true. However, the objective function gives no

guidance to how the true value is brought about. The plateau induced on the
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s void unstructured_example()

{

switch(a)

{

1 case 1:

2 if (cond_1)

return;

3 if (cond_2)

break;

4 case 2:

5 if (cond_3)

break;

return;

}

6 // target statement

e }

Figure 2.17: Program with unstructured control flow
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Figure 2.17
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flag = (d == 0);

if (flag)

result = 0;

else

result = n / d;

Figure 2.19: Example program with a flag variable
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Figure 2.20: Objective function landscape for the example program with flag
variable of Figure 2.19

objective function landscape can be seen in Figure 2.20.

Bottaci [Bot02] proposes a solution for a special case of flag problems similar

in form to the example of Figure 2.19, where the value of the flag is determined

by a predicate. In this work it is suggested that the predicate used for the

distance calculation is substituted by the predicate used in assigning the flag

value. Essentially the objective function landscape becomes that of Figure 2.21,

which provides more guidance to the required test data. However, flags are

more commonly assigned constant true or false values, as seen in Figure 2.22.

In this case the expression leading to the true assignment is used to control

the assignment. [Note that the true branch from node 4 would have already

been executed if test data had already been found to execute the preceding true

branch from node 2. However, for simplicity, this possibility is ignored for the

purposes of this example, and others in this section].

Harman et al. [HHH+02, HHH+04] suggest the use of a program transfor-

mation to remove internal flag variables from branch predicates, replacing them

with the expression that led to their determination. In the transformed version

of the program, the branch predicate is flag-free, and consequently plateaux
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Figure 2.21: Objective function landscape for the predicate d == 0 for the
example program with flag variable of Figure 2.19

CFG
Node

1 flag = false;

2 if (d == 0)

3 flag = true;

4 if (flag)

5 result = 0;

else

6 result = n / d;

Figure 2.22: Alternative version of the flag example program
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flag = false;

if (d == 0)

flag = true;

if (d == 0)

result = 0;

else

result = n / d;

Figure 2.23: Flag removed from branch predicates of alternative version of flag
program (Figure 2.22) via program transformation

induced by the flag are also removed. Figure 2.23 shows a possible transfor-

mation of the program of Figure 2.22. Note that although the flag is removed

from the branch predicate, it otherwise remains present in the program, in case

it has a future purpose in a later statement. The objective function at the new

branch predicate now has the more useful landscape of that of Figure 2.21. The

transformed program is merely a means to an end, and can be discarded once

the required test data has been found.

Baresel et al. [BBHK04] extend the transformation approach for inter-

nal flags assigned within loop structures. Two approaches are presented - a

“coarse-grained” transformation and a “fine-grained” transformation. Both

forms of transformation replace the original condition using the flag variable

with a predicate of the form counter == fitness, where counter is a variable

incremented on each iteration of the loop, and fitness is a variable which is in-

cremented if a loop iteration was evaluated in a “successful” manner. Whether

an iteration can be counted as successful depends on the path taken through

the loop iteration, and whether this path supports the final value of the flag

required for executing the evaluating the original condition in the desired way.

For example, an iteration which assigns a false value to a flag required as true

would not result in an increment of the fitness variable; whereas the avoid-

ance of the assignment would. In this way, the search receives a higher level

of guidance to the input values which evaluate the original condition using the

flag in the desired manner. This is because the objective function landscape

now corresponds to the predicate counter == fitness rather than the land-

scape containing the flag, which contains plateaux. The difference between the

coarse-grained transformation and the fine-grained transformation lies in the

increment of the fitness variable within the loop. The coarse-grained trans-

formation simply increments the counter in a uniform fashion. The fine-grained

approach uses distances of key branch predicates used within the loop to assign
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if (d == 0)

r = 0;

else

r = 1 / d;

if (r == 0)

// target branch

Figure 2.24: Deceptive objective function example program (adapted from Ref-
erence [Har02])

flag values. The latter approach provides a greater level of guidance to the

search, enabling it to find test data in cases where the coarse-grained approach

could not, or faster in cases where both approaches were able to find test data.

An alternative approach to handling internal flag variables is that of Baresel

et al. [BS03]. The basic idea of this method is to use data flow analysis to

statically decide which assignments to the flag need to be executed and which

assignments need to be avoided so that the flag will have the correct value

in order for the target structure to be covered. An objective function is then

derived from the branch distances leading to the desired assignments and branch

distances which avoid undesired assignments. For the example of Figure 2.22

where the true branch from node 4 is required to be executed, is it clear that

node 3 needs to be executed before node 4 is reached. The derived objective

function uses similar principles to the node-node oriented functions, discussed

in Section 2.3.5, using the true branch distance of node 2 to first guide the

search to the true assignment to the flag, and then onto node 4. It is stated

that the approach has problems avoiding unrequired assignments to flags within

loop bodies [BS03].

Aside from problems of local optima and plateaux appearing in the objective

function landscape, it is entirely possible for the branch distance calculation to

deceive the search. Consider the example of Figure 2.24. The goal is to execute

the true branch of the final branching node, whose branch predicate is r == 0.

However, unless d is zero, r will not be zero. The objective function works to

guide the search away from d being equal to zero, since increasing values of d

decrease values of r deceiving the search into believing it is getting closer and

closer to zero, as depicted by the objective function landscape (Figure 2.25).

A further problem can occur with nested branch predicates as seen with the

example of Figure 2.6. In this example, input data must be found satisfying

a == b before the solution to b == c and c < 0 can be attempted. Once input
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Figure 2.25: Landscape for the deceptive objective function example program
of Figure 2.24

data is found for one or more of the conditions, the chances of finding input

data that also fits subsequent conditions decreases. This is because a solution

for subsequent conditions must be found without violating any of the earlier

conditions. This leads to poor search performance. Ideally, all of the conditions

should be evaluated at once. This was the solution employed by Baresel et

al. [BSS02], leading to much improved search performance. Here, none of

the values b, c or d are modified between the branching statements, and so all

predicates could be evaluated at the first branching statement. Such a situation

could be established through the use of data dependency analysis [BSS02].

A similar problem occurs with the use of short circuit evaluation of atomic

conditions with branch predicates using operators such as && and || in C. In

such situations the evaluation of the overall predicate breaks off early if the end

result has already been determined. Therefore, during the process of searching

for test data, the individual conditions have to be attempted one after the other.

For example:

if (a == b && b == c && c < 0)

{

// ...

}

Again, it would be preferable to evaluate all of the conditions at once, as

performed by Baresel et al. [BSS02]. In this situation, care needs to be taken

when side effects appear in any of the conditions. A solution here might be to

apply a side-effect removal program transformation [HHZM01, HHZ+02] first.

Alternatively, variable values could be saved into temporary variables inserted
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immediately before the branching statement, and restored after the side-effect

if the condition would not normally have been evaluated.

Applying Variable Dependence Analysis

Harman et al. [HFH+02] apply variable dependence analysis to determine the

subset of input variables that cannot affect the outcome at a branch predicate.

In this way, the search space can be reduced, increasing the chances of finding

a solution - and potentially finding it faster. Take the triangle example of

Figure 2.4 once more. For branching node 1, only the input variables a and

b are relevant. Variable c cannot affect the outcome at this node, and as

such does not need to be included in the search. For branching node 5, all

input variables are relevant, because b may have determined the outcome of a

during the prior nodes 1-4. These ideas are similar to Korel’s influences graph

[Kor90] (see Section 2.3.3), except the information is statically computed for

each structural target. The variable dependence analysis information can also

be used to compute a slice of the program with respect to the structural target.

A program slice [Wei84] is a smaller version of the original program which only

contains the statements of interest according to some slicing criterion. In this

case the criterion involves the removal of all statements that cannot affect the

attainment of the desired structure. Such slices are potentially useful since they

can cut down the time required to execute the program and evaluate individuals

of the search.

Use of Evolutionary Algorithms: Encodings and Operators

Early work in applying genetic algorithms to structural test data generation

used binary encodings. Jones et al. [JSE96] found improvement in the use of a

gray code.

However, it is common that variables will often only have valid values within

a subset of the possible bit patterns at the binary level. In addition to the range

imposed on an ordinal type by a compiler, input variables are often restricted to

a certain range by the context of its application. One problem that can occur

with binary encodings is the corruption that can occur with restricted types

through the actions of the crossover and mutation operators. This problem

was raised by Tracey [Tra00]. The following shows two chromosomes (26, 81)

and (56, 43) representing two integer variables restricted between 1 and 100.

Crossover at locus 8 yields two offspring - (26, 107) and (56, 17).

00110101 010001


00110101101011

01110000 101011 01110000010001
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The final variable of the former chromosome is now out of range. One

solution might be to restrict the crossover points to the boundaries of each

variable, making it impossible for a variable value to go out of range. However

the chromosome can still be damaged by the mutation operator. A possible

solution is to repair or penalize invalid individuals. An alternative is to use a

real-valued encoding. This is the decision taken by Tracey [Tra00] and Wegener

et al. [WBS01]. For real-valued encodings, crossover is naturally restricted to

the boundaries of each variable. For example:

26 81


26 43

56 43 56 81

The mutation operator can also be based on number creep (introduced in Sec-

tion 2.2.3), taking care to ensure that each value is not shifted out of its required

range. The use of a real-valued encoding also removes the need to encode and

decode the input vector into and out of a binary format.

Finally, the test generation system of Wegener et al. employs competition

and migration amongst subpopulations [WBS01, WBP02].

2.4 Functional (Black-Box) Testing

This section discusses the application of metaheuristic search techniques to

the testing of the logical behaviour of a system, as described by some form of

specification.

2.4.1 Generating Test Data from a Z Specification

Jones et al. [JSYE95] generate test data for the triangle classification program,

using a Z specification [Spi92]. The state space of the system is described in a

schema named Triangle0, which declares three input integer variables to repre-

sent the three sides of the triangle (x?, y? and z?). This schema also describes

invariants over the inputs to check that the lengths are within a specified range,

and that the side lengths represent a valid triangle. These checks are also in-

cluded in two other operations declared as NumError and TriangleError.

Four further operations decide if the triangle is scalene (ScalTri), equilateral

(EquiTri), isosceles (IsosTri) or right-angled (RightTri).

Using these schema, the whole system can be declared as:

Triangle ::= (Triangle0∧EquiTri) ∨ (Triangle0∧IsosTri) ∨

(Triangle0∧ScalTri) ∨ (Triangle0∧RightTri) ∨

NumError ∨ TriangleError
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For the purposes of test data generation, each disjunct is considered as a

route through the system. Genetic algorithms are used to search for test data

that satisfies each route.

The fitness function rewards individuals that come close to satisfying the

conjuncts in each route. In the case of an equilateral triangle, the predicates

to be satisfied include invariants from the state space schema conjuncted with

those of the EquiTri schema ((x? = y?)∧(y? = z?)). Each conjunct is evaluated

using a distance based approach, in a similar fashion to the branch distance

calculations used in Structural Testing. The overall fitness of the route is the

summation of the distances for each of its conjuncts.

The results report successful test data generation by the genetic algorithm

for each of the routes under examination, namely ScalTri, EquiTri, IsosTri

and RightTri. However the example is small and not general enough to estab-

lish its usefulness. Furthermore, only a small subset of Z is used, and this is

limited to the use of relational operators only.

2.4.2 Testing Specification Conformance

The last section showed how test data could be generated from a formal speci-

fication. The work of Tracey et al. [TCM98a, Tra00] extends this idea. In their

technique the conformance of the implementation to its specification is checked

by executing the test object with the generated test data, and then validating

the output against the specification.

The specification of the implementation is represented as a pre-condition,

which defines valid inputs, and a post-condition, which defines the output. A

failure is found when an input situation is discovered that satisfies the pre-

condition of the function, but for which the outputs violate the post-condition.

An objective function is derived which describes the “closeness” of the test data

to uncovering such a situation, and metaheuristic search techniques are then

employed to seek failures in the implementation.

As a simple example, take the wrapping counter function of Figure 2.26.

This function implements a counter, which takes an integer value between 0

and 10, and returns the increment. If the input is 10, the counter wraps round

to 0. The pre-condition for this function is simply:

n ≥ 0 ∧ n ≤ 10

The post-condition is:

(n < 10→ r = n + 1) ∨ (n = 10→ r = 0)
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int wrapping_counter(int n)

{

int r;

if (n >= 10)

r = 0;

else

r = n + 1;

return r;

}

Figure 2.26: Wrapping counter example program

Table 2.3: Tracey’s objective functions for logical connectives, where obj(c) is
the individual cost of connective c

Connective Objective Function obj

a ∧ b obj(a) + obj(b)
a ∨ b min(obj(a), obj(b))
a⇒ b obj(¬a ∨ b)

≡ min(obj(¬a), obj(b))
a⇔ b obj((a⇒ b) ∧ (b⇒ a))

≡ obj((a ∧ b) ∨ (¬a ∧ ¬b))
≡ min((obj(a) + obj(b)), (obj(¬a) + obj(¬b)))

a xor b obj((a ∧ ¬b) ∨ (¬a ∧ b))
≡ min((obj(a) + obj(¬b)), (obj(¬a) + obj(b)))

where n is the input value and r is the return value.

A constraint system is then derived to describe conditions of implementation

non-conformance by taking the pre-condition in conjunction with the negated

post-condition:

n ≥ 0 ∧ n ≤ 10 ∧ ¬((n < 10→ r = n + 1) ∨ (n = 10→ r = 0)) (2.4)

An objective function is derived to indicate how “close” failure is . This is

constructed from the above constraint system using the rules in Tables 2.2 and

2.3:

obj(n ≥ 0) + obj(n ≤ 10)+

min((obj(n < 10) + obj(r 6= n + 1)), (obj(n = 10) + obj(r 6= 0)))
(2.5)



58 CHAPTER 2

0

2

4

6

8

10

12

-5 0 5 10 15
O

bj
ec

tiv
e 

F
un

ct
io

n 
V

al
ue

n

Figure 2.27: Objective function landscape for wrapping counter example of
Figure 2.26, where K = 1

It was found that the landscapes of the objective functions derived from

such constraint systems contained areas of plateaux. Figure 2.27 shows the

objective function landscape for a faulty version of the program where the

branch predicate n >= 10 is replaced by n > 10. The objective function is

zero when n = 10, indicating a fault. However, a plateau forms for values

of n between 0 and 9. This results from the use of the min operator in the

objective function. For n < 10, the objective value of the first operand, obj(n <

10)+obj(r 6= n+1), is always K, which is always smaller than the objective value

of the second operand obj(n = 10) + obj(r 6= 0). It was found that guidance to

the search could be improved by converting the constraint system to disjunctive

normal form, and then using each disjunct as the basis of a separate search.

Conversion of the original constraint system (Equation 2.4) to disjunctive

normal form gives two disjuncts:

Disjunct 1: n ≥ 0 ∧ n ≤ 10 ∧ n < 10 ∧ r 6= n + 1

Disjunct 2: n ≥ 0 ∧ n ≤ 10 ∧ n = 10 ∧ r 6= 0

The objective functions for each disjunct, are, respectively:

Disjunct 1: obj(n ≥ 0) + obj(n ≤ 10) + obj(n < 10) + obj(r 6= n + 1)

Disjunct 2: obj(n ≥ 0) + obj(n ≤ 10) + obj(n = 10) + obj(r 6= 0)

Figure 2.28 shows the landscape for the faulty branch predicate n >= 10 for

the objective functions of disjuncts 1 and 2 respectively. As can be seen, the

landscape for the second disjunct in the range 0 ≤ n < 10 gives more guidance
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(a) Disjunct 1
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(b) Disjunct 2

Figure 2.28: Objective function landscapes for individual disjuncts of the wrap-
ping counter example of Figure 2.26, where K = 1

to the failure point when the objective value is zero.

Tracey [Tra00] applied this technique to the testing of a safety-critical nu-

clear primary protection system, written in Pascal. Two sub-systems were avail-

able for this evaluation. The first consisted of 36 pages of formal VDM-SL spec-

ification and the second 54 pages, with approximately 2000 lines of executable

code. The pre- and post-conditions for each function of each sub-system were

manually derived from the specification, with 733 different disjuncts obtained.

A mutation testing tool was then used to generate mutant implementations

of the code. Simulated annealing and genetic algorithms were then used as

metaheuristic searches for the technique. Both searches killed 100% of approx-

imately 170 non-equivalent mutants, outperforming hill climbing and random

searches, which still achieved overall scores of over 90%.

Buehler and Wegener [BW03] use evolutionary algorithms to test specifica-
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tion conformance of an early version of an automated vehicle parking system.

This system aims to automate parking of a vehicle lengthways into a parking

space, using information from environmental sensors, which register surround-

ing objects. The individuals of the search are simply parking scenarios which

describe the dimensions of a parking space, including collision areas, and the

starting position of the car. The parking control unit is called with this data,

and a parking manoeuvre is simulated. With a successful test being one which

causes a collision, the objective function is simply the value of the smallest

distance between the car and the collision area recorded during the simulation.

In the experiment undertaken, approximately 900 scenarios were simulated,

with more than 25 scenarios found leading to collisions. After analysis of these

scenarios, it was discovered that the controller had difficulties with scenarios

where the parking space was some distance away and the starting position was

already near to the collision area on one side. A fault was also detected with

the simulation environment, where it was found that calculations involving the

position of the car were too imprecise. This led to further simulated impacts

with the collision area.

Baresel et al. [BPS03] test Simulink and Stateflow models which require

input signal sequences to be generated. One problem in this domain is the

generation of realistic signals and their potential length, which could result in

a very large search space. Baresel et al. propose a novel solution by building

the overall signal from a series of simple signal types, for example sine, spline

and linear curves. The search space then becomes the set of parameters used

to construct a signal section built from a base signal, for example its ampli-

tude and length. This guarantees the generation of realistic input signals, as

well as keeping the size of the search space relatively compact. The Distronic

cruise control system was tested using this technique. This system senses the

approach to slower vehicles and automatically slows the car down to maintain

a safe following distance. The objective function checks for violations of the

requirements, by checking dependencies between output signals, checking for

output signal boundary violations and checking signal maximal overshoot and

settlement time. For Distronic, tests revealed that the system broke a maximal

speed violation under certain input conditions.

2.5 Grey-Box Testing

Grey-box testing combines both structural and functional information for the

purposes of testing.
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2.5.1 Assertion Testing

The work of Korel and Al-Yami [KAY96] attempts to find test cases that vio-

late assertion conditions, which can be embedded by the programmer into the

program code. Assertions specify constraints that apply to some state of a

computation. When an assertion evaluates to false, an error has been found in

the program. Assertions can be embedded within comment regions, either as

boolean conditions, for example:

/*@ i > 0 and i <= 10 @*/ // assertion

i ++; // program statement

or, as executable code. When assertions are embedded as blocks of executable

code, a special variable assert is used. This is assigned true or false values to

denote the correct or incorrect state of the assertion. For example, the following

assertion checks that the elements of an array are sorted in ascending order:

/*@

assert = true;

for (i = 0; i < len-1; i++)

{

if (a[i] > a[i+1])

assert = false;

}

@*/

// ... normal program code ...

Korel and Al-Yami showed how the search for test data to falsify an asser-

tion reduced to the problem of executing a specific statement in the program.

First, assertions are stripped out of the code. For boolean conditions, code is

generated and placed in the assertion’s original position. The assertion con-

dition is then negated. This new condition is the condition which represents

a violation, and therefore, the finding of a fault. This is then converted to

disjunctive normal form. A series of nested if statements are then generated

for each condition within each individual disjunct. If each if statement is

evaluated as true, the violation is reported. For example, take the assertion

condition (a < b ∧ ¬(b = c ∧ c = d)). The negated form of the assertion is

(a ≥ b ∨ (b = c ∧ c = d)). The following code is generated for this negated

condition (which is already in disjunctive normal form):
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if (a >= b)

report_violation();

if (b == c)

if (c == d)

report_violation();

The goal of the search is then to execute one of the report_violation() state-

ments.

For assertions appearing as code, the assertion code is formed into a func-

tion, with the original assertion comment region replaced with a call to that

function. The goal is then to execute a false assignment to the assert variable

statement within the function, and thereafter avoiding all true assignments to

the variable.

The process of test data generation is performed using the chaining approach

(Section 2.3.3). In addition to programmer embedded assertions, Korel’s tool

automatically generates assertions for run-time errors such as division by zero

errors, array boundary violations and overflow errors. The tool also tries to

find input data to stimulate error conditions where variables are not initialized,

yet used in some following program statement.

In initial experiments, nine original Pascal programs were embedded with

assertions. Twenty-five faulty versions were then produced. With these exper-

iments, it was found that inputs could be found to violate an assertion - and

thereby reveal a fault - 92% of the time.

2.5.2 Exception Condition Testing

Tracey et al. [TCMM00, Tra00] built on the ideas of Korel and Al-Yami, using

genetic algorithms and simulated annealing to generate input data to test the

handling of run-time error conditions in code. In many languages, such as C++,

Java and Ada, these run-time errors are known as exceptions. These languages

provide explicit exception-handling constructs so that exception-related code

can be separated from the main logic of the program. Tracey et al. generate

test data for the raising of the exception, and then for the structural coverage

of the exception handler. As with the work of Korel, both problems reduce

to the problem of the execution of a certain statement (i.e. the statement

which triggers the exception via a throw or raise statement), or a sequence of

statements through the code (the raising of the exception followed by coverage

of some structural element within the exception-handler). Experiments were

undertaken with seven simple programs of no more than two hundred lines

of code. It was found that metaheuristic techniques could generate test data
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to raise almost all the exception conditions contained within the code, and

full branch coverage of exception handlers where they existed. An industrial

experiment was also undertaken on an engine controller. Here, test data was

generated which raised a variety of exception conditions. However it was found

that these exceptions could not be raised in practice, since input situations had

been generated which were not possible during actual operation of the system.

2.6 Non-Functional Testing

To date, search-based testing effort in the area of non-functional testing has

concentrated on checking the best-case and worst-case execution times of real-

time systems.

2.6.1 Execution Time Testing

The correct operation of a real-time system not only depends on its logical

behaviour, but also its timing behaviour. In general, incorrect timing behaviour

of a real-time system occurs when outputs are produced too early or too late.

Execution time testing, therefore, involves attempting to find the worst-case

execution time (WCET) or the best-case execution time (BCET) of a system in

order to determine whether it is compliant with its timing constraints. This task

is extremely difficult to achieve, since the timing behaviour of a piece of software

is not only dependent on its internal structure but also the characteristics of the

target hardware. At the software level, timing is dependent on the instructions

used and their corresponding data items. The compiler can also introduce

effects not apparent at source code level. At the hardware level, accounting

for the actions of the target processor is extremely difficult when caching and

pipelining operations need to be considered. As a consequence, the longest

or shortest path through the program will not necessarily yield the longest or

shortest execution time.

Static Analysis

Static analysis can be used to derive upper and lower bounds on WCET and

BCET respectively, in order to try and ensure that timing schedules will be

met. This is performed by examining the possible execution paths and then

modelling timing behaviour at the hardware level. The primary step needs

assistance from the programmer, since information is required regarding infea-

sible paths, and the maximum number of iterations for each loop appearing

in the code. Unfortunately, the possibility of simulation errors and the need
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for human involvement make this an error-prone process [PN98, WPS99]. The

result produced can also be extremely pessimistic in the case of WCET and

optimistic in the case of BCET. Sometimes the estimates can vary from those

observed in practice by a magnitude of ten times [Weg03].

Consequently, the calculations produced still need to be tested. Of course,

tests derived to expose flaws in the logical behaviour are generally of little

benefit in this domain.

Search-Based Execution Time Testing

Search-based execution time testing seeks input situations which invoke extreme

execution times. The objective function is simply the execution time of the

system as executed with some input. The search attempts to maximise the

objective function in the case of WCET, and minimise it in the case of BCET.

If a test case is found that violates the timing constraints, the search can be

terminated.

Wegener et al. [WGG+96] were the first to apply genetic algorithms to tem-

poral testing. In their experiments [WSJE97, WG98] it is shown that genetic

algorithms yield better results than random testing. A number of experiments

with industrial test objects were carried out. A further experiment investigated

six time-critical tasks in an engine control system [WPS00]. Genetic algorithms

were again found to outperform random search, and also tests constructed by

the developers themselves. The developer’s tests never found the longest execu-

tion times, and in three cases the developer tests were worse than the random

tests. Since the developers had internal knowledge of the system, these results

were met with some surprise. Wegener et al. suggest this may be down to the

use of system calls, linkage and compiler optimization whose effects on temporal

behaviour could only be guessed with difficulty by the developers. Additional

work by O’Sullivan et al. [OVW98] applies cluster analysis to determine when

the search should be terminated. This technique decides if the search is con-

verging on the basis of the distribution of individuals in the search space.

Puschner et al. [PN98] apply genetic algorithms to find WCET for seven

programs with differing execution-time behaviour. The results are compared

with those obtained by random search, upper WCET bounds found by static

analysis, as well as “best effort” times, which were the researcher’s own efforts

to find input data to yield the WCET. The genetic algorithm was found to

match or find longer times than the random search. The superiority of the

genetic algorithm was particularly evident in large input domains. The genetic

algorithm found similar times to the best effort analysis, in one case finding



LITERATURE REVIEW 65

a longer time. Whilst upper bound times found by static analysis were never

broken, they were matched on several occasions. In practice, this is unusual

since the times provided by static analysis are generally too pessimistic or too

optimistic for WCET and BCET respectively.

Tracey employs simulated annealing and genetic algorithms for finding the

WCET of a handful of small, well-understood programs written in Ada, with

known WCET behaviour [TCM98b, Tra00]. Each experiment was deemed to be

a success if the technique executed the path through the program which yielded

the already known WCET. It was found that genetic algorithms were more

successful than simulated annealing, both of which outperformed hill climbing

and random search. Overall, the genetic algorithm achieved success in fewer

trials than simulated annealing. In this particular study, it was found that

varying the parameters of the optimization techniques had little effect on the

end result, apart from when the initial temperature was set too low for simulated

annealing, where dependency on the starting position could not be lost.

Unfortunately, if a branch in the program is executed only with a low prob-

ability, the chance of a search technique executing it is low. If this branch is

involved in a path leading to an extreme execution time, then the extreme ex-

ecution time will not be found. Gross [Gro01] identifies a number of properties

of programs which lead to low probability branches, for example high levels of

nesting, branches that are only executed if an input variable is a specific value,

and so on. However even if these features do exist in the source code, it does not

necessarily follow that an extreme execution time will not be found. Therefore,

Gross conducted an empirical study based on a handful of test objects to estab-

lish a system which could predict the testability of test objects, based on their

source code. However, the empirical study was very small, consisting of only

fifteen test objects. The type of test objects used was not characterized in any

particular way, and the effects of the underlying hardware were not accounted

for. Furthermore, the dependence of the prediction system on the setting of the

genetic algorithm parameters was not established.

Wegener et al. [WPS99] investigated the objective function landscape for

timing behaviour. They found that due to the fact execution times for several

input vectors that execute the same program path can be identical, plateaux

are common in the landscape. Discontinuities were also formed by significant

differences in execution time for slightly different input vectors leading to the

execution of different paths. These findings help explain why little improvement

could be obtained by using local search to improve times found by genetic

algorithms in the work of Wegener et al. [WSJE97] and Tracey [Tra00].
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The experiments performed show the superiority of search-based approaches

over random testing. Whilst search-based techniques cannot guarantee that the

actual WCET or BCET will be found, the best result obtained can be used to

form an interval with the time obtained from static analysis within which the

actual extreme execution time most probably lies.

2.7 Conclusions

This chapter has surveyed the application of metaheuristic search techniques

to software test data generation.

Search-based test data generation approaches to functional testing have

largely focused on seeking input situations which demonstrate that an imple-

mentation does not conform to its specification. Execution of the test object is

monitored, with input data solutions rewarded on the basis of how close they

were to discovering a failure, as decided using the specification. Grey-box test

data generation approaches combine methods used in generating functional and

structural test data.

For structural test data generation, metaheuristic dynamic approaches were

compared against static techniques based on symbolic execution. Techniques

using symbolic execution evaluate program code in order to build up a system of

constraints describing the test goal. However, this is problematic in the presence

of loops and in cases where computed storage locations need to be determined.

Instead of trying to formulate a constraint system, dynamic approaches merely

execute the program with some input, and examine the effects via some form

of program instrumentation. This helps circumvent some problems associated

with static techniques, since dynamic information - for example pointer loca-

tions - are known at run-time. Metaheuristic techniques are then used to search

for test data. The use of a metaheuristic technique requires the definition of

an objective function which “rewards” test data solutions on the basis of how

close they were to fulfilling the required test goal. Coverage-oriented objective

functions reward input data on the basis of the number of program structures

executed. It was argued, however, that structure-oriented approaches represent

a more successful strategy. This is because each individual uncovered structure

receives specific attention in the form of an individual search. Each individual

search is provided explicit guidance to the coverage of the structure in ques-

tion by an automatically tailored objective function. Without this guidance,

nested structures only executed under special circumstances are unlikely to be

exercized.
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The techniques described for generating structural test data have focused

on generating inputs for atomic function calls. The next chapter looks at the

problem of this thesis - the generation of test data for test objects with state

behaviour.
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Chapter 3

The State Problem

3.1 Introduction

The last chapter showed how evolutionary algorithms can be successfully ap-

plied to the problem of automatically generating structural test data. The

evolutionary approach has been shown to consistently achieve higher levels of

coverage than random testing for a number of test objects [WBS01]. The tech-

niques encountered so far have worked to generate input data for functions with

input-output behaviour. However functions and components at higher system

levels can store internal data, and can exhibit different behaviours based on the

state of that data. The existence of state behaviour in test objects presents

new challenges for evolutionary test data generation. Certain structures may

require the generation of input sequences. Furthermore, the state of the test

object might be managed by internal variables such as flags, counters and enu-

meration variables, which can result in flat or coarse objective function land-

scapes. These problems are confirmed in a series of experiments which attempt

to generate test data for a series of state-based test objects using a standard

evolutionary test data generation approach, simply referred to as the standard

evolutionary approach. The literature is consulted once more, in order to draw

on some recent ideas with respect to evolutionary input sequence generation.

A new method, referred to as the sequence evolutionary approach is developed

for the generation of input sequences for test objects involving several callable

functions, for example as part of a program module.

3.2 The Challenges Caused by States in Test Objects

States in test objects present two major challenges for evolutionary structural

test data generation:

69
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3.2.1 Input Sequences

The standard evolutionary approach generates input vectors for single function

calls. Test objects with states may require a sequence of calls to be generated

in order for certain structures to be covered. This sequence may include calls

to several different functions. Take the example of the C module representing

a stack in Figure 3.1. In order to cover the statements that remove an element

from the top of the stack - nodes b and c in the pop function - the push function

needs to have first been called to put an element onto the stack, because initially,

the stack is empty.

The “state” of the stack is managed by the elements array and the size

counter variable. These “state variables” are declared using the static C

keyword [KR88], which hides them from external calling processes. Therefore,

the state of the stack can only be changed by invoking its visible functions.

When the stack is empty, no calls to pop alone will lead to nodes b and c being

executed.

Definition - State Variable

A state variable of a test object is an internal variable whose value is retained

after the termination of a function of the test object until a function of the test

object is next called.

3.2.2 The Internal Variable Problem

The use of internal variables in the conditions of programs can result in a degree

of “information loss” when computing branch distance values, producing coarse

or flat objective function landscapes for target structures within the program.

This in turn results in the search receiving less guidance, making it less likely

- if not impossible - that the required test data will be found. The degree of

“difficulty” for the search depends on the level of information lost, which in

turn depends on the type of the internal variable, and the form of assignments

to it that appear in the program. Some internal variables only result in a small

amount of information loss, which may not affect the success of the search.

The “check evaluations” example

Take the “check_evaluations” function of Figure 3.2a. The test goal is

to cover control flow graph node e, which requires the true branch to be

taken from node d. The condition at node d depends on the internal vari-

able successful_evals. However, the assignment at node b effectively renders

the branch distance landscape for negative values of the input variable evals
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CFG
Node

static double elements[MAX_ELEMENTS];

static int size = 0;

double pop()

{

a if (!empty())

{

b size --;

c return elements[size];

}

else // ...

}

void push(double d)

{

d if (!full())

{

e elements[size-1] = d;

f size ++;

}

}

// ...

Figure 3.1: Fragment of code from a stack module
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as flat (Figure 3.2b). In this portion of the search space, the search receives no

guidance. The ideal branch distance landscape would be that of Figure 3.2c.

The “count event” example

Evolutionary algorithms sample multiple points in the search space, and so it

is likely that positive values of evals would be considered, meaning that the

check_evaluations example should cause few problems in practice. But this

is not always the case. Take the count_event function of Figure 3.3a. This

example contains an internal state variable counter, declared using the static

keyword again, meaning it will retain its value from one call of the function

to the next. In order to cover node e, the true branch from node d must be

taken. However, this branch predicate involves the variable counter, which is

only incremented in a special case. The landscape for the true branch predicate

is coarse (Figure 3.3b). No guidance is provided to the input values which will

successively increment the counter variable at node b, and if the input domain

to the function is relatively large, such an input sequence will not be found by

chance. This means that the test object will never be brought into the required

state for the target statement at node e to be executed.

The Stack example

Flag and enumeration variables result in an almost complete loss of useful infor-

mation at the branch predicate. The problems of flag and enumeration variables

were introduced in Section 2.3.5. Consider the stack example again (Figure 3.1),

and the situation where the false branch from node d must be covered, which

requires the stack to be full. The predicate in the if statement at node d uses

the return value from the full function, which returns a boolean value. The

false branch distance landscape from node d, therefore, consists of two plateaux

- one for all input sequences which do not lead to the evaluation of node d as

false, and one for all input sequences which do lead to the evaluation of node

d as false (Figure 3.4). An input sequence performing five “push” operations is

deemed to be no closer to filling the stack than an input sequence performing

only one “push”. The search receives no guidance, and consequently becomes

random. If a long input sequence is required to fill the stack, the chances of

randomly finding a sequence that performs successive “push” operations in or-

der for it to become full is very small. The search requires guidance so that

successive executions of nodes e and f are performed, which increase the size

of the stack, until eventually the stack is full.
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const int THRESHOLD = 100;

void check_evaluations(int evals)

{

int successful_evals = -1;

int unsuccessful_evals = -1;

a if (evals >= 0)

b successful_evals = evals;

else

c unsuccessful_evals = -evals;

d if (successful_evals > THRESHOLD)

e // target statement

// ...

}
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Figure 3.2: The check evaluations example, demonstrating information loss
with regards to branch distances based on an internal variable. (a) Program
code. (b) Plot of true branch distance values from node 6, calculated using
|100 - successful evals|. (c) Plot of potential distances using the original
input value, i.e. |100 - evals|
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CFG
Node

const int TARGET = 10;

void count_event(int x)

{

static int counter = 0;

a if (x == 0)

b counter ++;

else

c counter --;

d if (counter == TARGET)

e // target statement

}
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Figure 3.3: Information loss with regards to branch distances based on an
internal counter state variable. a) Program code b) True branch distance plot
for values of counter at node d, calculated using |TARGET− counter|.
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Figure 3.4: Branch distance plot using the return value of the full() function
against size of the stack, calculated using |1− full()|

The examples considered show how internal variables can cause problems for

test objects with both input-output behaviour, through the check_evaluations

example function, and state behaviour, through the check_event example func-

tion and the stack module. The use of internal variables is inevitable in state-

based test object code, since they are required in order to manage the state.

To make the problem worse, these variables are often of boolean flag nature, or

of an enumeration type. Flag state variables can be used to indicate if the test

object is in a particular state or not. Variables of an enumeration type can be

used to indicate that the test object is in one of a set of states. Furthermore, flag

variables are sometimes used as return values from auxiliary functions which

query the state. Special enumeration values are also sometimes returned from

auxiliary functions in order to denote the occurrence of some special event.

3.3 Experimental Study 1 - State-Based Experiments

with the Standard Evolutionary Approach

This section performs experiments using a standard evolutionary approach for

test objects with state-based behaviour. The aim is to show that the standard

approach does indeed fail to address the challenges for test objects with states,

as outlined in the previous section. The results obtained are compared with a

random test data generation approach.
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Table 3.1: Technical details of the synthetic state-based test objects

Lines Branches Loops Maximum Functions
of Nesting (Public)

code Level

Anomaly Detector 59 14 2 3 3 (3)
Array Difference 31 12 2 3 1 (1)
Postcode 170 50 0 10 5 (1)
Sliding Window 127 24 3 3 10 (4)
Smoke Detector 40 14 0 2 1 (1)
Sortcode 97 26 0 4 4 (1)
Stack 51 8 0 1 5 (5)
Telephone Number 80 22 0 4 1 (1)
Vending Machine 112 26 4 4 5 (4)

3.3.1 Test Objects

A series of nine C programs were devised with state behaviour. Five test ob-

jects were composed of multiple functions as part of a module. These modules

have internal state variables, global to each function, but hidden from manip-

ulation by calling processes, as they are declared using the C static storage

class [KR88]. The remaining four test objects consisted of a single function

only. Each function contains several state variables declared internally to the

function, again using the static storage class.

The test objects were designed to have varying levels of size and complexity,

as can be seen in Table 3.1. The test objects also contain internal variables,

including counters, flags and enumeration-type variables.

The source code for each test object can be found in Appendix B. Each

test object was instrumented and prepared for the experiments as detailed in

Section A.2.

Anomaly Detector

“Anomaly Detector” is a small module which monitors a stream of incoming

data. Its purpose is to determine whether values (of type double) entered via

the add_data function are inconsistent with regards to a history of past entered

values.

Inputted values are stored in an internal array, which acts as a circular

buffer - overwriting the oldest elements with new ones when it becomes full.

The buffer has a fixed size of forty elements. When it is full, the normal_limits
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function can begin monitoring. To check for the consistency of the last entered

value, the variance is found of the values currently in the buffer. The function

returns a false value if the last value entered falls outside of this range. A third

function in the module, reset, erases the internal buffer.

The range of the double input to the add_data used in the experiments was

-1,000 to 1,000 with a precision of 0.001.

Array Difference

This test object consists of one function, which takes an array of ten integers as

a parameter. The function returns true if the current inputted array contains

the same values as for the array inputted in the last call of the function. The

ranges used for the integer array values in the experiments were -10,000 to

10,000.

Postcode

The purpose of this test object is to check whether a sequence of unicode

characters is a UK postcode of the form described by the regular expression

[A− Z][0− 9]{1, 2}[: blank :][0− 9][A − Z][A− Z].

The test object consists of a principal function, which accepts unicode char-

acters one at a time, with several internal auxiliary functions which return true

or false values to indicate whether the character is a letter, a digit, a space, or

a line feed. The line feed character signals the end of the postcode. The prin-

cipal function has a high level of nesting, maintaining a small state machine

through the use of internal flag variables, which keep track of how far through

the validation process the system is. One of three constant integer values are

returned. RESULT_ENTER_NEW_CHAR signals the system is ready to accept a new

character; RESULT_VALID signals the entered sequence is valid, and that the

system is ready to read in another postcode; or RESULT_INVALID, which signals

that the last character was invalid.

The unicode character input to the function is modelled by an integer in

the range 0 to 65,535.

Sliding Window

This module is an implementation of the sliding window network protocol for

reliable and efficient network data transmission. The code is adapted from and

documented in Peterson and Davie [PD00].

Large data chunks are split into data “frames” for transmission across a

network. In order to know if a particular frame needs to be re-transmitted, the
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sending side of the transmission needs to be informed that frames have success-

fully arrived at the receiver by means of an acknowledgment frame, which the

receiver transmits back to the sender. In order to avoid an inefficient “stop-and-

wait” approach to the receiving and acknowledgment of frames, the idea behind

the sliding window protocol is that the sending and receiving sides both keep a

respective window of currently acknowledged and received frames. Frames are

numbered consecutively. The sender keeps an identification number of the next

expected acknowledgment, whilst the receiver keeps the identification number

of the next expected frame. When the sender receives an acknowledgment from

the receiver that corresponds to a frame in the sending window, the sending

window is advanced. When the receiver receives a frame in the receiving win-

dow, the receiving window is advanced.

The “Sliding Window” test object is a module which models the actions of

both the sending and receiving side of a transmission. The three main functions

in the module are send, receive_ack and receive_frame. The function send

sends a frame, providing the send window is not full. The function receive_ack

receives an acknowledgement for a sent frame, and advances the sending win-

dow if the acknowledgement denotes successful delivery of frames already in the

window. The function receive_frame receives a frame on the receiving side

and advances the receiving window. Another function, reset, resets the sys-

tem. The module uses a series of internal functions, send_window_not_full,

is_in_window and is_next_frame which check the state of the system and

return boolean values.

The functions send and receive_frame take an array of integers as a pa-

rameter, which correspond to the message to be sent. For the experiments, the

array size was 20 and each integer had a range -10,000 to 10,000. The func-

tion receive_frame also takes an integer parameter denoting the identification

number of the frame received, which had a range 0 to 50,000. The same range

was also used for the integer parameter denoting the frame acknowledged for

the function receive_ack.

Smoke Detector

This test object consists of one function which models a small controller for a

smoke detector. The function takes one double input argument - the current

room smoke level - followed by two flag output arguments used to signal whether

the alarm should be switched on or off. The alarm works on a latch, so that

after an “on” signal is received, the alarm will stay on until an “off” signal is

received. The function is designed to be called repeatedly by the underlying



THE STATE PROBLEM 79

hardware. When the room smoke level becomes higher than a given threshold

for a certain period of time, the alarm is raised. When the room smoke level

returns to safe levels for a given time, a special waiting flag variable becomes

true. The alarm then stays on for another three seconds, unless the smoke levels

breach acceptable limits again.

The range of the double input argument was 0 to 100 with a precision of

0.001.

Sortcode

This test object validates a UK bank sortcode of the form XX − XX − XX

where X is an integer digit. Unicode characters are submitted to a principal

function one at a time. The principal function then uses a series of internal

auxiliary functions which check whether a character is a digit, a hyphen or line

feed. The line feed character signals the end of the inputted sortcode. Like the

“Postcode” test object, the principal function acts as a small state machine,

using boolean flags to denote the various stages through the validation process

(for example one digit inputted, two digits inputted, and so on).

The unicode character input to the function is modelled by an integer in

the range 0 to 65,535.

Stack

This module implements a stack which can hold up to forty double values. The

module implements push, pop, check_size and reset functions. The module

uses an error variable to denote the fact that underflow or overflow errors have

occurred, i.e. that the pop operation was invocated on an empty stack, or that

the push operation has occurred on a full stack.

The range of the double parameter to the push function was -10,000 to

10,000 with a precision of 0.001.

Telephone Number

This function validates a UK telephone number. Numbers can be of interna-

tional format (i.e. beginning with ‘0044’ and consisting of 14 digits), national

format (i.e. beginning with a zero and consisting of 11 digits) or local format

(consisting of 7 digits and not beginning with a zero).

The test object attempts to perform the validation on a series of unicode

characters entered into the principal function one at a time. No auxiliary func-

tions are used, but a counter variable and several boolean variables are used to

control the state of the validation.
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The unicode character input to the function is modelled by an integer in

the range 0 to 65,535.

Vending Machine

This module simulates a vending machine which vends a small number of prod-

ucts. Several internal counter variables make up the internal state of the ma-

chine - namely the quantity of each product available for sale, and the quantity

of each type of coinage left in the machine. Operations exist to buy products,

enter money and retrieve change.

The function insert_coinage takes two integers, the first denoting the type

of coinage and the second denoting the amount of coinage. The range for each

of these parameters in the experiments was 0 to 10. The function buy_item

accepts an integer denoting an identification number for the product. The range

used was 0 to 3.

3.3.2 Experimental Setup

Full branch coverage was attempted for each of the test objects. Each branch

is taken as the individual target of the search, regardless of whether it was

fortuitously covered during the search for test data for another branch. The

search for test data for each branch is repeated ten times. Experiments were

performed on a Pentium 4 PC running Windows XP, with 3GHz and 1Gb RAM

under normal load conditions. For further information on the technical details

of the experimental framework, see Appendix A.

Setup for the Standard Evolutionary Approach

The standard evolutionary approach is a state of the art structure-oriented ap-

proach (as described in Section 2.3.5), using a objective function which combines

both approach level and branch distance information, incorporating Equations

2.1, 2.2 and 2.3.

The evolutionary search generates inputs for the function containing the

current structural target. A vector of floating point and integer variable values

corresponding to the input data are optimized. The ranges and precision of

each variable are specified. The test object is then called with this input data.

The test object is reset to its initial state at the beginning of every generation of

the search. The evolutionary search parameters used are documented in Section

A.4, with 300 individuals per generation.

Should no test data be found for a particular branch, termination criteria
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are required to decide when the search should declare failure. For the experi-

ments, two different stopping criteria were used. The StdEA(200) setup ter-

minates the search after 200 generations. The StdEA(1000) setup terminates

the search after 1000 generations. “StdEA” stands for Standard Evolutionary

Approach.

Setup for Random Test Data Generation

The random approach simply generates inputs randomly for the function con-

taining the current structural target. In order to mirror the evolutionary ex-

periments, which resets the test object after every generation, the test object is

reset after every 300th call. The maximum number of random evaluations that

can be used for each branch is equivalent to the maximum number of evaluations

used by the standard evolutionary approach searches for that branch (taking

into account both successful and unsuccessful searches). The Rnd(200) setup,

therefore, declares failure for a branch after a number of evaluations that is

equivalent to the highest number of evaluations used for that branch by suc-

cessful or unsuccessful searches of the StdEA(200) setup. The Rnd(1000)

setup declares failure for a branch after a number of evaluations that is equiva-

lent to the highest number of evaluations used for that branch by successful or

unsuccessful searches of the StdEA(1000) setup.

Experimental Measurements

For each test object and test setup, the following information was measured:

• Success rate

• Coverage

• Average number of test data evaluations for a successful search

• Average number of test data evaluations for an unsuccessful search

• Maximum number of test data evaluations for a successful search

• Maximum number of test data evaluations for an unsuccessful search

• Average time for a successful search

• Average time for an unsuccessful search

• Maximum time for a successful search

• Maximum time for an unsuccessful search
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Success rate is measured as follows:

success rate =
100 × successful searches

r × number of branches

where r = 10 is the number of search repetitions for each test object branch

and test setup.

Coverage represents the percentage of branches for which at least one of the

ten searches for the test method was successful. Search times were measured

with a precision of 0.1 of a second.

3.3.3 Results

Table 3.2 shows the coverage levels possible using both the standard evolution-

ary approach and random test data generation. Full coverage was not achieved

for eight of the nine test objects with the standard evolutionary approach, whilst

the random approach failed to achieve full coverage in all cases. The success

rate for the standard evolutionary approach is also generally higher than for

the random approach, as also shown in Table 3.2. An exception to this was the

“Postcode” test object.

The number of evaluations for successful and unsuccessful searches are

shown in Table 3.3. The number of test data evaluations performed by the

standard evolutionary approach is always less than the number of individu-

als per generation multiplied by the maximum number of generations, as the

objective values of parents reinserted into the next generation are retained.

Increasing the number of evaluations available to each method (through an in-

crease in the number of generations for the standard evolutionary approach)

only resulted in a slight improvement on coverage and success rate.

Table 3.4 shows search times. The standard evolutionary approach takes

longer to perform a similar number of evaluations as the random approach, due

to the extra complexities of creating each successive generation, and interacting

with the evolutionary algorithm server over a socket connection. Appendix A

describes the details of the experimental framework.

Anomaly Detector

Full coverage could not be obtained with the “Anomaly Detector” test object,

since all branches nested within an outer branch of the normal_limits function

require the circular buffer to be full. This is not possible unless the call to

the function is preceded by function calls to add_data to fill the buffer up.

However, the standard evolutionary approach attempts to generate test data
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for the function containing the target structure only, ignoring other functions

in the module.

Array Difference

Full coverage was obtainable with the “Array Difference” test object, even

though the test object has internal states. A sequence length of up to two

function calls is required in order for each branch to be covered. As the test

object is not reset until the end of a generation, such a sequence was possible

within the evaluation of a generation.

Even though test data can be generated in this manner, the resulting test

data sequence might be very long. The branch could be covered in the last

evaluation of the generation, resulting in an overly long test sequence where the

majority of calls do not contribute towards coverage of the structural target in

question. If the results of the test are checked manually, such long sequences

would be a headache for the human checking the results of the test.

Postcode

The standard evolutionary approach exhibited very poor coverage with the

“Postcode” test object. A sequence of calls is required to cover branches not

corresponding to the initial state. This sequence of calls is unlikely to occur by

chance during the evaluation of a generation of test data individuals.

Sliding Window

The search for test data with the “Sliding Window” test object suffered similar

problems to “Anomaly Detector”, in that a function call sequence involving

calls to other functions needed to have taken place in order for certain branches

to be coverable.

Smoke Detector

Full coverage was not achieved with the “Smoke Detector” test object, because

the required state could not be reached for a handful of branches. In order

to reach the desired state a certain series of statements needed to be executed.

However, the probability of this occurring is very small, unless specific guidance

is given to the search. For example, in order to execute the branch where the

alarm is switched off, the input value (the room smoke level) must be a very

small value during the last six calls to the function. It is therefore unlikely that
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Table 3.2: Success rate and coverage for the experiments using the standard
evolutionary approach and random test data generation

Test Test Success Coverage
Object Method Rate

(%) (%)

Anomaly StdEA(200) 21.4 21.4
Detector Rnd(200) 21.4 21.4

StdEA(1000) 21.4 21.4
Rnd(1000) 21.4 21.4

Array StdEA(200) 100.0 100.0
Difference Rnd(200) 91.7 91.7

StdEA(1000) 100.0 100.0
Rnd(1000) 91.7 91.7

Postcode StdEA(200) 13.9 40.9
Rnd(200) 24.8 37.9
StdEA(1000) 20.5 53.0
Rnd(1000) 37.4 39.4

Sliding StdEA(200) 63.5 84.6
Window Rnd(200) 53.5 80.8

StdEA(1000) 71.5 84.6
Rnd(1000) 68.1 80.8

Smoke StdEA(200) 84.3 85.7
Detector Rnd(200) 71.4 71.4

StdEA(1000) 85.7 85.7
Rnd(1000) 72.1 78.6

Sortcode StdEA(200) 89.2 92.3
Rnd(200) 66.9 84.6
StdEA(1000) 89.2 92.3
Rnd(1000) 81.9 84.6

Stack StdEA(200) 75.0 75.0
Rnd(200) 75.0 75.0
StdEA(1000) 75.0 75.0
Rnd(1000) 75.0 75.0

Tel No StdEA(200) 73.8 85.3
Rnd(200) 20.3 32.4
StdEA(1000) 78.2 85.3
Rnd(1000) 20.6 44.1

Vending StdEA(200) 71.9 71.9
Machine Rnd(200) 71.9 71.9

StdEA(1000) 71.9 71.9
Rnd(1000) 71.9 71.9
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Table 3.3: Evaluations for the experiments using the standard evolutionary
approach and random test data generation

Test Test Successful Unsuccessful
Object Method Search Search

Av Evals Max Evals Av Evals Max Evals

Anomaly StdEA(200) 14 40 1 1
Detector Rnd(200) 14 40 1 1

StdEA(1000) 14 40 1 1
Rnd(1000) 14 40 1 1

Array StdEA(200) 146 3,550 - -
Difference Rnd(200) 134 2,125 3,550 3,550

StdEA(1000) 192 4,796 - -
Rnd(1000) 90 3,481 4,796 4,796

Postcode StdEA(200) 8,633 51,085 53,010 54,943
Rnd(200) 12,899 52,143 54,943 54,943
StdEA(1000) 44,229 253,918 269,716 277,526
Rnd(1000) 44,668 276,869 277,526 277,526

Sliding StdEA(200) 1,929 47,615 53,554 54,859
Window Rnd(200) 4,540 36,714 48,882 54,859

StdEA(1000) 21,051 260,147 267,154 268,205
Rnd(1000) 20,661 225,142 217,720 268,205

Smoke StdEA(200) 191 3,011 53,477 53,485
Detector Rnd(200) 3 4 42,482 53,485

StdEA(1000) 1,053 97,357 267,077 267,085
Rnd(1000) 3 56 162,131 267,085

Sortcode StdEA(200) 3,111 36,411 53,934 58,681
Rnd(200) 3,527 42,932 30,848 58,681
StdEA(1000) 6,719 151,216 268,495 277,100
Rnd(1000) 11,222 252,092 126,196 277,100

Stack StdEA(200) 15 42 1 1
Rnd(200) 15 42 1 1
StdEA(1000) 15 42 1 1
Rnd(1000) 15 42 1 1

Tel No StdEA(200) 3,842 45,454 56,088 57,066
Rnd(200) 1,853 21,371 31,020 57,066
StdEA(1000) 9,583 239,054 272,032 277,613
Rnd(1000) 2,608 27,040 142,025 277,613

Vending StdEA(200) 4 37 17,826 53,500
Machine Rnd(200) 5 71 53,500 53,500

StdEA(1000) 4 38 89,050 267,173
Rnd(1000) 4 47 267,173 267,173
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Table 3.4: Search times for the experiments using the standard evolutionary
approach and random test data generation

Test Test Successful Unsuccessful
Object Method Search Search

Av Time Max Time Av Time Max Time
(s) (s) (s) (s)

Anomaly StdEA(200) 0.3 0.4 0.1 0.1
Detector Rnd(200) 0.1 0.1 0.1 0.1

StdEA(1000) 0.3 0.4 0.1 0.1
Rnd(1000) 0.1 0.1 0.1 0.1

Array StdEA(200) 0.5 2.3 - -
Difference Rnd(200) 0.2 0.4 0.7 0.7

StdEA(1000) 0.6 2.9 - -
Rnd(1000) 0.1 0.7 0.8 0.8

Postcode StdEA(200) 1.6 8.2 8.3 9.2
Rnd(200) 0.1 1.0 1.2 1.2
StdEA(1000) 7.7 46.6 49.9 54.9
Rnd(1000) 0.8 6.3 6.6 6.7

Sliding StdEA(200) 0.8 11.9 12.3 13.6
Window Rnd(200) 2.3 3.9 4.0 4.6

StdEA(1000) 6.1 72.2 63.9 76.6
Rnd(1000) 12.1 16.5 16.4 16.8

Smoke StdEA(200) 0.4 0.9 11.8 13.1
Detector Rnd(200) 0.1 0.1 8.1 15.9

StdEA(1000) 0.6 21.1 68.4 69.7
Rnd(1000) 0.1 0.1 4.2 7.0

Sortcode StdEA(200) 1.0 7.9 11.7 12.1
Rnd(200) 0.1 1.2 0.9 2.1
StdEA(1000) 1.8 35.6 67.2 68.9
Rnd(1000) 0.3 6.7 6.8 6.9

Stack StdEA(200) 0.3 0.4 0.1 0.1
Rnd(200) 0.1 0.1 0.1 0.1
StdEA(1000) 0.3 0.4 0.1 0.1
Rnd(1000) 0.1 0.1 0.1 0.1

Tel No StdEA(200) 1.0 9.5 10.2 11.1
Rnd(200) 0.1 0.4 0.6 1.7
StdEA(1000) 2.3 51.3 59.3 60.8
Rnd(1000) 0.1 0.5 2.2 7.9

Vending StdEA(200) 0.3 0.6 2.9 10.0
Machine Rnd(200) 0.1 0.1 3.1 3.3

StdEA(1000) 0.3 0.5 17.1 54.4
Rnd(1000) 0.1 0.1 14.2 14.3
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the standard evolutionary approach will develop such a sequence by chance

during the evaluation of a generation of test data individuals.

Sortcode

Full coverage was not obtainable for the “Sortcode” test object. Although the

test object consisted of one principal callable function, some branches required

the test object to be in a certain state for which an input sequence was unlikely

to be developed during a generation of test data individuals.

Stack

Testing with the “Stack” module suffered from similar problems to the “Anomaly

Detector” and “Sliding Window” modules in that other functions needed to be

executed to put the test object into some state for branches in the current func-

tion under test to be coverable. In the case of the Stack module, elements could

not be pushed onto the stack in order for branches in the “pop” function to be

feasible.

Telephone Number

Full coverage was not obtainable for the “Telephone Number” test object.

Again, the test object consisted of one principal callable function, but some

branches required the test object to be in certain states for which an input

sequence was unlikely to be developed during a generation of test data individ-

uals.

Vending Machine

The “Vending Machine” module required input sequences to be developed for

certain structures which required other functions in the module to have been

invocated. Such a sequence cannot be developed during a generation of test

data individuals, which correspond to atomic calls to the function containing

the target structure only.

3.3.4 Conclusions of Experimental Study 1

The experiments show that it is not always possible for the standard evolution-

ary approach to test data generation to achieve full coverage for test objects

with state behaviour. Function call sequences are often required in order to put

internal variables into a certain state for some structures to be coverable. The

usual approach to evolutionary structural testing does not evolve function call



88 CHAPTER 3

sequences, but test data for single calls. If the test object is reset at the end of

each generation, it is possible for the state to be changed within the evaluation

of that generation, resulting in the coverage of some state-dependent struc-

tures. However, this is not a desirable strategy as the resulting function call

sequence can be very long. Different functions in a test object may be involved

in changing the state, for example with modules or abstract data types. Since

the standard evolutionary approach only generates test data for the function

which contains the current structure of interest, the method will not invoke

these functions, leaving these structures uncovered.

3.4 Relevant Literature for Evolutionary Input Se-

quence Generation

This section delves into the literature again to analyse works involving evolu-

tionary input sequence generation. The work of Baresel et al. [BPS03] evolves

test data sequences for single function test objects with internal states, whilst

recent work by Tonella [Ton04] involves the use of evolutionary algorithms to

generate sequences of constructor and method calls for structural testing of

object-oriented classes.

3.4.1 Generation of Input Sequences for Single Function Test

Objects with State Behaviour

Baresel et al. [BPS03] generate input sequences for test objects consisting of a

single function with state behaviour. Individuals are encoded as sequences of

input vectors to the function. The sequence is of length l, in order for l calls

to the function to be performed. Since the function is now called many times,

the individual has many chances to execute the desired branch. The objective

value of the individual is calculated using the approach level and normalized

branch distance at the closest point of executing the branch:

min(approach level + normalize bd(branch distance)) (3.1)

Take the example of Figure 3.5 and the input sequence:

<(6, 6, 5), (2, 2, 3), (2, 2, 3), (6, 6, 4), (6, 6, 5)>

The individual is closest to executing the true branch of branching node in the

last call, where the branch distance is 5−3+K = 2+K (using Tracey’s functions
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const int THRESHOLD = 5;

int sequence_example(int a, int b, int c)

{

static int counter = 0;

if (((a + b) / 2) > c) // branching node 1

counter ++;

if (counter >= THRESHOLD) // branching node 2

return 1;

return 0;

}

Figure 3.5: Test sequence generation example

for calculating branch distances, shown in Table 2.2). It is not required that the

individual must execute the target structure during the last call to the function.

One drawback to the scheme is that the tester must have some idea of how

long the sequence is going to be, in order to set the value of l. If l is too

low, the generated sequences might be too short, leaving some target structures

uncovered. If l is too high, the generated sequences will be very long, meaning

the search may take longer or fail to find test data because it is operating in a

larger search space.

3.4.2 Evolutionary Structural Testing of Classes

The work of Tonella [Ton04] involves the use of evolutionary algorithms to

automate the structural testing of classes in object-oriented Java systems. The

state problem exists in the testing of object-oriented systems, since objects store

internal data in “member variables”, which are manipulated by the methods of

the object.

The steps required for the coverage of some structure contained in a class

are as follows:

1. The creation of an object of the class, using one of its constructors;

2. The invocation of a sequence of methods to bring the object into the

required state;

3. Invocation of the method containing the target structure [Ton04]

Therefore, the encoding used by Tonella describes a sequence of constructor

and method calls, with associated input data for those calls. If an input is
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one of the basic Java types, for example an integer, a double or a string, it

is randomly generated and manipulated by the evolutionary algorithm. If the

input is an object, the object must be instantiated as part of the sequence.

Further method calls are allowable on the object if it has to be put into some

desired state.

Care is taken with the mutation and crossover operators so that the validity

of the sequence is not destroyed (for example, the constructor of an object

could be accidently removed, leaving method calls to a non-existent object).

The mutation operators are allowed to perform one of the following actions:

• Regeneration of an input value. An input value of a Java basic type

is replaced by a randomly generated value of the same type

• Change of Constructor. One of the constructors used in the sequence

is swapped for another constructor available in the class. New inputs are

generated for the constructor call. If the constructor takes an object as

an input, an existing object created in the sequence may be reused, or, a

new object is instantiated by the insertion of a new constructor call.

• Insertion of method invocation. A new method call is inserted into

the sequence. New inputs are generated for the call. If the method takes

an object as an input, an existing object created in the sequence may

be reused, or, a new object is instantiated by the insertion of a new

constructor call.

• Removal of a method invocation. A method is removed from the

sequence, with its input values. If an object is used as an input and not

used elsewhere in the sequence, the constructor and method calls to that

object are also removed.

Recombination is performed by a one-point crossover operator. After re-

combination, unnecessary constructors and method calls are removed, with any

missing constructor calls added.

Tonella’s experiments concentrate on obtaining branch coverage for a hand-

ful of classes from the standard Java library - these being the StringTokenizer,

BitSet, HashMap, LinkedList, Stack and TreeSet classes. The objective func-

tion used is similar to that used by Pargas et al. [PHP99] - rewarding individuals

on the basis of the number of control dependent nodes executed en route to the

target. No branch distance information is used. Even so, in the experiments

good levels of coverage were achieved, with all but eleven branches covered.

Five branches were infeasible. One branch in the HashMap class required the
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hash table to have a billion entries; whilst four could not be covered in the

BitSet class because one method needed to be called with an object equal to

the this object or with a parameter that of type BitSet.

3.5 An Approach for the Generation Input Sequences

for Multiple Function Test Objects

This section directly extends the work of Baresel et al. [BPS03] to generate

input sequences for procedural C test objects with multiple functions. This

requires a modification to the encoding of individuals, which must now represent

a function call sequence involving a possible number of functions, rather than

just one. Other features of the method, such as the objective function definition

(Equation 3.1), remain the same. The method is referred to as the sequence

evolutionary approach.

3.5.1 Modified Encoding

The modified encoding consists of a “generic function call” sub-encoding which

is repeated l times. The generic function call sub-encoding represents a pos-

sible call to any of the functions in the test object. It begins with a function

identification number, followed by a “universal parameter vector” which maps

in a different way to each function call signature of the test object.

An example of generating such an encoding for a test object can be seen

in Figure 3.6. The universal parameter vector, and the mapping from each

function signature to the vector, is constructed as follows.

First, positions are made in the vector which correspond to the arguments

of the first function encountered. In the example, the parameters i, j and

k map to the first three positions; which are reserved for double, integer and

integer types respectively, corresponding to their types in this function. The

construction algorithm then attempts to map the parameters of the remaining

functions into this vector. Therefore, integer parameter i of function 2 maps

into position 2. The double parameter q can map into position 1. A new

position has to be added to the vector for the remaining integer argument -

position 4.

When function signatures vary in terms of the number of variables of each

different type there is some enforced redundancy. In the example, position 4

is redundant as far as function 1 is concerned, and position 3 is redundant for

function 2.
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Function signatures:
void function1(double i, int j, int k)

void function2(int p, double q, double r)

Generic Encoding for a Function Call:

Function ID Position 1 Position 2 Position 3 Position 4
double integer integer double
argument (1) argument (1) argument (2) argument (2)

Mapping of Encoding to Function 1:

1 i j k ignored

Mapping of Encoding to Function 2:

2 q p ignored r

Figure 3.6: Generating a generic encoding and mapping the universal parameter
set to individual function call signatures

When there is only one function in the test object, the function identification

number can be removed, and the encoding becomes identical to that of the

original scheme of Baresel et al.

The requirement to select a value of l could be dropped through the use of

a variable length encoding. This is however, out of the scope of this thesis.

3.6 Experimental Study 2 - State-Based Experiments

with an Evolutionary Structure-Oriented Sequence

Generation Approach

3.6.1 Experimental Setup

Experiments were performed using the new sequence evolutionary approach

with the same experimental test object set of experimental study 1. It was

ensured that the fixed sequence lengths for generating the function call sequence

encoding were long enough for all branches to be covered (Table 3.5). The test

object was reset after the evaluation of each test data sequence. Each search

for each branch and each of the different setup outlined below was repeated ten

times.

The sequence evolutionary approach was performed in two variants, the

first using 200 generations as a termination criterion, and the second 1000

generations. These setups are respectively referred to as the SeqEA(200) and
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Table 3.5: Function call sequence lengths used for each state-based test object
used during the sequence generation experiments

Test Object Function Call
Sequence Length

Anomaly Detector 45
Array Difference 2
Postcode 10
Sliding Window 6
Smoke Detector 10
Sortcode 10
Stack 45
Telephone Number 15
Vending Machine 5

SeqEA(1000) setups. “SeqEA” stands for Sequence Evolutionary Approach.

As with experimental study 1, the evolutionary approach was compared

with a random approach. This time, however, the random approach generates

test sequences. Once more, two setups were used for the random approach, in

order to mirror the evolutionary approach. The SeqRnd(200) setup declares

failure for a branch after a number of evaluations that is equivalent to the high-

est number of evaluations used for that branch by successful or unsuccessful

searches of the SeqEA(200) setup. The SeqRnd(1000) setup declares failure

for a branch after a number of evaluations that is equivalent to the highest num-

ber of evaluations used for that branch by successful or unsuccessful searches

of the SeqEA(1000) setup.

The same types of information were recorded as for experimental study 1.

3.6.2 Results

Table 3.6 shows that the sequence evolutionary approach achieves higher cover-

age levels and a higher success rate than the random sequence approach over a

similar number of input sequence evaluations. Figure 3.8 compares success rate

levels and Figure 3.7 compares coverage levels for the standard evolutionary

approach against the sequence evolutionary approach. The sequence evolution-

ary approach achieves higher coverage levels and success rates in all cases apart

from the “Array Difference” and “Telephone No” test objects.

Despite improving on the standard approach in most cases, the sequence

approach still fails to achieve full coverage. The reasons for this are explained

with respect to each test object below:
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Table 3.6: Results for the experiments using the sequence evolutionary approach
and random sequence approach

Test Test Success Coverage
Object Method Rate

(%) (%)

Anomaly SeqEA(200) 21.4 21.4
Detector SeqRnd(200) 14.3 14.3

SeqEA(1000) 21.4 21.4
SeqRnd(1000) 14.3 14.3

Array SeqEA(200) 91.7 91.7
Difference SeqRnd(200) 91.7 91.7

SeqEA(1000) 91.7 91.7
SeqRnd(1000) 91.7 91.7

Postcode SeqEA(200) 46.1 57.6
SeqRnd(200) 17.7 25.8
SeqEA(1000) 48.3 66.7
SeqRnd(1000) 23.6 36.4

Sliding SeqEA(200) 83.5 100.0
Window SeqRnd(200) 66.9 84.6

SeqEA(1000) 83.8 100.0
SeqRnd(1000) 73.8 88.5

Smoke SeqEA(200) 86.4 92.9
Detector SeqRnd(200) 72.1 78.6

SeqEA(1000) 87.1 92.9
SeqRnd(1000) 72.9 78.6

Sortcode SeqEA(200) 87.7 92.3
SeqRnd(200) 73.5 88.5
SeqEA(1000) 89.2 92.3
SeqRnd(1000) 74.6 88.5

Stack SeqEA(200) 87.5 87.5
SeqRnd(200) 75.0 75.0
SeqEA(1000) 87.5 87.5
SeqRnd(1000) 75.0 75.0

Tel No SeqEA(200) 60.6 76.5
SeqRnd(200) 42.9 47.1
SeqEA(1000) 63.8 79.4
SeqRnd(1000) 43.2 44.1

Vending Machine SeqEA(200) 96.6 96.9
SeqRnd(200) 92.8 93.8
SeqEA(1000) 96.9 96.9
SeqRnd(1000) 92.8 96.9
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Figure 3.7: Comparison of coverage levels for the standard evolutionary ap-
proach verses the sequence evolutionary approach
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Anomaly Detector

For the “Anomaly Detector” test object, the majority of branches are nested

within an if condition that relies on the boolean state variable buffer_full

being true. As the name of the variable suggests, this boolean flag is not true

unless the buffer is at maximum capacity. However, due to the use of a flag

to represent this state, the search receives no positive feedback when elements

are added to the buffer. As the buffer is forty elements in size, the chances of

developing a sequence which keeps calling the add_data function and filling the

buffer are small, and the search fails.

Array Difference

The “Array Difference” test object produces unusual results, in that full cover-

age is obtained by the standard evolutionary approach, but not by the sequence

evolutionary approach.

One branch requires that array inputs to subsequent calls of the function

are identical. A flag variable is used to store the fact that this is the case. It was

not expected that this branch would be covered by either technique. However in

all runs for the standard evolutionary approach, the branch was covered, due to

adjacent reinsertion of a parent and an identical offspring within a generation.

Postcode

The “Postcode” test object contains many internal boolean state variables,

and uses a series of boolean return values from auxiliary functions. Another

contributing fact was the high level of nesting in the program (refer to Section

2.3.5), which hinders the evolutionary search.

Sliding Window

The “Sliding Window” test object contains two functions that return boolean

values - is_in_window and is_next_frame - which appear in three conditions

in the program. The use of these flags prevented the search finding input data,

due to a lack of search guidance.

Smoke Detector

The “Smoke Detector” test object uses three flags and two counter variables.

Three branches are generally problematic because the detected counter needs

to be reduced to zero. However this only occurs when the inputted smoke
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Table 3.7: Evaluations for the sequence and random sequence generation ex-
periments

Test Test Successful Unsuccessful
Object Method Search Search

Av Evals Max Evals Av Evals Max Evals

Anomaly SeqEA(200) 2,202 7,837 53,488 53,492
Detector SeqRnd(200) 1 1 49,686 53,492

SeqEA(1000) 2,123 6,815 267,088 267,092
SeqRnd(1000) 1 1 245,401 267,092

Array SeqEA(200) 571 12,347 53,487 53,487
Difference SeqRnd(200) 173 7,475 53,487 53,487

SeqEA(1000) 404 6,755 267,087 267,087
SeqRnd(1000) 75 2,792 267,087 267,087

Postcode SeqEA(200) 6,731 46,011 56,781 57,984
SeqRnd(200) 1,928 57,932 57,984 57,984
SeqEA(1000) 18,954 255,413 277,437 279,506
SeqRnd(1000) 35,192 238,757 279,506 279,506

Sliding SeqEA(200) 6,898 52,941 53,483 53,511
Window SeqRnd(200) 6,335 51,198 29,458 53,511

SeqEA(1000) 10,003 194,258 267,119 267,198
SeqRnd(1000) 17,296 234,975 46,462 267,198

Smoke SeqEA(200) 332 7,006 53,487 53,487
Detector SeqRnd(200) 2 49 33,860 53,487

SeqEA(1000) 536 16,110 267,087 267,087
SeqRnd(1000) 6 241 152,098 267,087

Sortcode SeqEA(200) 2,395 52,953 55,292 57,163
SeqRnd(200) 2,973 49,170 38,812 57,163
SeqEA(1000) 2,937 146,675 269,160 272,569
SeqRnd(1000) 1,992 32,133 184,047 272,569

Stack SeqEA(200) 1,191 8,846 53,491 53,516
SeqRnd(200) 1 1 31,181 53,516
SeqEA(1000) 1,177 10,154 267,100 267,124
SeqRnd(1000) 1 1 138,639 267,124

Tel No SeqEA(200) 5,029 45,282 57,553 57,814
SeqRnd(200) 1,320 35,709 57,814 57,814
SeqEA(1000) 13,000 203,009 277,255 297,459
SeqRnd(1000) 1,467 8,738 297,459 297,459

Vending SeqEA(200) 171 7,012 54,070 56,924
Machine SeqRnd(200) 9 192 49,338 56,924

SeqEA(1000) 192.8 8,052 267,116 267,136
SeqRnd(1000) 702 205,941 108,048 267,136
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Table 3.8: Search times for the sequence and random sequence generation ex-
periments

Test Test Successful Unsuccessful
Object Method Search Search

Av Time Max Time Av Time Max Time
(s) (s) (s) (s)

Anomaly SeqEA(200) 4.2 13.1 72.8 74.6
Detector SeqRnd(200) 0.1 0.1 9.4 10.4

SeqEA(1000) 4.1 11.5 379.2 391.3
SeqRnd(1000) 0.1 0.1 46.5 51.5

Array SeqEA(200) 0.8 4.7 36.1 36.2
Difference SeqRnd(200) 0.1 1.1 7.8 7.8

SeqEA(1000) 0.7 2.8 189.6 189.9
SeqRnd(1000) 0.1 0.5 39.3 39.5

Postcode SeqEA(200) 4.9 31.4 41.7 43.4
SeqRnd(200) 0.3 11.3 13.4 13.5
SeqEA(1000) 15.1 227.1 228.1 229.3
SeqRnd(1000) 5.1 35.0 45.0 45.1

Sliding SeqEA(200) 4.9 37.1 36.7 37.8
Window SeqRnd(200) 0.3 2.8 3.3 4.5

SeqEA(1000) 7.3 143.9 196.3 204.9
SeqRnd(1000) 1.5 14.6 16.9 102.4

Smoke SeqEA(200) 1.0 8.8 61.9 62.3
Detector SeqRnd(200) 0.1 0.1 8.2 16.0

SeqEA(1000) 1.2 19.4 316.2 318.1
SeqRnd(1000) 0.1 0.1 37.2 52.0

Sortcode SeqEA(200) 3.4 65.4 66.0 67.0
SeqRnd(200) 0.6 4.3 2.5 4.5
SeqEA(1000) 4.1 188.9 340.2 342.2
SeqRnd(1000) 1.4 8.9 16.8 21.5

Stack SeqEA(200) 2.6 14.8 71.4 76.4
SeqRnd(200) 0.1 0.1 6.2 11.0
SeqEA(1000) 2.6 17.1 362.3 377.0
SeqRnd(1000) 0.1 0.1 26.9 54.4

Tel No SeqEA(200) 5.4 48.5 52.0 52.5
SeqRnd(200) 0.3 7.7 15.2 15.3
SeqEA(1000) 13.8 246.7 272.0 292.2
SeqRnd(1000) 0.4 2.0 67.7 67.8

Vending SeqEA(200) 0.5 3.4 24.5 24.9
Machine SeqRnd(200) 0.1 0.1 3.51 4.3

SeqEA(1000) 0.5 3.9 139.4 143.0
SeqRnd(1000) 0.1 14.5 7.7 19.2



THE STATE PROBLEM 99

Table 3.9: Earliest, latest and average generation of last individual offering
improvement on the best objective value found in the sequence evolutionary
approach test data searches for the branches of each test object

SeqEA(200) SeqEA(1000)
Earliest Latest Average Earliest Latest Average

Anomaly Detector 1 1 1 1 1 1
Array Difference 1 1 1 1 1 1
Postcode 1 199 45 1 966 101.7
Sliding Window 1 1 1 1 1 1
Smoke Detector 1 48 7.3 1 146 9.1
Sortcode 1 44 10.5 1 53 7.4
Stack 1 1 1 1 1 1
Tel No 1 192 31.4 1 777 62.7
Vending Machine 1 24 3.1 1 1 1

level value is very small, and the search receives no explicit guidance to these

statements.

Sortcode

The “Sortcode” test object uses several internal boolean variables to manage the

state, as well as using boolean values as return types from auxiliary functions.

The use of these boolean values prevented the search from receiving adequate

guidance, failing to find the required input sequences.

Stack

“Stack” uses an auxiliary function which returns an error code corresponding to

error states like underflow or overflow. The overflow error code causes a problem

because it appears in a condition testing if the stack is full before pushing an

element onto the stack. However the error variable values have a similar effect

on the search as values from an enumeration, with plateaux forming on the

objective function landscape. Guidance is not provided to the search as to how

the stack becomes full, and the search fails.

Telephone No

The “Telephone” test object uses several internal boolean variables to manage

the state. Once again, the use of these variables led to objective function
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landscapes that provided inadequate guidance to the search, leading to failure

to find the required input sequences and preventing full coverage.

Vending Machine

Full coverage would have been obtained for the “Vending Machine”, but for

the use of an auxiliary function returning a boolean value, which prevented

coverage of one of its branches.

Search Times and Evaluations

Evaluations and search times can be seen in Tables 3.7 and 3.8 respectively. The

maximal number of test data evaluations performed by the sequence evolution-

ary approach is less than the number of individuals per generation multiplied by

the maximal number of generations, as the objective values of parents reinserted

into the next generation are retained.

Increasing the number of evaluations available to each approach (i.e. through

the increased number of generations as the termination criterion for SeqEA(1000)

only resulted in an improvement of coverage levels for two test objects - “Post-

code” and “Telephone Number”. Only a slight improvement in success rate was

obtained for six test objects, with no improvement for the remaining three.

Table 3.9 shows that on average, unsuccessful searches as early as the 100th

generation, for both SeqEA(200) and SeqEA(1000) setups. This suggests that

the results are unlikely to be significantly improved by simply running the

searches for even longer than 1000 generations.

3.6.3 Conclusions of Experimental Study 2

Experimental study 2 shows that sequences can be generated for procedural C

test objects containing multiple functions, through the use of evolutionary algo-

rithms. The evolutionary approaches always outperforms the random method.

The sequence evolutionary approach improves upon the standard evolution-

ary approach in the majority of cases in terms of both coverage levels and search

success rate. Furthermore, the sequence approach can guarantee the lengths of

generated input sequences are of a reasonable size, as determined by the tester.

For the standard approach, test data for covered branches corresponds to the

sequence formed from the first individual in the generation up to the individual

on which the branch was executed.

The sequence evolutionary approach was only able to obtain full coverage

for one of the test objects. Full coverage was prevented by the lack of guidance
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provided to the search, as a result of the use of internal variables such as counters

and boolean flags.

3.7 Conclusions

This chapter showed how states in test objects can cause problems for the stan-

dard structure-oriented approach to evolutionary structural testing (referred to

as the standard evolutionary approach), which was designed to generate test

data for single function calls. However the existence of states in test objects re-

quires that function call sequences are generated in order for certain structures

to be covered. The issue of function call sequence generation has been addressed

in the literature. The work of Baresel et al. [BPS03] generates sequences for

test objects with one function. Tonella [Ton04] describes an approach for the

structural testing of classes. The work of Baresel et al. was extended in order

to handle multiple function test objects in a method referred to as the sequence

evolutionary approach. Whilst the sequence approach generally obtains higher

coverage than the standard approach, full coverage could still not be obtained

in a number of cases. This is due to use of internal variables in the conditions of

programs. Internal variables can result in a degree of “information loss” when

computing branch distance values, producing coarse or flat objective function

landscapes for structures within the program. This in turn results in the search

receiving less guidance to the required test data, leading to possible search fail-

ure. The use of internal variables within program code for test objects with

state behaviour is inevitable, as internal variables are required to manage the

state. Somehow, the search needs to be provided with extra guidance so that

the internal variable problem can be overcome. This is the subject of the next

chapter.
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Chapter 4

Revisiting the Problem of

Internal Variables

4.1 Introduction

The problem of internal variables has already been encountered in the literature

in the form of flag variables. However, other types of internal variables can also

hinder the finding of test data if they cause the objective function landscape

to become flat or coarse, offering insufficient guidance to the search. The use

of internal variables is inevitable for test objects with state behaviour, since

internal state variables of some form or other are required in order to manage

the current state.

This chapter looks into the literature for possible inspiration for solving the

problem, beginning with techniques used to deal with the flag problem. These

methods are investigated to see if they can be extended to the more general

problem. Following this, the possibility of reverse engineering state machine

models of the system is discussed. A state model may provide insight into the

internal workings of a test object, providing information that could be used to

guide the test object into certain states required for certain structures to be

covered.

A previously unconsidered idea is the application of Korel and Ferguson’s

chaining approach. The basic idea of the chaining approach is to identify a

sequence of statements involving assignments to internal variables, which might

need to be executed prior to the structural target in question. By requiring

these statements to be executed, further information can be made available for

guidance of the search, which may improve the chances of finding test data.

103
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4.2 Solutions to the Flag Problem

The flag problem was originally discussed in this thesis in Section 2.3.5. Solu-

tions to the flag problem are now examined to see if they can be extended to

the more general problem of internal variables.

The approach of Baresel et al. [BS03] statically analyses program code to

identify flags within the code. Statements assigning the desired value to the

flag are found, and extra guidance is provided via the objective function so

that these statements are executed. The testability transformation approach of

Harman et al. [HHH+02, HHH+04] uses static analysis to transform flags out

of the conditions of the test object’s code.

The main problem with extending these approaches is that the form of ob-

jective function landscape for a structure must be predictable from the program

code prior to the search being undertaken. This is straightforward for flag vari-

ables, where it is known that the landscape will be flat, preventing the search

from receiving guidance. For other types of internal variable, the shape of the

landscape cannot always be forecast in advance.

4.3 Use of a State-based Model of the System

A state-based model of a system may reveal information about the internal

workings of the test object so that extra guidance can be provided to the search

where it is needed; for example to put the test object in the required state for

certain target structures to be coverable, via certain assignments to internal

state variables.

One source of a state-based model would be a state-based formal specifi-

cation of the system produced as part of the development process. However,

not all systems are engineered this way. Even if a state-based specification did

exist, it would more than likely be too abstract to reveal source level details for

structural testing of the system. Another possibility is to reverse engineer the

required information from the code itself, and use this information to assist the

search. In the literature, state models have been reverse engineered from the

source code of a system to assist in testing and model-checking.

4.3.1 Reverse Engineering State Models for Testing

Kung et al. [KSGH94, KLV+96] reverse state models from program code for

state-based testing of objects.

The state space of an object is the product of the domains of its inter-

nal member variables. Since the different values of member variables lead to
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different paths being taken through the object’s different methods, different be-

haviour arises depending on the state. The product of member variable domains

can potentially be extremely large. However, this space can be partitioned into

a smaller set of states on the basis that paths can be executed by more than

one value from a member variable’s domain.

Kung et al. drive this partitioning through the use of symbolic execution

(introduced in Chapter 2). The resulting state model is called the “object

state diagram”. The technique can be demonstrated using the example of the

CoinBox class [KSGH94], seen in Figure 4.1, which models a simple vending

machine. The class has methods to add and retrieve money (AddQtrs() and

ReturnQtrs()), vend products (Vend()) and reset the machine (Reset()).

A path condition and final symbolic expression is derived for each path

through each method using symbolic execution. Each member variable is then

partitioned as follows. First, all the path conditions are analyzed to look for

usage of the variable. For each usage, intervals of the domain of the variable are

formed such that the path condition is evaluated as true or false for all values

in that interval. Finally, overlapping intervals are removed from their original

partitions to form separate new intervals. The intervals for each member vari-

able are conjoined with the intervals of every other member variable to form

the overall set of states.

In this way, the member variable curQtrs is partitioned into two inter-

vals, [0, 0] and [1,M ], where M is the maximal possible value of curQtrs,

through the condition on the if statement in the AddQtr method. Similarly

allowVend is partitioned [0, 0] and [1,M ], where M is the maximal possible

value of allowVend, through the condition in the Vend method. The domain

of the member variable totalQtrs forms one interval and is effectively ignored,

since it does not appear in any conditions in the code. With two intervals

for curQtrs, two intervals for allowVend and one interval for totalQtrs, four

distinct states are formed.

Transitions are constructed by analyzing the path condition of each path,

and finding the member variable intervals that satisfy that path condition in

some state. This state becomes the pre-state of the transition. The post-state

is then found by finding some state whose member variable intervals satisfy the

final expression of the path. The derived object state diagram for the Coinbox

example can be seen in Figure 4.2.

The main problem with the work of Kung et al. is the difficulty of analyzing

dynamic behaviour, which is hard to achieve statically. Unbounded loops are

dealt with in a limited manner through the consideration of a selected number of
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class CCoinBox

{

unsigned int totalQtrs; // total quarters collected

unsigned int curQtrs; // current quarters collected

unsigned int allowVend; // 1 = vending is allowed

public:

CCoinBox() {Reset();}

void AddQtr();

void ReturnQtrs() { curQtrs = 0; }

unsigned int isAllowedVend() { return allowVend; }

void Reset() { totalQtrs = 0; allowVend = 0; curQtrs = 0; }

void Vend();

};

void CCoinBox::AddQtr()

{

curQtrs = curQtrs + 1;

if (curQtrs > 1)

allowVend = 1;

}

void CCoinBox::Vend()

{

if (isAllowedVend())

{

totalQtrs = totalQtrs + curQtrs;

curQtrs = 0;

allowVend = 0;

}

}

Figure 4.1: The coinbox example
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allowVend: [0, 0] 
curQtrs: [0, 0] 

allowVend: [1, M] 
curQtrs: [0, 0] 

allowVend: [0, 0] 
curQtrs: [1, M] 

allowVend: [1, M] 
curQtrs: [1, M] 

Reset() 

ReturnQtrs() 

CoinBox() 

Vend() 

AddQtr() 

ReturnQtrs() 

ReturnQtrs() 

Vend() 

ReturnQtrs() 

AddQtr() 

AddQtr() 

AddQtr() 

S1 

S3 

S2 

S4 

 
Figure 4.2: Object state diagram for the coinbox example of Figure 4.1

iterations, which inevitably results in an incomplete state model. Furthermore,

the method only works with scalar input variables. A further problem is that

the method only deals with internal state variables, whereas internal variables

may also appear within function bodies, or be used as return values from other

functions.

4.3.2 Reverse Engineering State Models for Model Checking

There is a body of work in the literature devoted to reverse engineering state

models for model checking. Model checking is the process of exhaustively

searching a finite state model of a system in order to check for violations of

its requirements. Model checking is generally used to validate abstractions of

hardware or software designs. However if one wants to model check actual

programs, a model needs to be synthesized from the code.

Such derivations are presented with many complications, due to state ex-

plosion problems, and also the problem of the semantic gap that exists between

the languages accepted by model checkers (for example Promela) which are

generally static, and programming languages, which are highly dynamic.

One example of a program model checker is Bandera [CDH+00], which

model checks Java programs. Bandera attempts to build tractable models of

Java code through processes of component elimination, data abstraction and

component restriction. The initial stage of component elimination involves the

removal of parts of the software in the final model that can have no effect on
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deciding whether the current property being checked will be violated or not.

This is achieved through the use of program slicing [Wei84]. After these parts

of the system have been removed, some remaining relevant variables may be

abstracted to remove surplus information that is not required for the current

property being checked. The user can define abstractions in a special language

[DHJ+01], and these are stored in a library for future use. Bandera then pro-

vides guidance on which abstractions to use for given programs and properties.

The abstracted program is generated through the compilation of the abstract

definitions into Java representations, and then by transforming concrete op-

erations to new abstract ones. For example if an integer was abstracted to

the values {neg, zero, pos}, the abstract plus operator would return neg for

neg + neg, plus for zero + pos, a non-deterministic value for neg + pos and so

on. One danger here is over-abstraction to the point at which a property no

longer becomes adequately checkable. If the first two stages still cannot pro-

duce a tractable model, a restricted version is used. This is derived through

strategies such as limiting the ranges of variables, bounding execution steps or

bounding the number of objects that can be created.

Similar tools to Bandera include Java PathFinder [HP00] and JCAT [DIS99],

both of which translate concurrent Java code into the Promela model checking

language. However these tools give the impression of not being as proficient in

producing compact state models, concentrating mainly on control flow prop-

erties such as deadlock. FeaVer [HS01] is another model checking system, but

gives the impression of being more suited to aiding model construction, as op-

posed to being a model constructor in its own right. Furthermore, Groce et

al. [GPY02] propose a methodology called “Adaptive Model Checking”, which

can learn from inconsistences between a system and its corresponding model in

order to perform suitable updates to the model; using techniques from machine

learning.

4.4 The Chaining Approach

The chaining approach [FK96a] was briefly introduced in Chapter 2, Section

2.3.3, and is a search-based structural test data generation method in its own

right. It is of interest to this work because it incorporates a “backup” strategy

when it encounters difficulties during the search for test data for a particular

structure. These difficulties may possibly be due to the interference of internal

variables, and the possible lack of guidance provided by the objective function.

The chaining approach uses local search and has only previously been used
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CFG
Node

s void ca_initial_example(int x)

{

1 int flag = 0;

2 if (x == 0)

3 flag = 1;

4 if (flag)

{

5 // target node

}

}
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Figure 4.3: Example for demonstrating the chaining approach. (a) Program
code (b) Branch distance for the execution of node 4 as true (c) Branch distance
for the execution of node 2 as true

to test functions with input-output behaviour. However, there is potential to

extend the method by incorporating a global search in the form of evolutionary

algorithms and testing the approach with state-based test objects.

The chaining approach was originally developed for Pascal programs. However

for consistency all examples here are presented in C. The chaining approach is

now explained in detail.

Consider the flag example of Figure 4.3a (this example has appeared already

in this thesis, but is reproduced here for ease of reference). The target of the

search is node 5. In order to execute node 5 the true branch from node 4 must

be executed. However, the condition at node 4 involves a flag that is only true

when the input value to the function is zero. Consequently the surface of the
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objective function derived from the branch distance at node 4 is flat since the

flag is always false other than for the required value (Figure 4.3b). Therefore,

the search receives no guidance and is likely to fail to find the required input

value of x. Node 4 is referred to as a “problem” node. It can easily be seen that

if node 3 is executed before 4, the true branch from node 4 will be executed. If

the search tries to execute node 3, it needs to evaluate the condition at node 2

as true. The objective surface of the true branch predicate from node 2 is far

more conducive to finding the desired value of x (Figure 4.3c), with a surface

free of plateaux, descending down to the required input value. Therefore, if the

search instead aims to execute node 3 before node 4, instead of merely node 4

alone, test data can be more easily found.

The basic idea of the chaining approach is to identify a sequence of nodes

that can potentially change the outcome at problem nodes using a similar strat-

egy as in the example above. By requiring that such a sequence of nodes is ex-

ecuted prior to the problem node, extra guidance can be made available to the

search (for example via the true branch predicate from node 2 in the example),

and the chances of finding test data for the target structure may be increased.

4.4.1 The Concept of a “Last Definition”

The process of node sequence identification is driven by data flow analysis. The

set of nodes that can have an immediate effect on a problem node is the set of

last definition nodes of variables used at the problem node. A “last definition”

node i is a node that assigns a value to a variable v which may potentially be

used by a node j. For the node to qualify as a last definition, a definition-clear

path must exist between node i and node j with respect to v (the concept of a

definition-clear path was defined in Section 2.3.1). In the example of Figure 4.3,

only one variable is used at problem node 4 - the variable flag. Last definitions

of flag from node 4 are nodes 1 and 3. Node 1 is definition-clear with respect

to flag through to node 4 via node 2, avoiding node 3 (Figure 4.4). Node 3 is

definition-clear since node 4 is its immediate predecessor.

In the example of Figure 4.5, nodes 6 and 8 are possible last definitions

of the variable flag used at node 9. However nodes 1 and 3 cannot be last

definitions since there is no definition-clear path from either node through to

node 9 avoiding node 6, which redefines flag.

Sequences of last definition nodes are constructed using the notion of an

event sequence.
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s
1

[flag=0]
2

3
[flag=1]

4
[if (flag)]

5

e

Figure 4.4: Finding last definitions. The problem node is node 4. The only
variable used at the problem node is flag, last defined at node 1 (via the
sub-path 1-2-4) and node 3.

CFG
Node

s void last_defs_example(int x)

{

1 int flag = 0;

2 if (x == 0)

3 flag = 1;

4 if (flag)

{

5 // perform some action

}

6 flag = 0;

7 if (x == 1)

8 flag = 1;

9 if (flag)

{

10 // perform some action

}

e }

Figure 4.5: Example for finding last definitions
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4.4.2 Event Sequences

An event sequence can be thought of as a form of abstract path. An “event”

simply refers to the execution of a node. Formally, an event sequence is a

sequence of events, < e1, e2, · · · ek > where each event is a tuple ei = (ni, Ci)

where ni is a program node and Ci is a set of variables referred to as a constraint

set [FK96a]. The constraint set is simply a set of variables that must not be

modified until the next event in the sequence. That is to say, a definition-clear

path must be executed between two events ei and ei+1 with respect to each

variable v in Ci.

The following event sequence < (s, ∅), (1, {flag}), (4, ∅) > is an event se-

quence referring to nodes in the example of Figure 4.3. It requires that the

start node s is executed, followed by the execution of node 1. Node 4 must

then be executed - but avoiding any reassignment to flag before node 4. This

means the false branch must be taken from node 2.

An event sequence is feasible if input data exists on which the event sequence

can be successfully executed. The event sequence < (s, ∅), (1, {flag}), (4, ∅) >

is feasible, however the event sequence < (s, ∅), (1, {flag}), (4, ∅), (5, ∅) > is not.

4.4.3 The Chaining Process

The chaining approach begins with an initial sequence E0 which contains the

start node s and the goal node. Both events have empty constraint sets. In the

example of Figure 4.3, node 5 is the goal node. The initial event sequence is

therefore:

E0 = < (s, ∅), (5, ∅) >

If input data cannot be found to take the true branch from node 4 so that node

5 might be executed, node 4 is declared as a problem node. Node 4 is inserted

into the event sequence:

< (s, ∅), (4, ∅), (5, ∅) >

Last definition nodes for node 4 are then identified - nodes 1 and 3. Two

new event sequences are now generated, one demanding the execution of node

1 before node 4 (E1), the other demanding the execution of node 3 before node

4 (E2):

E1 = < (s, ∅), (1, {flag}), (4, ∅), (5, ∅) >
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E2 = < (s, ∅), (3, {flag}), (4, ∅), (5, ∅) >

The inserted events are formed from the last definition node, and a constraint

set formed from the variable defined at the node. The addition of the last

definition variable into the constraint set specifies that it will not be modified

again until the problem node is encountered; ensuring the effect of that last

definition on the problem node is not destroyed.

In general, then, the event sequence begins an initial event sequence E0 with

just the start node s and the goal node g - < (s, ∅), (g, ∅) >. The test data search

may fail to find inputs to execute the event sequence, with the flow of execution

diverging down an unintended branch at node p1. Node p1 is declared as a

problem node and is inserted into the event sequence - < (s, ∅), (p1, ∅), (g, ∅) >.

For the problem node p1, the set of last definition nodes lastdef(p1) are found

for the set of variables used at p1. For each last definition di ∈ lastdef(p1), a

new event sequence is generated containing an event associated with that last

event:

E1 = < (s, ∅), (d1, {def(d1)}), (p1, ∅), (e, ∅) >

E2 = < (s, ∅), (d2, {def(d2)}), (p1, ∅), (e, ∅) >

. . .

EN = < (s, ∅), (dN , {def(dN )}), (p1, ∅), (e, ∅) >

Assuming that each definition modifies only one variable, the constraint set

associated with each last definition di in Ei is a one element set def(di) that

requires a variable defined by di is not modified between di and p1.

The chaining approach selects one of the event sequences and tries to find

inputs for which it is successfully executed. If such an input is found, then

test data to execute the test goal has been found. If not, new event sequences

may be generated. For example, in trying to find inputs to execute E1, a new

problem node p11
may be encountered before d1 can be executed. If this is the

case p11
is inserted into the sequence:

< (s, ∅), (p11
, ∅), (d1, {def(d1)}), (p1, ∅), (e, ∅) >

Last definitions of variables are then found for p11
, and new events are generated

and inserted into a new set of event sequences:

E11
= < (s, ∅), (d11

, {def(d11
)}), (p11

, ∅), (d1, {def(d1)})(p1, ∅), (e, ∅) >
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E12
= < (s, ∅), (d12

, {def(d12
)}), (p11

, ∅), (d1, {def(d1)})(p1, ∅), (e, ∅) >

. . .

E1N
= < (s, ∅), (d1N

, {def(d1N
)}), (p11

, ∅), (d1, {def(d1)})(p1, ∅), (e, ∅) >

Problem nodes can arise as a result of a failure to execute an event node, or

as a result of a constraint set violation. The example of Figure 4.6 could lead

to a constraint set violation. Suppose the current event sequence is:

< (s, ∅), (4, {flag1}), (9, ∅), (10, ∅) >

The constraint set for the event corresponding to node 4 requires that the

variable flag1 is not modified from node 4 up until node 9. However test data

cannot be found to avoid the re-definition of flag1 at node 8. This is because

the condition at node 7 is also dependent on a flag variable - flag2 - which

has a low probability of being false. This is due to the likely situation where

the input variable b is not zero, and flag2 is set to true at node 6. Node 7 is

therefore declared as a problem node, for which the further event sequences are

generated, namely:

Ex = < (s, ∅), (2, {flag2}), (4, {flag1, f lag2}), (7, {flag1}), (9, ∅), (10, ∅) >

Ey = < (s, ∅), (4, {flag1}), (6, {flag1, f lag2}), (7, {flag1}), (9, ∅), (10, ∅) >

event sequence Ex being feasible and Ey infeasible.

Generated event sequences are organized in a tree structure (Figure 4.7). At

the first level are the event sequences generated as a result of the first problem

node, with subsequent levels formed if further problem nodes are encountered.

Event sequences are explored in the tree in a depth-first fashion to a maximum

depth limit.

A flow chart of the overall process of the chaining approach can be seen in

Figure 4.8.

4.4.4 Formal Generation of an Event Sequence

The general strategy for generating event sequence can be formally described

as follows. Let E =< e1, e2, ..., ei−1, ei, ei+1, ..., em > be an event sequence.

Suppose the test data search finds input data to partially execute the event

sequence up to event ei, with a problem node p encountered between events ei

and ei+1. Let d be a last definition of problem node p. A new event sequence is
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CFG
Node

s void constraint_set_violation_example(int a, int b)

{

1 int flag1 = 0;

2 int flag2 = 0;

3 if (a == 0)

4 flag1 = 1;

5 if (b != 0)

6 flag2 = 1;

7 if (flag2)

8 flag1 = 0;

9 if (flag1)

10 // target statement

e }

Figure 4.6: Constraint set violation example
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generated from E by inserting two events into sequence: ed = (d, def(d)) and

ep = (p, ∅). Event ep is always inserted between events ei and ei+1. In general,

however, event ed may be inserted in any position between e1 and ek+1 in the

event sequence. Therefore, the following event sequence is generated:

E′ =< e1, e2, ..., ek−1, ek, ed, ek+1, ..., ei−1, ei, ep, ei+1, ..., em >

Insertion of new events into the sequence requires modification of certain

constraint sets as part of events already in the sequence.

The constraint set of the event corresponding to the problem node is simply

the same as the constraint set of the prior event in the sequence:

Cp = Ci (4.1)

Previously, variables in Ci could not be modified between ei and ei+1. The

above step ensures this is still the case, by maintaining that these variables will

not be modified between ep and ei+1 either.

The constraint set Cd for the event ed is formed from the variable defined

at the event node, def(d), merged with the variables of the constraint set of

the previous event, Ck:

Cd = Ck ∪ def(d) (4.2)

In a similar fashion to Equation 4.1, this rule maintains consistency of the

event sequence by ensuring that variables in Ck are not modified between ek

and the new event ed. However, the variable def(d) might still be modified

between ek+1 and ep, ruining the effect of the last definition. The final step

prevents this by adding def(d) to each constraint set for each event from ek+1

up to but not including ep:

∀j, k + 1 ≤ j ≤ i, Cj ∪ def(d) (4.3)

Consider the example of Figure 4.9. Suppose the target is to execute node

11. Initially node 7 was a problem node and was inserted into the event se-

quence. The current event sequence is as follows, with the last definition of

flag1 at node 4 also inserted into the sequence:

< (s, ∅), (4, {flag1}), (7, ∅), (11, ∅) >

Execution may now proceed through the true branch from node 7, but then
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CFG
Node

s void multiple_problem_nodes_example(int x, int y, int z)

{

1 int flag1 = 0;

2 int flag2 = 0;

3 if (x == 0)

4 flag1 = 1;

5 if (y == 0)

6 flag2 = 1;

7 if (flag1)

{

8 if (z != 0)

9 flag2 = 0;

10 if (flag2)

{

11 // target node

}

}

e }

Figure 4.9: Multiple problem node example
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node 10 might be problematic. If this is the case, node 10 is inserted into the

sequence between nodes 7 and 11. According to Equation 4.1 the constraint set

of the new event is the same as the prior event. The constraint set of node 7 is

empty, and so the intermediate event sequence is:

< (s, ∅), (4, {flag1}), (7, ∅), (10, ∅), (11, ∅) >

The variable flag2 is used at problematic node 10. This is last defined at

nodes 2 and 6. Suppose node 6 is to be inserted into the sequence. The only

place it can go in the sequence is between the events corresponding to nodes 4

and 7. In accordance with Equation 4.2, the constraint set of the new event is

that of the prior event, {flag1} coupled with the defined variable - flag2. The

constraint set of node 7 must be updated according to Equation 4.3 with the

variable defined at the earlier event (note that this means the improbable false

branch should be taken from node 8).

The newly generated event sequence is therefore:

< (s, ∅), (4, {flag1}), (6, {flag1, f lag2}), (7, {flag2}), (10, ∅), (11, ∅) >

4.4.5 Repetition of a Problem Node

The chaining approach assumes a problem node can only occur in an event

sequence once. In practice this prevents the generation of some nonsensical

event sequences. Take the example of Figure 4.10. Suppose the target of the

search is node 7. Node 6 becomes a problem node, for which further event

sequences can be generated. One of these new event sequences is:

< (s, ∅), (10, {flag}, (6, ∅), (7, ∅) >

since node 9 might be reached in the previous iteration of the loop. However

node 9 is nested within the if statement from node 6, which will be found to be

a problem node again when the search attempts to find input data. Therefore,

no further event sequences are generated from:

< (s, ∅), (6, ∅), (10, {flag}, (6, ∅), (7, ∅) >

4.4.6 Test Data Search

The chaining approach uses a local search method known as the alternating

variable method to find test data. The alternating variable method was intro-
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CFG
Node

s void problem_node_repetition_example(int a[10])

{

1 int i;

2 int flag = 0;

3 for (i=0; i < 10; i++)

{

4 if (flag)

{

4 if (a[i] == 0)

5 flag = 1;

6 if (flag)

{

7 flag = 0;

8 // perform some action

// ...

9 if (i < 10 && a[i+1] == 0)

10 flag = 0;

}

}

}

e }

Figure 4.10: Problem node repetition example
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duced in Section 2.3.3.

An initial input vector is chosen at random. The alternating variable method

then attempts to find input data so that each event in the sequence is executed in

turn through the program. In order for this to happen, each branch is classified

with respect to each pair of adjacent events ei = (ni, Ci) and ei+1 = (ni+1, Ci+1)

in the sequence as either critical, semi-critical or non-essential. This branch

classification assumes ni has been successfully executed, and the goal is to

executed ni+1 without modifying any of the variables in Ci

Critical Branches

A branch (p, q) is declared critical with respect to ei and ei+1 if and only if:

• There does not exist a definition-clear path from p to ni+1 or ni with

respect to Ci through branch (p, q); and

• There exists a definition-clear path from p to ni+1 with respect to Ci from

the alternative branch of p

If a critical branch is executed, the alternating variable local search method

is invoked to modify the input vector so that the alternative branch is taken.

In the example of Figure 4.3 and the event sequence:

< (s, ∅), (3, {flag}), (4, ∅), (5, ∅) >

the false branch from node 2 is critical for the execution of node 3 of the second

event e2. The false branch from node 2 results in a path that will never reach

node 3. If the initial input is (x=10), the branch distance is 10 (refer to Table

2.1 for Korel’s objective functions for branching predicates). The alternating

variable method makes exploratory moves around this value. A lower value of x

leads to an improvement, and decreasing values of x are sought until the value

of 0 is reached.

In the example of Figure 4.6 and the event sequence:

< (s, ∅), (4, {flag1}), (9, ∅), (10, ∅) >

the true branch from node 7 is critical since it leads to a redefinition of the

variable flag1.

If the alternating variable cannot find an input vector so that a critical

branch is not taken, node p is declared as problematic, and further event se-

quences at the next level of the chaining tree generated.



122 CHAPTER 4

Semi-Critical Branches

A branch (p, q) is defined as semi-critical with respect to ei and ei+1 if it is not

critical, and:

1. ni+1 is control dependent on p; and

2. There does not exist an acyclic definition-clear path from p to ni+1 with

respect to Ci through (p, q).

When a semi-critical branch is executed, the alternating variable method is

invoked to adapt the input vector so that the alternative branch might be taken.

However, if no such input can be found, node p is not declared as problem node

- execution continues in the hope of simply taking the alternative branch in the

subsequent iteration of the loop. Clearly, however, if the loop has to iterate, the

chances of encountering a critical branch are increased, and so it is preferred

that semi-critical branches are avoided.

Non-Essential Branches

A non-essential branch is simply any branch which is not critical or semi-

critical. If a non-essential branch is taken there is no need to adjust the input

vector since the branch is not important with respect to the current event.

4.4.7 Test Data Generation for Covering Branches and Definition-

Use Pairs

The chaining approach has been presented for finding test data for specific

nodes within programs, as part of a statement coverage strategy. The method

can also deal with other structural targets such as branches or definition-use

pairs.

In order to perform branch coverage, branches need to be inserted as test

goals into event sequences. This does not require an extension of the event and

event sequence model. A branch is inserted into an event sequence by simply

inserting a pair of events ei = (ni, ∅) and ej = (nj, ∅) into the sequence, where

ni and nj are the respective originating and terminating nodes of the branch.

The initial event sequence is therefore:

< (s, ∅), (ni, ∅), (nj , ∅) >

No events will be inserted into the sequence between ei and ej , which would

destroy the intention to execute the edge between nodes ni and nj. This is
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because ej will either be executed directly after ei, or, ei will have been declared

a problem node, in which case new events will be inserted before it.

In order to perform definition-use coverage, a definition-use pair (d, u) is

inserted:

< (s, ∅), (d, def(d)), (u, ∅) >

4.4.8 Evaluation of the Chaining Approach

Ferguson and Korel [FK96a] found their chaining approach achieved a higher

level of coverage for a series of examples when compared to random test data

generation, the constraint-based testing approach (described in Section 2.3.2),

and the goal-oriented approach (described in Section 2.3.3) on which it was

originally based.

The chaining approach could be extended to deal with test objects with

states. It has advantages over the other techniques considered in this chapter

because:

• It adapts to the outcome of a search, as opposed to trying to guess the dif-

ficulties that might be encountered beforehand. This makes the approach

applicable to a wider range of internal variable problems other than those

involving just flags;

• No information needs to be reverse engineered from the program code,

other than knowledge of the data dependencies within it.

Korel [Kor96] shows how the last definition analysis works for programs

with embedded procedure calls, with the analysis tracing the data flows into

and back out of the called procedure. Ferguson and Korel [FK96b] also show

how the method can be extended to handle distributed programs.

4.5 Conclusions

This chapter has evaluated several techniques to help overcome the internal

variable problem for evolutionary testing. Several solutions for dealing with

the flag variant of the problem were considered. However these techniques rely

on knowing that the flag variable will induce a flat objective function landscape.

For more general forms of internal variable it is uncertain what the form of the

objective function landscape take, and whether it will indeed provide insufficient

guidance to the search.
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Several techniques were considered which reverse engineer state models from

code. Such analysis may provide valuable internal information regarding how

to put the test object in certain states and overcome internal variable prob-

lems. However these techniques suffer from state explosion problems, and the

difficulty of analyzing dynamic features of code.

Finally, the chaining approach was considered. The chaining approach is

a search-based structural test data generation method itself, but utilizes local

search. It is of interest to this work because it incorporates a “backup” strategy

when it encounters difficulties during the search for test data for a particular

structure, difficulties that are possibly due to the existence of internal variables

and a lack of guidance provided by the objective function. The basic idea of

the chaining approach is to find a sequence of statements involving internal

variables that need to be executed prior to the test goal. By requiring that

these statements are executed, information previously unavailable to the search

can be utilized, possibly guiding it into potentially promising and unexplored

areas of the test object’s input domain. The chaining approach could be ex-

tended to deal with test objects with states. It adapts to the outcome of a

search, as opposed to trying to guess the difficulties that might be encountered

beforehand. This makes the approach applicable to a wider range of internal

variable problems other than those involving just flags. No information needs

to be reverse engineered from the program code, other than knowledge of the

data dependencies within it.



Chapter 5

Hybridizing Evolutionary Test

Data Generation with an

Extended Chaining Approach

5.1 Introduction

The last chapter proposed the incorporation of a chaining method within evo-

lutionary structural test data generation, in order to overcome internal variable

problems. This chapter presents this approach. The original local search used

by the chaining approach is replaced in favour of an evolutionary search. An

evolutionary search needs to be able to make global comparisons with respect

to test inputs and event sequences, requiring the definition of a new, more

sophisticated objective function. Weaknesses and limitations of the original

chaining algorithm are identified, and addressed in an extended chaining algo-

rithm. The goal is to overcome internal variable problems for test objects with

states. However, as proof of concept the initial approach is tested with nine

test objects with input-output behaviour. Due to the presence of internal vari-

ables, each test object contains a statement that is problematic for the standard

evolutionary approach to cover.

5.2 The Hybrid Approach

This section introduces the proposed “hybrid approach”.

125



126 CHAPTER 5

5.2.1 Test Data Search

The original local search of the chaining approach is replaced in favour of an

evolutionary search. As with the original approach, a new test data search

takes place for each new event sequence encountered. The strategy taken by

the original local approach was to adapt a single test input vector to execute

the event sequence, by minimizing critical and semi-critical branch distances

one after the other. However, an evolutionary search needs to be able to make

global comparisons with respect to test inputs and event sequences, requiring a

more sophisticated objective function. The objective value of an input vector x

for an event sequence E of length l is computed using the minimizing objective

function formula:

l
∑

i=1

obj event(ei) (5.1)

where ei is the ith event in the event sequence, and obj event(e) is calculated

for ei = (ni, Ci) as follows:

1. If the event node ni - to be executed after the event node of ei−1 but before

ei+1 - is missed, add the result of the node-oriented objective function of

Wegener et al. [WBS01], i.e.

approach level + normalize bd(branch dist)

where approach level is the approach level for node ni, and branch dist is

the branch distance of the alternative branch at which execution diverged

away from ni. This function was originally documented in Section 2.3.5.

The approach level is calculated using Equation 2.2, and the normalize bd

function is defined in Equation 2.1.

2. For each definition node d executed for each variable v ∈ Ci violating

the definition-clear path required until ei+1, add the normalized branch

distance for the alternative branch at the last branching node that led to

d’s execution.

Note that the objective function for the initial event sequence < (s, ∅), (g, ∅) >

for some target node g is equivalent to the node-oriented objective function for

g for the standard evolutionary approach; since s is always executed and none

of the events have constraint sets.



HYBRIDIZING EVOLUTIONARY GENERATION 127

Example

Take the example of Figure 5.1 and the event sequence:

< (s, ∅), (3, {flag}), (6, ∅), (7, ∅) >

Take the input (i=10, j=20). The first event, e1 is the start node and is

always executed. However for e2, node 3 is missed, with the false branch from

node 2 taken. The approach level is zero and the branch distance is 10 + K

(using Tracey’s branch distance calculations of Table 2.2). Furthermore, the

constraint set of e2 is violated, since node 5 is executed, which redefines the

value of flag. Therefore, the normalized branch distance of the alternative

false branch from node 4 is added - the branch distance being 20 + K. Node

6 of event e3 is successfully reached, but node 7 of event e4 of is missed, since

the false branch from node 6 is taken. The approach level is 1 and the branch

distance is 1 + K. Therefore:

obj event(e1) = 0

obj event(e2) = normalize bd(10 + K) + normalize bd(20 + K)

obj event(e3) = 0

+obj event(e4) = 1 + normalize bd(1 + K)

= 1.0377 (where K = 1)

Figure 5.2 shows that as the value of i and j tend to zero, the objective

value of e2 also tends to zero, until finally e4 is also successfully executed and

input data has been found for the entire event sequence.

5.2.2 Identification of Problem Nodes and Variables Used at

the Problem Node

The evolutionary search works to minimize the objective function. If an ob-

jective value of zero can be found, test data to execute the test goal will also

have been found. If this is not the case further event sequences are generated

using the first problem node encountered by the best individual found during

the search.

The test data corresponding to the best individual may result in an ex-
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CFG
Node

s void objective_function_example(int i, int j)

{

1 int flag = 0;

2 if (i == 0)

3 flag = 1;

4 if (j > 0)

5 flag = 0;

6 if (flag)

{

7 if (j == 0)

8 // target statement

}

e }

Figure 5.1: Example program for calculating the objective value of an event
sequence
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Figure 5.2: Objective function landscape for the example program of Figure 5.1
and the event sequence < (s, ∅), (3, {flag}, (6, ∅), (7, ∅) >
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ecution path which diverges away from the intended path at several points -

resulting in several potential problem nodes. However, as for the original chain-

ing approach, only the first problem node is of importance, with definitions of

variables used at this problem node used as the basis for the generation of

further event sequences.

5.2.3 Extensions to the Original Chaining Approach

In this section, some shortcomings of Ferguson and Korel’s original chaining

algorithm [FK96a, Kor96, FK96b] are highlighted. Extensions are proposed to

deal with these weaknesses.

Handling Logical AND and Logical OR operators

The papers describing the original chaining approach [FK96a, Kor96, FK96b]

did not describe a mechanism for handling conditions composed using logical

AND or logical OR operators. The hybrid approach allows the use of such con-

ditions and extends the behaviour of the original approach in these instances.

When a problem node is identified, last definitions are only sought for the vari-

ables used in the evaluated, unsatisfied sub-conditions of the overall condition.

Take the example of Figure 5.3. Suppose the best input found by the evo-

lutionary algorithm for the event sequence:

< (s, ∅), (6, {flag2}), (9, ∅), (10, ∅) >

is (a=100, b=1, c=1). This input vector diverges away from the intended path

set out by the event sequence down the false branch from node 5, leading to a

miss of node 6; down the true branch of node 7, leading to an unintended hit

of 8 - the re-definition of the variable flag2; and finally down the false branch

of node 9, leading to a miss of the target node 10. Therefore there are three

problem nodes, node 5, 7 and 9. However only the first problem node - node 5

- is used for the generation of further event sequences.

The variables used at problem node 5 include flag1 and b. However the

sub-condition using b was not evaluated since the short-circuit && operator

broke off when it found the initial condition where the flag1 needs to be true

was false. Therefore last definitions are only sought for flag1. If the condition

had been composed in the reverse manner, i.e.:

if (b == 1 && flag1)
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CFG
Node

s void problem_node_example(int a, int b, int c)

{

1 int flag1 = 0;

2 int flag2 = 0;

3 if (a == 1)

4 flag1 = 1;

5 if (flag1 && b == 1)

6 flag2 = 1;

7 if (c != 0)

8 flag2 = 0;

9 if (flag2)

10 // target statement

e }

Figure 5.3: Example code for finding problem nodes

then flag1 would still be the only variable subject to the search for last defini-

tions, since condition b == 1 is satisfied by the input vector. Last definitions

of flag1 occur at nodes 1 and 4, leading to the generation of two new event

sequences, namely:

< (s, ∅), (1, {flag1}), (5, ∅), (6, {flag2}), (9, ∅), (10, ∅) >

and

< (s, ∅), (4, {flag1}), (5, ∅), (6, {flag2}), (9, ∅), (10, ∅) >

The method for computing branch distances in the presence of logical connec-

tives is described in Section A.3.3.

Returning to a Problem Node

In Korel’s original algorithm a problem node cannot appear in an event sequence

more than once. Furthermore, the original approach declares failure when a

problem node remains problematic for a feasible event sequence. Take the

example of Figure 5.5. The target is node 7, which is only executed when half

or more of the inputted integer array values are zero. This makes node 6 a

problem node for which further event sequences are generated, these being:
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E1 = < (s, ∅), (1, {counter}), (6, ∅), (7∅) >

E2 = < (s, ∅), (5, {counter}), (6, ∅), (7∅) >

E1 is infeasible. E2 is not infeasible, but requires that the counter variable is

incremented at only once. This is unlikely to be enough to ensure that input

data can be found - the chances of four more array values being zero in a large

input domain being extremely slim. Node 6, however, is still a problem node.

The original algorithm declares failure at this point since a problem node cannot

be revisited.

In the extended approach, a problem node can be revisited. Further event

sequences can be generated from E2. However another difficulty is encoun-

tered. A further increment counter cannot be inserted between the events

corresponding to nodes 5 and 6, because counter appears in the constraint set

for the event corresponding to node 5. Furthermore, a further increment could

not appear between nodes s and 5, as the definition is not a last definition,

since the last definition of counter already appears in the sequence at node 5.

To handle this problem another extension is made to the algorithm, using the

notion of influencing sets.

Extended Event Sequence Generation using Influencing Sets

The original chaining approach inserts new events that correspond to program

nodes that are last definitions for variables used at the problem node. However

there is potentially a greater set of variables that can affect the outcome at the

problem node. For example the values of a and b influence the value of x and

thus have an intermediate effect on the outcome of the following if statement:

x = a + b;

if (x > 0) {

// ...

}

Given a program node and some path to the problem node, an influencing

set consists of all variables that can affect the outcome at the problem node.

The event sequence generation process is forced to consider definitions for all

variables that can potentially affect the problem node, allowing event sequences
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to be generated that were not possible with the original approach.

The recursive algorithm for the extended event sequence generation ap-

proach can be seen in Figure 5.4. Paths are explored backwards from the

problem node. The influencing set is adapted according to the path taken.

For a newly identified problem node, the influencing set is simply the set

of variables involved in evaluated, unsatisfied conditions at the problem node.

Beginning with the current problem node sn, the initial influencing set I, and

the event prior to the problem node event in the event sequence e = (n,C),

the algorithm traces its way in a backwards manner through the nodes of the

program. The set prev nodes is simply the set of program nodes connected to

the current node by an outgoing edge. Each node pn in prev nodes is analyzed.

Firstly, the algorithm checks to see if the pn is the same as the prior event

node n. If this is the case, and the variable defined at n (def(n)) - is contained

in the influencing set, the influencing set is modified by removing def(n) and

adding the uses of n (uses(n)). This is because no prior definition of def(n) can

now affect the outcome at the problem node, since n is itself a last definition.

However, the variables used at n can affect the problem node because they

are used in the assignment to def(n). The original chaining algorithm does

not consider last definitions of variables used at the set of last definition nodes

originally identified. The procedure then recurses using the event node pn as

the current node sn, the new influencing set and the new prior event in the

sequence.

If pn is not the prior event node, the algorithm checks the constraint set of

the preceding event in the event sequence. If pn defines any variables in the

constraint set, this particular line of enquiry terminates, since the path to the

next event is not definition-clear.

If pn does not define any variable in the constraint set, but instead defines

a variable in the influencing set, a qualifying definition node has been found, a

new event sequence can be generated using pn if pn is reachable from n (the

event node of e) via some definition clear path with respect to C. This new

event sequence is generated following the standard rules of the original approach

(Equations 4.1 - 4.3) documented in the last chapter.

If none of the above cases are true, the procedure recurses using the new

node pn as the current node sn, along with the unmodified values of I and e.

Finally, a global data structure of “search points” ensures that only acyclic

program paths are considered between adjacent events in the event sequence,

and that the algorithm terminates.

It is now demonstrated how influencing sets and the extended event sequence
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Let E be the original event sequence from which new event sequences are
required

Let S be a global set of search points, where a search point is a tuple sp =
(sn, I, e), where sn is a program node, I is an influencing set of variables, and
e = (n,C) is an event in the original event sequence E

Procedure generate event sequences(
In: a search point, sp = (sn, I, e = (n,C)))

Let prev nodes be the set of control flow graph nodes connected to sn
by an outgoing edge
If sp /∈ S

S ← S ∪ sp
Repeat

Let pn be a program node, pn ∈ prev nodes
prev nodes← prev nodes− {pn}
If pn = n

If def(pn) ∈ I
I ← I − {def(pn)}
I ← I ∪ uses(pn)

End If
generate event sequences((pn, I, prev event(E, e)))

Else If ∀v ∈ C, v 6= def(pn)
If ∃v ∈ I, v = def(pn)

If reachable(pn, e)
create new event sequence(pn,E, e)

End If
generate event sequences((pn, I − {def(pn)}, e))

Else
generate event sequences((pn, I, e))

End If
End If

Until prev nodes = ∅
End If

End Procedure

def(n) returns the variable defined at program node n (or ∅ if one is not de-
fined), and uses(n) returns the set of variables used by a program node n.

reachable(pn, e) checks if a node pn can be reached from another node n of an
event e = (n,C) without violation of the constraint set C.

create new event sequence(pn,E, e) creates a new event sequence for the next
level of the tree from a definition node pn, the original event sequence E and
the event e after which the new event should be inserted.

prev event(E, e) returns the event prior to the event e in an event sequence E.

Figure 5.4: Recursive procedure for generating event sequences using influencing
sets
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generation procedure has practical benefit.

The last section described how further event sequences could be derived

from the event sequence:

E2 =< (s, ∅), (5, {counter}), (6, ∅), (7∅) >

in the counter example. The problem node is node 6, and the influencing

set is {counter}. In searching for program nodes back from node 6, node 5 is

encountered. An event for node 5 appears in the event sequence. The definition

variable is removed from the influencing set:

I ← I − def(5)

← {counter} − {counter}

← ∅

leaving an empty set. Uses at node 5 are added:

I ← I ∪ uses(5)

← ∅ ∪ {counter}

← {counter}

Last definitions can be sought for variables in the influencing set from node

5. These last definitions include node 1, and node 5 on the previous iteration

of the loop:

E21
= < (s, ∅), (1, {counter}), (5, {counter}), (6, ∅), (7∅) >

E22
= < (s, ∅), (5, {counter}), (5, {counter}), (6, ∅), (7∅) >

In this example the influencing set is effectively unchanged - the variable

counter is defined and used in the same statement, and so is removed and then

re-added. However, consider the example of Figure 5.12. The target is node

10. Node 9 is a problem node. The generated event sequences are:

E1 = < (s, ∅), (3, {shutdown}), (9, ∅), (10, ∅) >

E2 = < (s, ∅), (8, {shutdown}), (9, ∅), (10, ∅) >
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E1 is infeasible. E2 is feasible, but assume node 9 remains problematic. In

event sequence generation, node 8 is encountered tracing backwards from node

9. The influencing set is modified to remove the definition of shutdown and

add the uses - {error1, error2}. This means that further event sequences can

be generated:

E21
= < (s, ∅), (5, {error1}), (8, {shutdown}), (9, ∅), (10, ∅) >

E22
= < (s, ∅), (7, {error2}), (8, {shutdown}), (9, ∅), (10, ∅) >

Assuming node 9 remains problematic, the following event sequence will be

generated from both E21
and E22

:

< (s, ∅), (5, {error1}), (7, {error1, error2}), (8, {shutdown}), (9, ∅), (10, ∅) >

which explicitly requires nodes 5 and 7 to be executed before node 8, which in

turn assures that the true branch is taken from node 9, and that node 10 will

eventually be executed.

5.3 Experimental Study 3 - Test Data Search using

the Hybrid Approach

Experiments were performed comparing the hybrid approach with the standard

evolutionary approach.

A set of nine synthetic test objects were used with input-output behaviour.

The goal of the experiments is to find test data to execute a specific statement

within each program.

The statement in each test object is designed to be difficult for the stan-

dard evolutionary approach to cover, due to the presence of objective function

landscapes that are deceptive, coarse or flat. These landscapes are caused by

the use of internal variables such as counters, boolean flags or enumerations.

This is the same landscape initially encountered by the hybrid approach,

because the objective function of the initial event sequence is equivalent to the

node-oriented objective function used by the standard evolutionary approach.

However, as has been described, the hybrid approach can create further event

sequences that require certain statements to be executed which can potentially

affect the outcome of the test goal - for example a particular assignment to a
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CFG
Node

s void counter(int a[10])

{

1 int counter = 0;

2 int i;

3 for (i = 0; i < 10; i++)

{

4 if (a[i] == 0)

5 counter ++;

}

6 if (counter == 5)

7 // target statement

e }

Figure 5.5: Program code for the “Counter” test object

flag variable. The objective function attempts to guide the search to the prior

execution of these statements, thus changing the form of the landscape and

potentially improving the chances of finding test data.

5.3.1 Test Objects

Counter

The “Counter” test object (Figure 5.5) was introduced in Section 5.2.2. The

target is node 7, which is dependent on a counter variable being above a cer-

tain threshold. However, the counter variable is only incremented under special

circumstances - when values of the inputted integer array are equal to zero.

Therefore, the objective landscape for the standard evolutionary approach -

and the initial event sequence - is extremely coarse, consisting of plateaux cor-

responding to the different values of the counter. The landscape is plotted

in Figure 5.16a for two dimensions corresponding to two of the array values,

depicting two of the plateaux.

With the input being an array of ten integers in the range -15,000 to 15,000,

the search space size is approximately 6× 1044.

Deceptive

The “Deceptive” test object [Har02] (Figure 5.6) is so named because of the

type of objective landscape it imposes with the standard evolutionary approach
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CFG
Node

s void deceptive(double d)

{

1 double r;

2 if (d == 0.0)

3 r = 0.0;

else

4 r = 1.0 / d;

5 if (r == 0.0)

6 // target statement

e }

Figure 5.6: Program code for the “Deceptive” test object

(and the initial event sequence under the hybrid approach) for the coverage of

node 6. The test object finds the multiplicative inverse of an input d. To avoid

a division by zero error, the result of this operation, r is zero if d is zero. Node

6 is only executed when r is zero. However, the zero input value of d required to

execute the target is unlikely to be found by chance, simply because it represents

a very small portion of the overall input domain. The input value of r lies in

a range of -50,000 to 50,000, with a precision of 0.001, giving a search space

size of approximately 108. The objective function of the standard evolutionary

approach leads the search away from a value of zero for all other input values

- since as the value of d increases, the value of r decreases. This deception can

be seen in a plot of the objective function landscape (Figure 5.17a).

Enumeration

This decides whether three inputted colour intensity values (integers in the

range 0 to 255) represents one of the colours in an enumeration (Figure 5.7).

The target statement (node 26) is executed when the inputs represent the colour

black. However plateaux occur in the objective function landscape for the

standard evolutionary approach, and the initial event sequence of the hybrid

approach (Figure 5.18a), due to the use of a variable that is of the colour

enumeration type. Because one value from an enumeration cannot be deemed

“closer” to any other value from the enumeration (as the ordering of enumera-

tion literals is not significant) plateaux are induced on the landscape in a similar

effect to that caused by flag variables. The search space size is approximately
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1.6× 107.

Flag Assignment

This function takes two double values (Figure 5.8). In searching for test data

for the execution of node 6, a flag has to be true. The flag is initially set to

false, and is only set true when the first input value is zero. The search space

is flat for the standard evolutionary approach, and the initial event sequence

of the hybrid approach, apart from the point at which the required test data

lies (Figure 5.19a). With an input range of -50,000 to 50,000 and a precision of

0.001 for each input variable, the search space size is approximately 1016.

Flag Avoid Assignment

This program is functionally equivalent to “Flag Assignment” (Figure 5.9),

except the flag is initially true, and a statement resetting the flag when the first

input value is not zero must be avoided. The same input ranges and precision

were used.

Flag Avoid Loop Assignment

This is the program of Figure 5.10. The target statement is node 7, which is

only executed when all the array values are zero. This is indicated by a flag,

which is initially set to true, but is set to false within a loop if any of the array

values are found to not be zero. Consequently the search landscape (for the

standard evolutionary approach and the initial event sequence of the hybrid

approach) is made up of one large plateau (Figure 5.20a) except for the point

of the required test data. The range of the integers of the array was -15,000 to

15,000 giving a search space size of approximately 6× 1044.

Flag Loop Assignment

This program (Figure 5.11) also takes an array of ten integer values. A flag is

initially set to false, but becomes true when one or more of the array values

is zero. This assignment occurs within a loop body. When the flag is true,

the target statement (node 8) is executed. Due to the use of the flag, the

objective function landscape consists of flat regions (Figure 5.21a), for both the

standard evolutionary approach and the initial event sequence under the hybrid

approach. The range of the integers of the array was -15,000 to 15,000 giving

a search space size of approximately 6× 1044.
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CFG
Node

typedef enum

{UNKNOWN, WHITE, RED, YELLOW,

MAGENTA, BLUE, CYAN, GREEN, BLACK} colour;

s void enumeration(int r, int g, int b)

{

1 colour c;

2 if (r == 255)

{

3 if (g == 255)

{

4,5 if (b == 0) c = RED;

6,7 else if (b == 255) c = MAGENTA;

}

8 else if (g == 255)

{

9,10 if (b == 0) c = YELLOW;

11,12 else if (b == 255) c = WHITE;

}

}

13 else if (r == 0)

{

14 if (g == 0)

{

15,16 if (b == 255) c = BLUE;

17,18 else if (b == 0) c = BLACK;

}

19 else if (g == 255)

{

20,21 if (b == 0) c = GREEN;

22,23 else if (b == 255) c = CYAN;

}

}

24 else c = UNKNOWN;

25 if (c == BLACK)

{

26 // target statement

}

e }

Figure 5.7: Program code for the “Enumeration” test object
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CFG
Node

s void flag_assignment(double a, double b)

{

1 int flag = 0;

2 if (a == 0)

3 flag = 1;

4 if (b == 0)

{

5 if (flag == 1)

6 // target statement

}

e }

Figure 5.8: Program code for the “Flag Assignment” test object

CFG
Node

s void flag_avoid_assignment(double a, double b)

{

1 int flag = 1;

2 if (a != 0)

3 flag = 0;

4 if (b == 0)

{

5 if (flag)

6 // target statement

}

e }

Figure 5.9: Program code for the “Flag Avoid Assignment” test object
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CFG
Node

s void flag_avoid_loop_assignment(int a[10])

{

1 int flag = 1;

2 int i;

3 for (i = 0; i < 10; i++)

{

4 if (a[i] != 0)

5 flag = 0;

}

6 if (flag)

7 // target statement

e }

Figure 5.10: Program code for the “Flag Avoid Loop Assignment” test object

CFG
Node

s void flag_loop_assignment(int a[10], int b)

{

1 int flag = 0;

2 int i;

3 for (i = 0; i < 10; i++)

{

4 if (a[i] == 0)

5 flag = 1;

}

6 if (b == 0)

{

7 if (flag)

8 // target statement

}

e }

Figure 5.11: Program code for the “Flag Loop Assignment” test object



142 CHAPTER 5

CFG
Node

s void flag_multiple(int r1, int r2)

{

1 int error1 = 0;

2 int error2 = 0;

3 int shutdown = 0;

4 if (r1 == 0)

5 error1 = 1;

6 if (r2 == 0)

7 error2 = 1;

8 shutdown = error1 && error2;

9 if (shutdown)

10 // target statement

e }

Figure 5.12: Program code for the “Multiple Flag” test object

Multiple Flag

This program was introduced in Section 5.2.2, and is seen in Figure 5.12. The

existence of flags in the program leads to a large plateau in the objective function

landscape (Figure 5.22a) for the standard evolutionary approach and the initial

event sequence of the hybrid approach.

Both double input ranges were -50,000 to 50,000 with a precision of 0.001

giving a search space size of approximately 1016.

Multiple Flag 2

This program (Figure 5.13) involves two flags, both of which must be true in

order to execute the target statement. The program takes two double input

variables. Both flags are true if the first and second inputs are zero. However

if the second double value is 1, the second flag is reset to false. Both double

input ranges were -50,000 to 50,000 with a precision of 0.001, giving a search

space size of approximately 1016.

Figure 5.23a shows the plateaux present in the objective function landscape

(for both the standard evolutionary approach and the initial event sequence

of the hybrid approach), with Figure 5.23b showing the ridge across the plane

a = 0 to a finer level.
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CFG
Node

s void flag_multiple2(double a, double b)

{

1 int initialised = 0;

2 int has_been_fired = 0;

3 if (a == 0)

4 initialised = 1;

5 if (b == 0)

6 has_been_fired = 1;

7 if (initialised)

{

8 if (b == 1)

9 has_been_fired = 1;

10 if (has_been_fired)

11 // target statement

}

e }

Figure 5.13: Program code for the “Multiple Flag 2” test object
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5.3.2 Experimental Setup

The experiments were conducted in five different setups as detailed below.

For each evolutionary search, in both the standard and hybrid approaches, the

usual set of search parameters were used (see Section A.4).

Standard Evolutionary Approach

The standard evolutionary approach setup, StdEA, uses the node-oriented

objective function of Wegener et al. [WBS01] (originally introduced in Section

2.3.5). Standard evolutionary approach experiments were conducted in order

to demonstrate that the method does indeed encounter problems with the test

objects presented.

Usually the evolutionary search is terminated after 200 generations, if no

test data has been found. With approximately 300 individuals a generation,

this equates to approximately 60,000 trials. In these experiments the evolu-

tionary search continues for up to 2000 generations, equating to approximately

600,000 trials, in order to show that the standard evolutionary approach will

not generally find test data just by running the searches for longer.

Hybrid Approach

The hybrid approach was tested in four different setups.

The event sequence generation method was applied in its original form as

devised by Ferguson and Korel (referred to as algorithm “1”), and the extended

method using influencing sets (referred to as algorithm “2”).

Two different termination criteria are used for the evolutionary searches.

Termination criterion “a” terminates searches after 200 generations if no solu-

tion has been found. Termination criterion “b”, on the other hand, terminates

the search if there has been no improvement in the best objective function

value for the last 50 generations. The limit of 50 generations was determined

experimentally, as explained in the next section. Criterion “b” can therefore

extend the search past the 200 generations limit, providing there has been an

improvement in the best objective function value.

The two event sequence generation algorithms and the two different termi-

nation criteria for the evolutionary searches were tried in combination with one

another to give the following four setups:

• Hybrid 1a uses event sequence generation algorithm “1” in combination

with evolutionary search termination criterion “a”.
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• Hybrid 1b uses event sequence generation algorithm “1” in combination

with evolutionary search termination criterion “b”.

• Hybrid 2a uses event sequence generation algorithm “2” in combination

with evolutionary search termination criterion “a”.

• Hybrid 2b uses event sequence generation algorithm “2” in combination

with evolutionary search termination criterion “b”.

Experimental Measurements

Each experiment was repeated ten times for each different setup and test object.

The following information was measured:

• Success rate

• Average number of test data evaluations for a successful search

• Average number of test data evaluations for an unsuccessful search

• Maximum number of test data evaluations for a successful search

• Maximum number of test data evaluations for an unsuccessful search

• Average time for a successful search

• Average time for an unsuccessful search

• Maximum time for a successful search

• Maximum time for an unsuccessful search

Success rate is the percentage of experimental runs that were successful in

finding test data for the target statement. For the hybrid setups, the following

was also recorded:

• Average number of event sequences considered for a successful search

• Average number of event sequences considered for an unsuccessful search

• Maximum number of event sequences considered for a successful search

• Maximum number of event sequences considered for an unsuccessful search



146 CHAPTER 5

Table 5.1: Success rate for each experimental setup

StdEA Hybrid Hybrid Hybrid Hybrid
1a 1b 2a 2b

(%) (%) (%) (%) (%)

Counter 0 0 0 100 100
Deceptive 0 100 100 100 100
Enumeration 0 100 100 100 100
Flag Assignment 0 100 100 100 100
Flag Avoid Assignment 0 100 100 100 100
Flag Avoid Loop Assignment 0 80 90 90 100
Flag Loop Assignment 20 100 100 100 100
Flag Multiple 0 0 0 100 100
Flag Multiple 2 0 100 100 100 100

Each experiment was repeated ten times for each different setup and test

object. The success rate measure records the percentage of successful attempts

that test data was found for each statement by each setup and test object.

Search times were measured with a precision of 0.1 of a second.

Experiments were performed on a Pentium 4 PC running Windows XP, with

3GHz and 1Gb RAM under normal load conditions. For further information

on the technical details of the experimental framework, see Appendix A.

5.3.3 Results

Table 5.1 shows the percentage of successful runs for each test object and exper-

imental setup. The standard evolutionary approach - as expected - performed

very poorly, failing to find test data in all cases apart from two successful at-

tempts with the “Flag Loop Assignment” test object. The hybrid approach

performed well, apart from a few exceptions, achieving a 100% success rate for

most setups and test objects. For the “Counter” and “Flag Multiple” test ob-

jects, the extended event sequence generation algorithm was required. Setups

using algorithm “1” could not find test data, whereas a 100% success rate was

recorded for setups using algorithm “2”. The hybrid approach did not achieve

an overall 100% success rate for the “Flag Avoid Loop Assignment” program.

This does not seem to be down to a lack of guidance, but simply due to the

evolutionary algorithm not being able to find the test data required in such a

large input domain before the search termination criterion was met.

The hybrid approach always finds test data using fewer evaluations than suc-
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cessful and unsuccessful searches using the standard evolutionary setup. This is

because the traditional setup usually fails to find test data, and does not termi-

nate until 2000 generations have been evaluated. Normally, the standard evo-

lutionary approach terminates after 200 generations, requiring approximately

60,000 evaluations. The hybrid setups generally require more than 60,000 eval-

uations because a new evolutionary search is conducted for each event sequence

(Table 5.3). However, it was found that the efficiency of the hybrid approach

was improved through the use of the new termination criterion (criterion “b”)

which ends the search after 50 generations of no improvement. This figure of

50 generations was derived by observing the progress of experiments using the

usual termination criterion of 200 generations (criterion “a”), which ends the

search regardless of recent improvement. Here it was found the majority of

unsuccessful searches (e.g. for test data for infeasible event sequences or event

sequences where poor guidance was provided to the test data) stagnated well

before the 200 generations limit. It was also found that almost all solutions

were found within 50 generations of the last improvement of the objective func-

tion value (Table 5.2). Only once was this limit broken - for the “Flag Avoid

Loop Assignment” program. For this reason termination criterion “b” was em-

ployed to simply terminate the search after 50 generations of no improvement.

Criterion “b” does not have a detrimental effect on the success rate, as can

be seen in Table 5.1. In fact, it improved on the results for “Flag Avoid Loop

Assignment” by two more successful runs (i.e. an increase of 20% in the success

rate). This was because the number of generations used by the search for an

event sequence can in fact extend beyond the 200 generations limit, so long as

there has been an improvement in the last 50 generations. Figures 5.14 and

5.15 shows the average number of trials required by each termination criterion

(combined for algorithm “1” and “2”) for each test object for successful and

unsuccessful searches respectively. The bar charts clearly show that criterion

“b” is far more efficient that criterion “a”, sometimes only using only a quarter

of the number of trials.

The results for each individual test object are now discussed in detail.

Counter

Section 5.2.3 explained the process of event sequence generation for the “Counter”

test object. The landscape for the initial event sequence:

E0 =< (s, ∅), (7∅) >
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Table 5.2: Average and maximum generations to a solution using termination
criterion “a”

Test Object Successful Average Maximum
Runs Generations Generations

to Solution to Solution

Counter 10 4.4 8
Deceptive 20 11.8 28
Enumeration 20 7.6 34
Flag Assignment 20 6.6 12
Flag Avoid Assignment 20 6.3 19
Flag Avoid Loop Assignment 17 11.8 66
Flag Loop Assignment 20 9.4 48
Flag Multiple 10 3.9 7
Flag Multiple 2 20 5.9 10
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“a” and “b” for successful searches
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Table 5.3: Number of objective function evaluations for each test object and
experimental setup

Test Test Successful Unsuccessful
Object Method Search Search

Average Maximum Average Maximum

Counter StdEA - - 547,840 549,128
Hybrid 1a - - 160,445 160,462
Hybrid 2a 281,551 284,149 - -
Hybrid 1b - - 44,856 48,743
Hybrid 2b 116,433 126,806 - -

Deceptive StdEA - - 534,972 535,547
Hybrid 1a 117,019 124,198 - -
Hybrid 2a 117,276 121,025 - -
Hybrid 1b 38,477 40,856 - -
Hybrid 2b 37,320 39,255 - -

Enumeration StdEA - - 534,087 534,087
Hybrid 1a 151,245 172,931 - -
Hybrid 2a 150,699 172,551 - -
Hybrid 1b 55,407 62,461 - -
Hybrid 2b 50,577 61,359 - -

Flag Assignment StdEA - - 540,814 543,148
Hybrid 1a 69,310 73,241 - -
Hybrid 2a 68,962 71,479 - -
Hybrid 1b 36,392 38,243 - -
Hybrid 2b 36,455 40,099 - -

Flag Avoid StdEA - - 541,791 543,126
Assignment Hybrid 1a 121,924 124,284 - -

Hybrid 2a 121,925 125,674 - -
Hybrid 1b 57,050 60,228 - -
Hybrid 2b 56,448 58,874 - -

Flag Avoid StdEA - - 534,087 534,087
Loop Assignment Hybrid 1a 131,900 143,638 160,448 160,458

Hybrid 2a 141,926 159,395 160,434 160,434
Hybrid 1b 59,091 69,636 66,689 66,689
Hybrid 2b 53,314 61,594 - -

Flag Loop StdEA 184,683 324,408 541,161 545,038
Assignment Hybrid 1a 63,701 66,219 - -

Hybrid 2a 59,971 69,670 - -
Hybrid 1b 26,292 33,785 - -
Hybrid 2b 28,293 35,640 - -

Flag Multiple StdEA - - 534,087 534,087
Hybrid 1a - - 106,972 106,972
Hybrid 2a 434,110 435,474 - -
Hybrid 1b - - 26,820 26,820
Hybrid 2b 125,185 129,744 - -

Flag Multiple2 StdEA - - 534,087 534,087
Hybrid 1a 228,967 230,082 - -
Hybrid 2a 229,831 231,716 - -
Hybrid 1b 82,771 89,399 - -
Hybrid 2b 83,902 87,855 - -
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Table 5.4: Search times for each test object and experimental setup

Test Test Successful Unsuccessful
Object Method Search Search

Average Maximum Average Maximum

Counter StdEA - - 292.4 296.1
Hybrid 1a - - 44.0 44.6
Hybrid 2a 78.9 79.9 - -
Hybrid 1b - - 12.9 13.8
Hybrid 2b 34.5 37.1 - -

Deceptive StdEA - - 122.51 123.497
Hybrid 1a 17.3 18.4 - -
Hybrid 2a 17.2 17.9 - -
Hybrid 1b 6.3 7.3 - -
Hybrid 2b 6.5 6.8 - -

Enumeration StdEA - - 133.1 134.0
Hybrid 1a 24.5 28.2 - -
Hybrid 2a 24.2 27.5 - -
Hybrid 1b 9.0 10.9 - -
Hybrid 2b 8.9 10.6 - -

Flag Assignment StdEA - - 136.8 137.4
Hybrid 1a 12.0 12.5 - -
Hybrid 2a 11.7 12.2 - -
Hybrid 1b 6.9 7.4 - -
Hybrid 2b 6.8 7.4 - -

Flag Avoid StdEA - - 136.7 137.8
Assignment Hybrid 1a 20.5 21.2 - -

Hybrid 2a 20.3 21.0 - -
Hybrid 1b 10.6 11.0 - -
Hybrid 2b 10.3 10.8 - -

Flag Avoid StdEA - - 295.9 300.3
Loop Assignment Hybrid 1a 37.2 40.5 45.6 45.9

Hybrid 2a 39.9 44.5 44.7 44.7
Hybrid 1b 17.8 20.8 19.7 19.7
Hybrid 2b 16.2 18.3 - -

Flag Loop StdEA 95.8 169.9 296.7 297.8
Assignment Hybrid 1a 17.7 18.3 - -

Hybrid 2a 16.6 20.0 - -
Hybrid 1b 7.9 9.9 - -
Hybrid 2b 8.3 10.3

Flag Multiple StdEA - - 138.1 138.7
Hybrid 1a - - 15.7 15.8
Hybrid 2a 39.5 63.6 - -
Hybrid 1b - - 4.3 4.3
Hybrid 2b 19.9 20.5 - -

Flag Multiple2 StdEA - - 135.1 135.4
Hybrid 1a 37.3 37.9 - -
Hybrid 2a 36.9 37.5 - -
Hybrid 1b 14.9 16.1 - -
Hybrid 2b 14.8 15.4 - -
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Table 5.5: Event sequences considered by each setup

Test Test Successful Unsuccessful
Object Method Search Search

Average Maximum Average Maximum

Counter Hybrid 1a - - 4 4
Hybrid 1b - - 4 4
Hybrid 2a 7 7 - -
Hybrid 2b 7 7 - -

Deceptive Hybrid 1a 4 4 - -
Hybrid 1b 4 4 - -
Hybrid 2a 4 4 - -
Hybrid 2b 4 4 - -

Enumeration Hybrid 1a 4.7 5 5 -
Hybrid 1b 5 5 - -
Hybrid 2a 4.7 5 5 -
Hybrid 2b 4.7 5 - -

Flag Assignment Hybrid 1a 3 3 - -
Hybrid 1b 3 3 - -
Hybrid 2a 3 3 - -
Hybrid 2b 3 3 - -

Flag Avoid Hybrid 1a 4 4 - -
Assignment Hybrid 1b 4 4 - -

Hybrid 2a 4 4 - -
Hybrid 2b 4 4 - -

Flag Avoid Hybrid 1a 4 4 4 4
Loop Assignment Hybrid 1b 4 4 4 4

Hybrid 2a 4 4 4 4
Hybrid 2b 4 4 - -

Flag Loop Hybrid 1a 3 3 - -
Assignment Hybrid 1b 2.8 3 - -

Hybrid 2a 2.9 3 - -
Hybrid 2b 2.9 3 - -

Flag Multiple Hybrid 1a - - 3 3
Hybrid 1b - - 3 3
Hybrid 2a 10 10 - -
Hybrid 2b 10 10 - -

Flag Multiple2 Hybrid 1a 6 6 - -
Hybrid 1b 6 6 - -
Hybrid 2a 6 6 - -
Hybrid 2b 6 6 - -
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Figure 5.15: Number of objective function evaluations for termination criteria
“a” and “b” for unsuccessful searches

and for the standard evolutionary approach contains several plateaux (Figure

5.16a) and the search fails to find test data. Figure 5.16b shows that the search

makes some initial progress, but then stagnates.

The chaining algorithm generates event sequences when node 6 is declared

as a problem node:

E1 = < (s, ∅), (1, {counter}), (6, ∅), (7∅) >

E2 = < (s, ∅), (5, {counter}), (6, ∅), (7∅) >

E2 expects an increment of the counter variable, but ridges still appear

in the objective function landscape (Figure 5.16c). Again, the search makes

some initial progress, but then stagnates and fails (Figure 5.16d). Under the

extended algorithm for finding last definitions, further event sequences can be

generated. The event sequence:

< (s, ∅), (5, {counter}), (5, {counter}), (5, {counter}),

(5, {counter}), (5, {counter}), (6, ∅), (7∅) >

is generated, which forces the path to be taken to target node 7 to increment

the value of counter five times. This is the minimum number of iterations

required for node 7 to become feasible. The objective function landscape for

this event sequence is free of plateaux, guiding the search to the required array
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values so the increment of the counter can become possible (Figure 5.16e).

With increased levels of guidance, hybrid 2a and 2b setups are able to find

the required test data (Figure 5.16f), with seven event sequences considered in

total.

Deceptive

All hybrid setups found test data for the target statement of the “Deceptive”

test object. The standard evolutionary approach failed to find test data in all

attempts. The initial event sequence is:

E0 =< (s, ∅), (6, ∅) >

Initial progress is made as input values of d are found that are closer to the

negative or positive end of the input domain, and the value of r becomes smaller

and smaller. However when extreme negative or positive values are found, r

cannot become any smaller, and the search stagnates. Node 5 is declared as

the problem node. Further event sequences are generated:

E1 = < (s, ∅), (3, {r}), (5, ∅), (6, ∅) >

E2 = < (s, ∅), (4, {r}), (5, ∅), (6, ∅) >

E1 is feasible and rather than guiding the search away from the desired input

value, the objective function landscape guides the search to the required zero

value of d (Figure 5.17c), and the search succeeds in finding test data (Figure

5.17d).

Enumeration

For the “Enumeration” test object, the standard evolutionary approach and

the search for test data for the initial event sequence fails because of the lack of

guidance provided by the objective function landscape, which is flat due to the

use of the enumeration variable in the branch predicate of node 25 (see Figures

5.18a and b). The initial event sequence is:

E0 =< (s, ∅), (26, ∅) >

With node 25 declared as a problem node, further event sequences are gen-

erated, including:
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Figure 5.16: Objective function landscapes and average best objective value
plots for the “Counter” test object, plotted for the first two values of the array.
The next three values are fixed at zero, with the final elements fixed at a
non-zero value. (a) Objective function landscape of the initial event sequence.
(b) Average best objective value plot for the search for test data using the
initial event sequence. (c) Objective function landscape of an intermediate
event sequence that requires only one increment of the counter. (d) Average
best objective value plot for the search for test data using this intermediate
event sequence. (e) Objective function landscape of the final event sequence.
(f) Average best objective value plot for the search for test data using the final
event sequence.
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Figure 5.17: Objective function landscapes and average best objective value
plots for the “Deceptive” test object. (a) Objective function landscape of the
initial event sequence. (b) Average best objective value plot for the search for
test data using the initial event sequence. (c) Objective function landscape of
the final event sequence. (d) Average best objective value plot for the search
for test data using the final event sequence.
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E1 = < (s, ∅), (5, {c}), (25, ∅), (26, ∅) >

...

E6 = < (s, ∅), (18, {c}), (25, ∅), (26, ∅) >

...

E8 = < (s, ∅), (23, {c}), (25, ∅), (26, ∅) >

E6 is a feasible event sequence providing guidance to the desired values of r,

g and b. The plane in the plot of the objective function for this event sequence

(Figure 5.18c) appears to be a plateaux. However Figure 5.18d shows it is tilted

subtly down to the required input vector. The required test data is successfully

found for all runs encountering this event sequence (Figure 5.18e).

Flag Assignment

All hybrid setups found test data for the target statement of the “Flag Assign-

ment” test object. The initial event sequence is:

E0 =< (s, ∅), (6, ∅) >

The flag used at node 5 induces a flat objective function landscape (Figure

5.19a). The search fails to find test data, stagnating very early on in the

search (Figure 5.19b). Two event sequences are generated, corresponding to

the possible settings of the flag:

E1 = < (s, ∅), (1, {flag}), (5, ∅), (6, ∅) >

E2 = < (s, ∅), (3, {flag}), (5, ∅), (6, ∅) >

Node 3 sets the flag to true. The objective function landscape for E2 is far

more amenable to the finding of test data (Figure 5.19d), guiding the search to

the input value of a = 0 which leads to the execution of node 3 (Figure 5.19e).

Flag Avoid Assignment

The “Flag Avoid Assignment” test object is similar to “Flag Assignment”. The

initial event sequence is:

E0 =< (s, ∅), (6, ∅) >
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Figure 5.18: Objective function landscapes and average best objective value
plots for the “Enumeration” test object. (a) Objective function landscape of
the initial event sequence. (b) Average best objective value plot for the search
for test data using the initial event sequence. (c) Objective function landscape
of the final event sequence. (d) Objective function landscape of the final event
sequence cutaway to show slope of plane not apparent in part (c). (e) Average
best objective value plot for the search for test data using the final event se-
quence. Objective function landscapes are plotted for the inputs r and g, with
b non-zero.
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Figure 5.19: Objective function landscapes and average best objective value
plots for the “Flag Assignment” and “Flag Avoid Assignment” test objects.
(a) Objective function landscape of the initial event sequence. (b) and (c) Av-
erage best objective value plot for the search for test data using the initial event
sequence for “Flag Assignment” and “Flag Avoid Assignment” respectively. (d)
Objective function landscape of the final event sequence. (e) and (f) Average
best objective value plot for the search for test data using the final event se-
quence for “Flag Assignment” and “Flag Avoid Assignment” respectively.
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which has a flat objective function landscape Figure 5.19a, and the search fails

(Figure 5.19c). Two event sequences are generated:

E1 = < (s, ∅), (1, {flag}), (5, ∅), (6, ∅) >

E2 = < (s, ∅), (3, {flag}), (5, ∅), (6, ∅) >

This time the latter assignment to the flag must be avoided. E1, therefore, is

feasible, whilst E2 is not. The hybrid approach found the required test data in

all cases (Figures 5.19d and f).

Flag Avoid Loop Assignment

The target statement in “Flag Avoid Loop Assignment” has the largest “domain

to range” ratio of all the test goals considered in this chapter: from a domain

size of approximately 6× 1044 there is only one input vector which leads to its

execution. Even with guidance to avoid the assignment to the flag contained

within the loop, the hybrid approach fails to find the required input vector

on three of the forty runs. The standard evolutionary approach fails on all

attempts.

The initial event sequence is:

E0 =< (s, ∅), (7, ∅) >

The landscape is flat (Figure 5.20a). Every individual, apart from the input

vector where all values of the array of zero, receive the same objective value.

Consequently, the search makes no progress (Figure 5.20b). Node 6 is identified

as the problem node, with two event sequences generated:

E1 =< (s, ∅), (1, {flag}), (6, ∅), (7, ∅) >

E2 =< (s, ∅), (5, {flag}), (6, ∅), (7, ∅) >

E1 mandates that the path taken to node 6 avoids the assignment with the

loop structure, resulting in a landscape far more conducive to finding test data

(Figures 5.20c and d).
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Figure 5.20: Objective function landscapes and average best objective value
plots for the “Flag Avoid Loop Assignment” test object. (a) Objective function
landscape of the initial event sequence. (b) Average best objective value plot for
the search for test data using the initial event sequence. (c) Objective function
landscape of the final event sequence. (d) Average best objective value plot for
the search for test data using the final event sequence.
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Flag Loop Assignment

The target statement of “Flag Loop Assignment” require one of the inputted

array values to be zero, and a secondary input to also be zero for the target

statement to be executed. The standard evolutionary approach manages to

stumble across such an input vector on two occasions, even though the landscape

contains plateaux (Figure 5.21a). The initial event sequence is:

E0 =< (s, ∅), (8, ∅) >

The hybrid approach manages to fortuitously find test data using the initial

event sequence on a handful of occasions. When this does not happen, node 7

is found to be a problem node and the following event sequences are generated:

E1 =< (s, ∅), (1, {flag}), (7, ∅), (8, ∅) >

E2 =< (s, ∅), (5, {flag}), (7, ∅), (8, ∅) >

E1 is infeasible, whilst E2 results in an objective function that provides

more guidance to the required test data (Figures 5.21c and d).

Multiple Flag

Test data is only found for the “Multiple Flag” test object with the aid of the

extended event sequence generation algorithm, as described in Section 5.2.3.

Therefore only hybrid setups “2a” and “2b” are successful. Due to the presence

of flags, the objective function landscape for the initial event sequence is flat,

and the search stagnates (Figures 5.22a and b). The following event sequence

is eventually generated by the extended algorithm:

< (s, ∅), (5, {error1}), (7, {error1, error2}), (8, {shutdown}), (9, ∅), (10, ∅) >

for which the objective function landscape is more conducive to finding test

data (Figures 5.22a and b).

Multiple Flag 2

The “Multiple Flag 2” test object also suffers from a flat landscape, due to the

use of flags, with two plateaux (Figures 5.23a and b). The test data search fails

for the initial event sequence.
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Figure 5.21: Objective function landscapes and average best objective value
plots for the “Flag Loop Assignment” test object. (a) Objective function land-
scape of the initial event sequence. (b) Average best objective value plot for
the search for test data using the initial event sequence. (c) Objective function
landscape of the final event sequence. (d) Average best objective value plot for
the search for test data using the final event sequence.
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Figure 5.22: Objective function landscapes and average best objective value
plots for the “Multiple Flag” test object. (a) Objective function landscape of
the initial event sequence. (b) Average best objective value plot for the search
for test data using the initial event sequence. (c) Objective function landscape
of the final event sequence. d) Average best objective value plot for the search
for test data using the final event sequence.
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Either of the following event sequences results in a landscape for which the

search can easily find test data:

E21
= < (s, ∅), (4, {initialized}), (6, {has been fired}),

(7, {has been fired}), (10, ∅), (11, ∅) >

E22
= < (s, ∅), (4, {initialized}), (7, ∅),

(9, {has been fired}), (10, ∅), (11, ∅) >

The landscape for E21
is plotted in Figure 5.23d.

5.3.4 Conclusions of Experimental Study 3

The experimental study shows that the proposed hybrid approach can success-

fully find test data for programs involving internal variables where the standard

evolutionary approach could not. Internal variables other than flags were han-

dled, including counter and enumeration variables.

The extensions made to the chaining algorithm enable it to cover statements

in the “Counter” and “Multiple Flag” test objects that were not possible with

Ferguson and Korel’s original algorithm [FK96a].

Furthermore, a new evolutionary search termination criterion was proposed

where the search is ended if no improvement is made for 50 generations. This is

in contrast to the usual method of terminating the search after 200 generations,

whether or not improvements have been made. The new termination criterion

was found to be more efficient in the context of several evolutionary searches

conducted as part of the hybrid approach. This efficiency gain was achieved

without detriment to the success rate of covering test goals.

5.4 Conclusions

This chapter has described a novel “hybrid approach” to test data genera-

tion, combining evolutionary search with an extended chaining approach. The

chaining method used is based on the original approach devised by Ferguson

and Korel [FK96a]. The extended method incorporates a number of novel im-

provements, these being:

1. The extended chaining method can handle conditions using logical AND

and OR connectives, which are extremely common in real-world code.

Therefore, the hybrid approach can tackle a wider range of programs

than the original approach.
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Figure 5.23: Objective function landscapes and average best objective value
plots for the “Multiple Flag 2” test object. (a) Objective function landscape of
the initial event sequence. (b) Landscape for the initial event sequence again,
but for the lower ridge, plotted for a = 0. (c) Average best objective value
plot for the search for test data using the initial event sequence. (d) Objective
function landscape of the final event sequence. (e) Average best objective value
plot for the search for test data using the final event sequence.
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2. The extended chaining method contains a “return to problem node” capa-

bility. If the problem node is encountered more than once by the original

chaining approach, it declares failure. The hybrid approach has the option

to generate more event sequences which may aid the test data generation

process, and overcome the problem node.

3. The extended method features an extended event sequence generation

algorithm. This uses the concept of an “influencing set” to identify all

variables that can have an influence on the problem node via some pro-

gram path. Event sequences are generated on the basis of assignments

to these variables. The original approach only considers last definition

assignments to variables involved in conditions at the problem node.

The hybrid approach was tested with a number of test objects which cause

problems for the standard evolutionary structural approach; containing struc-

tures which induce landscapes that are flat, coarse or deceptive, due to the use

of programming features such as flag, enumeration or counter variables. The

hybrid approach with the extended event sequence generation algorithm was

able to find test data in all cases. Whilst several authors have attempted to

solve the flag problem [Bot02, HHH+02, BS03, BBHK04, HHH+04], there has

been almost no work tackling other forms of internal variable problems, such as

counters, enumeration variables or internal variables inducing deceptive land-

scapes.

The next chapter looks at extending the hybrid approach for test objects

with state behaviour.



Chapter 6

Extension of the Hybrid

Approach for the State

Problem

6.1 Introduction

The last chapter introduced a hybrid approach, combining the evolutionary

search for test data with an extended chaining approach. This approach works

well for input-output functions with structures dependent on internal variables

that cause problems for the standard evolutionary approach.

This chapter extends the hybrid approach for test objects with state be-

haviour. The extended method is used to attempt test data generation for the

test objects introduced in Chapter 3, and is referred to as the sequence hybrid

approach.

6.2 Extending the Hybrid Approach

6.2.1 Finding Last Definitions and Generating Event Sequences

The method for finding last definitions and generating event sequences is un-

changed. However, whilst state variables are hidden from calling processes,

they are global to the functions concerned. Therefore, last definitions of state

variables may not only occur in the same function call as the problem node,

but also in prior calls to the function or some other function.

Take the example of Figure 6.1. Suppose the event sequence is:

< (sg, ∅), (1, ∅), (2, ∅) >

167
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CFG
Node

s1 void global_cfg_example1(int x)

{

i1 static int initialized = 0;

1 if (initialized)

2 // target node

3 if (x == 0)

4 initialized = 1;

e1 }

Figure 6.1: Example for finding last definitions for a one function test object
with states

where node 1 is a problem node. Since x is global to the function, previous

definitions for the variable x occur at nodes i1 and 4. Node 4 can only be

executed in a previous call to the function.

A similar problem occurs for the execution of the same event sequence for the

example of Figure 6.2, except the last definition exists within another function.

So that the event sequence generation procedure can find previous defini-

tions of state variables in prior function calls, a “global” control flow graph is

assembled from the individual control flow graphs of each function of the test

object. The general form of this control flow graph can be seen in Figure 6.3.

The graph uses a special global start node (sg) and end node (eg). The global

start node has edges leading to a series of state initializing nodes, i1 . . . ik, which

correspond to the static declarations of the state variables present within the

test object. From the final state initializing node ik are edges leading to the

start nodes of the individual functions of the test object s1 . . . sn. From each of

the end nodes of each function e1 . . . en are edges leading to the start nodes of

each function, along with an additional edge to the global end node.

Event sequences now always begin with the global start node, sg.

6.2.2 Test Data Search

The test data search for test objects with state behaviour is different to the

search used for the hybrid approach for test objects with simple input out-

put behaviour, because a function call sequence needs to be generated. The

generation of test data for function call sequences is conducted in two distinct

stages.
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CFG
Node

i1 static int initialized = 0;

s1 void global_cfg_example2a()

{

1 if (initialized)

2 // target node

e1 }

s2 void global_cfg_example2b(int x)

{

3 if (x == 0)

4 initialized = 1;

e2 }

Figure 6.2: Example for finding last definitions for a multiple function test
object with states

 

CFG for 
function 1 

sg 

i1 

ik 

e1 

s1 

CFG for 
function n 

en 

sn 

en 

Figure 6.3: “Global” control flow graph for the test objects with state behaviour
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Stage One - The Initial Event Sequence

The search for test data for the initial event sequence works in the same manner

as for searches using the sequence evolutionary approach described in Section

3.5. The same encoding strategy is used, with a maximum sequence length

specified by the tester. Unlike the sequence evolutionary approach, the sequence

hybrid approach has the option to extend the sequence length in stage two of the

search. Therefore if the value is too small, resulting in function call sequences

that are too short, the approach has the possibility of correcting the mistake.

The objective function for stage one works as for the sequence evolutionary

approach, attempting to find the minimum objective value for the target node

or branch within each call of the sequence.

If no test data can be found that covers the current target structure, the

best individual is taken and its initial problem node is identified. If more than

one individual has the same best objective value, the individual with the longest

function call sequence is preferred.

Stage Two

Stage two of the search combines two forms of encoding in two parts. The first

part is known as the “precall”. Within the precall, the evolutionary search can

choose to execute any function in any order for a fixed number of calls. The

encoding of this section is identical to that used by the sequence evolutionary

approach, using a function call identification number and a universal parameter

set (see Section 3.5). The initial length of the precall is the same as the function

call sequence length of the best individual from stage one.

The second part of the encoding is referred to as the “event sequence calls”

section, and is reserved for the function calls that need to be performed in

order to execute each event node in the event sequence. Since the functions to

be called are known, no function identification number or universal parameter

set is required, and the encoding for each function call is simply based on the

parameters to that function.

As an example, take the following event sequence, for the execution of the

branch (6, 7) for an arbitrary test object with 4 different functions:

< (sg, ∅), (6, ∅), (7, ∅) >

Suppose nodes 6 and 7 lie in function number 2. The initial sequence length

is set at 4. The encoding therefore stipulates any function can be called in

positions 1-3, whilst function 2 has to be called in position 3:
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Call to  
function  

2 

“precall” event 
sequence 
calls 

Call to any 
function 

1-4 

Call to any 
function 

1-4 

Call to any 
function 

1-4 

The length of the precall sequence shrinks as events are added before the

original problem node. Suppose node 6 is a problem node, and node 5 is inserted

before it in the event sequence:

< (sg, ∅), (5, {var}), (6, ∅), (7, ∅) >

Suppose node 5 lies in function 1. The precall shrinks to a length of 2:

 

Call to  
function  

2 

“precall” event sequence calls 

Call to  
function  

1 
 

Call to any 
function 

1-4 

Call to any 
function 

1-4 

If more functions are required before the initial problem node than the

number of calls in the precall, the precall disappears.

Suppose the following event sequence is generated:

< (sg, ∅), (5, {var}), (5, {var}), (5, {var}), (6, ∅), (7, ∅) >

The precall section no longer exists, leaving an encoding consisting of func-

tion calls for the event sequence only:

 

Call to  
function  

2 

event sequence calls 

Call to  
function  

1 
 

Call to  
function  

1 
 

Call to  
function  

1 
 

The length of the precall for an event sequence is therefore computed using

the formula:

precall len = max(0, init seq len− init prob event pos)

where precall len is the precall length, init seq len is the sequence length of

the best sequence from stage one, and init prob event pos is the position of the

event in the current sequence that was the first problem node identified from

the initial event sequence.
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Events can also be inserted between the initial problem node and the event

or events corresponding to the target structure. In this case the precall length

remains unchanged, but the number of function calls required to execute the

event sequence can increase. The functions required to be executed in the

event sequence calls portion of the encoding are found by using the following

simple algorithm, which takes each pair of adjacent events ei = (ni, Ci) and

ei+1 = (ni+1, Ci+1) in the event sequence. If ni+1 is not reachable from en via

an acyclic path within the same function, the function parameters are added to

the event sequence function calls portion of the encoding.

Take the example of Figure 6.1 once more. If the event sequence is:

< (sg, ∅), (4, {initialized}), (1, ∅), (2, ∅) >

The function call sequence is:

< global cfg example1(), global cfg example1() >

Node 4 is not reachable from sg without invoking global cfg example1(), and

so the first call is added. Node 1 is not reachable from node 4 without another

call to the function, resulting in the second call. Node 2 is reachable from node

1 without the need for another function call, and so no further function calls

need to be inserted.

6.2.3 Chaining Tree Search

In contrast to all previous experiments using the chaining approach, the chain-

ing tree is explored in a breadth-first manner for test objects with states. Due

to the fact that event sequences may be very long as well as relatively short,

the fixed depth limit on the chaining tree for a depth-first search would have

to be relatively high. This would mean the chaining tree search for structures

requiring only short event sequences may take a long time, due to the fact that

wrong branches were chosen to be expanded down to the depth limit. With

a breadth-first search this does not happen, as each level of the tree is fully

explored before considering the next.
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6.3 Experimental Study 4 - Test Data Generation

using the Sequence Hybrid Approach

6.3.1 Experimental Setup

Using the sequence hybrid approach, full branch coverage was attempted for the

same set of test objects described in Section 3.3.1 with the same initial sequence

lengths as those used for the sequence evolutionary approach experiments (Ta-

ble 3.5). Instead of fixing a maximum depth as the termination criterion for the

chaining tree search, a fixed limit of 200 event sequences was imposed. Each

evolutionary search for each event sequence was terminated after 50 generations

of no improvement. This setup is referred to as the SeqHybrid setup.

Random sequence generation experiments were repeated. This time, the

number of random test sequence evaluations that can be used for each branch

was equivalent to the highest number of evaluations considered by successful or

unsuccessful sequence hybrid approach searches for that branch. This setup is

referred to as the SeqRnd setup.

Each branch is taken as the individual target of the search, regardless of

whether it was fortuitously covered during the test data search for another

branch. The search for each branch with each setup was repeated ten times.

Once again the following information was measured:

• Success rate

• Coverage

• Average number of test data evaluations for a successful search

• Average number of test data evaluations for an unsuccessful search

• Maximum number of test data evaluations for a successful search

• Maximum number of test data evaluations for an unsuccessful search

• Average time for a successful search

• Average time for an unsuccessful search

• Maximum time for a successful search

• Maximum time for an unsuccessful search

For definitions of success rate, coverage, and other measurements, see Sec-

tion 3.3.2.
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Table 6.1: Success rate and coverage using the sequence hybrid approach, com-
pared to random test sequence generation

Test Test Success Coverage
Object Method Rate

(%) (%)

Anomaly Detector SeqHybrid 100.0 100.0
SeqRnd 14.3 14.3

Array Difference SeqHybrid 100.0 100.0
SeqRnd 91.7 91.7

Postcode SeqHybrid 62.3 87.9
SeqRnd 26.7 31.8

Sliding Window SeqHybrid 100.0 100.0
SeqRnd 36.9 46.2

Smoke Detector SeqHybrid 91.4 100.0
SeqRnd 71.4 71.4

Sortcode SeqHybrid 93.7 100.0
SeqRnd 76.9 88.4

Stack SeqHybrid 100.0 100.0
SeqRnd 75.0 75.0

Tel No SeqHybrid 88.0 94.1
SeqRnd 42.6 52.9

Vending Machine SeqHybrid 100.0 100.0
SeqRnd 93.4 93.8

6.3.2 Results

Table 6.1 shows the success rate and coverage levels for the sequence hybrid

approach. The sequence hybrid approach achieved full coverage for 7 of the

9 test objects. A 100% success rate is achieved for five out of the nine test

objects. The approach achieves higher coverage and success rates than the

random approach over a similar number of test sequence evaluations in all

cases.

These results are compared to those obtained with the standard and se-

quence evolutionary approaches from Chapter 3 in Figures 6.4 and 6.5. The

sequence hybrid approach achieves the highest coverage levels and success rates

in all cases. The sequence hybrid approach generally performs a higher num-

ber of evaluations (Table 6.2) than both standard and sequence evolutionary

approaches. However, increasing the number of generations (and consequently

the number of evaluations) from 200 to 1000 for both of these approaches only

resulted in a marginal improvement in coverage and success rate. It is unlikely

that extending the number of generations even further for both approaches
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Table 6.2: Average and maximum number of test sequence evaluations for
searches using the sequence hybrid approach and random sequence generation

Test Test Successful Unsuccessful
Object Method Search Search

Av Evals Max Evals Av Evals Max Evals

Anomaly SeqHybrid 100,733 626,197 - -
Detector SeqRnd 1 1 129,285 626,197

Array SeqHybrid 9,532 117,022 - -
Difference SeqRnd 188 4,237 117,022 117,022

Postcode SeqHybrid 303,504 8,958,755 2,863,592 14,403,980
SeqRnd 85,157 1,080,520 4,102,282 14,403,980

Sliding SeqHybrid 7,701 63,649 - -
Window SeqRnd 555 26,586 21,058 63,649

Smoke SeqHybrid 98,526 3,438,822 3,900,739 4,102,926
Detector SeqRnd 1 1 2,021,827 4,102,926

Sortcode SeqHybrid 53,452 3,216,321 3,490,579 5,402,062
SeqRnd 4,710 94,605 2,502,847 5,402,062

Stack SeqHybrid 4,249 36,739 - -
SeqRnd 1 2 23,132 36,739

Tel No SeqHybrid 215,506 7,269,153 3,210,451 13,288,663
SeqRnd 1,144 19,376 2,153,902 13,288,663

Vending SeqHybrid 1,090 31,486 - -
Machine SeqRnd 9 176 18,078 31,486

would result in any dramatic improvement, especially on the basis of data

recorded in Chapter 3, Table 3.9, which suggests that on average, unsuccessful

searches stagnated after the 100th generation, making no further progress. The

sequence hybrid approach makes use of extra test data evaluations by search-

ing using different event sequences (refer to Table 6.4), guiding the search into

different areas of the test object’s input domain. Table 6.5 shows the maxi-

mum and average chaining tree depth explored for searches using the hybrid

approach. The concept of the chaining tree was defined on page 114.

The question now addressed is why 100% coverage and success rates were

not achieved for all test objects. This is down to the following two reasons:

Exponential Growth of the Chaining Tree

Some branches were not consistently covered, or even covered at all, because

the chaining tree simply became too large for all feasible event sequences to be

explored before the 200 event sequence termination limit.

For the “Smoke Detector” test object, experiments were re-run ten times
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Table 6.3: Average and maximum times for searches using the sequence hybrid
approach and random sequence generation

Test Test Successful Unsuccessful
Object Method Search Search

Av Time Max Time Av Time Max Time
(s) (s) (s) (s)

Anomaly SeqHybrid 143.0 946.8 - -
Detector SeqRnd 0.1 0.1 24.4 120.1

Array SeqHybrid 10.5 106.2 - -
Difference SeqRnd 0.1 0.7 17.2 17.3

Postcode SeqHybrid 176.9 6,551.0 1,869.5 11,643.9
SeqRnd 12.1 153.4 580.6 2,096.0

Sliding SeqHybrid 5.3 24.3 - -
Window SeqRnd 0.1 2.2 1.7 5.2

Smoke SeqHybrid 56.9 2,116.4 2,512.3 2,668.2
Detector SeqRnd 0.1 0.1 488.5 995.1

Sortcode SeqHybrid 44.5 3,339.0 3,624.7 5,983.0
SeqRnd 1.3 26.2 685.5 1,496.6

Stack SeqHybrid 5.7 35.3 - -
SeqRnd 0.1 0.1 4.5 7.5

Tel No SeqHybrid 146.1 6,024.8 2,171.5 10,328.8
SeqRnd 0.3 4.2 462.7 2,899.2

Vending SeqHybrid 0.9 11.8 - -
Machine SeqRnd 0.1 0.1 1.4 2.3

Table 6.4: Event sequences used for sequence hybrid approach searches. “Av
ES” refers to the average number of event sequences used per branch, “Max
ES” refers to the maximum number of event sequences used for a branch

Test Successful Unsuccessful
Object Search Search

Av ES Max ES Av ES Max ES

Anomaly Detector 6.4 31 - -

Array Difference 1.3 4 - -

Postcode 8.2 141 66.5 200

Sliding Window 1.3 6 - -

Smoke Detector 6.1 175 200 200

Sortcode 3.2 131 140 200

Stack 1.1 2 - -

Tel No 6.8 158 80.1 200

Vending Machine 1.1 3 - -
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Table 6.5: Chaining tree depth reached by sequence hybrid approach searches

Test Successful Unsuccessful
Object Search Search

Av Depth Max Depth Av Depth Max Depth

Anomaly Detector 1.6 6 - -

Array Difference 0.2 2 - -

Postcode 1.1 11 8.1 15

Sliding Window 0.3 2 - -

Smoke Detector 0.3 6 6.4 7

Sortcode 0.4 10 9.6 15

Stack 0.1 1 - -

Tel No 1 13 4.6 10

Vending Machine 0 1 - -

with an imposed limit of 1000 event sequences, and test data was generated

with a 100% success rate. The 200 event sequence limit was broken 12 times.

The number of event sequences attempted reached a maximum total of 622 for

one particular branch, using approximately 13 million test data evaluations and

a search time of almost three hours.

The 200 event sequence limit was also reached on 5, 10 and 15 occasions for

the “Postcode”, “Sortcode” and “Telephone No” test objects respectively.

Nesting and Composed Conditions

Event sequences can consist of several nodes which lie within nested structures,

or nested within composed conditions. Therefore, the method is particularly

susceptible to the problems of nesting and short-circuiting due to the use of the

&& and || logical operators described in Section 2.3.5, page 52, because if test

data can not be found to execute every node correctly in the event sequence, the

search will have failed. In this way feasible event sequences might be considered

for which test data may not always be found.

This problem hampered test data generation for the “Postcode”, “Sort-

code” and “Telephone Number” test objects, where target branches required

sequences of nested nodes. The “Postcode” test object in particular has a high

level of nesting, and suffered the most problems. Full coverage was achieved

with the “Sortcode” test object, but not with a 100% success rate. The “Sort-

code” test object has some nodes with a nesting level of 4, as well as a number of

conditions composed using the && operator. The “Telephone Number” test ob-

ject has a high number of composed conditions. In eleven of its if statements,
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seven are constructed using the && and || operators.

6.4 Experimental Study 5 - An Industrial Test Ob-

ject

An experiment was undertaken on a car controller module provided by Daimler-

Chrysler. The module contains one principal function, and two auxiliary static

functions.

The main function has fifteen inputs. Two variables were of the double type,

the first in the range -30.0 to 30.0 with a precision of 0.001, and the second in

the range -30.0 to 100.0, also with a precision of 0.001. The remaining thirteen

variables were boolean inputs, modelled using the unsigned integer type in

the range 0 to 1. It contains thirteen internal static state variables, with a

further eight state variables declared outside the function.

The main function has approximately 425 lines of code, with 61 if-then

statements resulting in 122 branches, and a maximum nesting depth of 10.

It was discovered within the code that there were three assignments to

boolean variables using the result of a boolean expression, i.e.:

boolean_var = (boolean_expression)

In such situations, the chaining approach cannot guide the search to either

a specific true or false outcome of the boolean flag variable, which might be

important for the coverage of some branch. Therefore, these assignments were

converted into decisions of the form:

if (boolean_expression)

boolean_var = true;

else

boolean_var = false;

This increased the number of decisions in the code by three, making 128

branches in total.

The final code was then tested using the sequence evolutionary approach

with a termination criterion of 200 generations, and also with the sequence

hybrid approach. Each branch is taken as the individual target of the search,

regardless of whether it was fortuitously covered during the search for test data

for another branch. The search for each branch was repeated for each method
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Table 6.6: Success rate and coverage for the industrial experiment
Test Method Success Rate (%) Coverage (%)

SeqEA(200) 93.1 96.1

SeqHybrid 96.3 96.9

Table 6.7: Evaluations for the industrial experiment

Test Successful Unsuccessful
Method Search Search

Av Evals Max Evals Av Evals Max Evals

SeqEA(200) 991 40,188 56,175 75,789

SeqHybrid 4,121 214,357 5,639,585 8,232,486

five times.

6.4.1 Results

Table 6.6 shows the success rate and coverage for the experiment. The sequence

hybrid approach achieved a higher coverage and success rate than the sequence

evolutionary approach.

The sequence evolutionary approach could not cover five branches. Of these

the sequence hybrid approach failed to cover four, with the fifth covered in one

of the runs. Two of the four branches not covered were infeasible. The sequence

hybrid approach could not find test data for the remaining two branches, even

with the use of chaining. Again, this was down to chaining tree explosion

problems, along with nesting and short-circuit operators preventing the search

from finding test data for feasible event sequences.

The sequence evolutionary approach failed to cover ten branches consis-

tently, resulting in a lower success rate. These branches were always covered

by the sequence hybrid approach, due to the use of chaining. In all five runs,

Table 6.8: Times for the industrial experiment

Test Successful Unsuccessful
Method Search Search

Av Time Max Time Av Time Max Time

SeqEA(200) 3.6 111.5 142.6 156.8

SeqHybrid 9.2 423.3 14,005.5 28,390.2
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Table 6.9: Event sequences attempted in the industrial experiment

Successful Unsuccessful
Search Search

Average Maximum Average Maximum

1.2 14 200 200

Table 6.10: Chaining tree depth reached for the industrial experiment

Successful Unsuccessful
Search Search

Av Depth Max Depth Av Depth Max Depth

0.1 2 5.5 7

chaining was used on 56 occasions, with the method successfully finding test

data in 32 of those attempts. 10 of the failed 24 attempts corresponded to

searches for test data for infeasible branches.

6.5 Conclusions

The sequence hybrid approach successfully improves on the sequence evolution-

ary approach, obtaining higher coverage levels with a greater success rate. In

many cases, 100% coverage was obtained, and in the majority of these cases

with a 100% success rate. Problems still exist with the exponential growth

of the chaining tree and the number of event sequences that have to be con-

sidered. Another difficulty exists where the problems of nested structures and

short-circuit condition evaluation are accentuated due to the number of nodes

for which test data must be found to execute in turn.

An experiment was carried out with a real-world test object. The sequence

hybrid approach proved to generate test data more reliably, with a higher suc-

cess rate. Due to the coverage of one problematic branch in one experimen-

tal run, the sequence hybrid approach also achieved a slightly higher coverage

rate.
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Conclusions and Future Work

7.1 Summary of Achievements

The original overall aims and objectives of this thesis were as follows:

1. To identify the problems that test objects with state behaviour can cause

for evolutionary test data generation for procedural programs written in

the C language; and

2. To propose extensions to the evolutionary test data generation framework

so that test data generation might be improved.

7.1.1 Identification of Problems for the Standard Evolutionary

Approach and State-Based Test Objects

Chapter 3 identified the two main problems that state-based test objects pose

for the standard evolutionary approach; these being:

• the need for input sequences; and

• the problem of internal variables.

Input sequences need to be generated for the coverage of certain struc-

tures, which require the test object to be put into some state. The internal

variable problem causes difficulties for test objects with state behaviour and

input-output behaviour. Their use in state-based test objects, however, is in-

evitable, since internal variables are required to manage state information. The

use of internal variables in the conditions of programs can result in a degree

of “information loss” when computing the branch distance measure, producing

coarse or flat objective function landscapes for structures within the program.

183
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Table 7.1: Description of evolutionary test data generation methods used in
this thesis

Test method Description Chapter Novel
to thesis

Standard Test data generation of inputs for 2/3 No
evolutionary atomic function calls for test objects
approach with input-output behaviour

Sequence Test data generation of input 3 Multiple
evolutionary sequences of function calls for test function
approach objects with state behaviour version

Hybrid Hybrid evolutionary-extended chaining 5 Yes
approach approach for test data generation of

inputs for atomic function calls for
test objects with input-output behaviour

Sequence Hybrid evolutionary-extended chaining 6 Yes
hybrid approach for generating inputs sequences
approach of function calls for test objects with

state behaviour

This in turn results in the search receiving less guidance to the required test

data, and may possibly fail.

7.1.2 Solution Development for Improving Evolutionary Test

Data Generation for State-Based Test Objects

The solution proposed to the state problem was developed in three stages. The

different methods are described, in brief, in Table 7.1. The first stage tackled

the problem of generating input sequences for test objects involving one or more

callable functions, for example as part of a module. The resultant method is

referred to as the sequence evolutionary approach.

The second stage tackled the problem of internal variables by hybridization

of the standard input-output evolutionary approach with the chaining approach

for test objects with input-output behaviour. The resultant method is referred

to as the hybrid approach.

The third stage brought the first two components together in an attempt

to solve the state problem as a whole (Figure 7.1). The resultant method is

referred to as the sequence hybrid approach.
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Standard 
Evolutionary 

Approach

[Stage 1]

Sequence 
Evolutionary 

Approach
(chapter 3)

[Stage 2]

Hybrid 
Approach
(chapter 4)

[Final
Solution]

Sequence 
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Approach
(chapter 5)

hybridization with 
extended chaining 

approach

sequence generation

Figure 7.1: Development of the solution proposed by this thesis to the state
problem

7.1.3 Stage One - Sequence Evolutionary Approach

Chapter 3 introduced an encoding for the generation of input sequences for

test objects consisting of a single callable function devised by Baresel et al.

[BPS03]. This was extended to handle test objects with multiple functions

composed as part of modules. Experiments were performed with nine synthetic

test objects with state behaviour. The sequence method achieved the same

or higher branch coverage levels than the standard evolutionary approach for

seven of the nine test objects. The standard evolutionary approach was only

able to cover structures dependent on the state of the test object because the

test object is not reset during the evaluation of a generation of atomic function

calls. Therefore the “input sequence” found can be as long as the number

of individuals in a generation, rather than sequences of length specified by

the tester, as for the sequence approach. The standard evolutionary approach

cannot cover certain structures in test objects with multiple callable functions.

7.1.4 Stage Two - The Hybrid Approach

The hybrid approach was proposed in Chapter 5 to overcome internal vari-

able problems for test objects with internal variables. The approach is a hy-

bridization of the standard evolutionary approach with the chaining approach

[FK96a, Kor96, FK96b]. The basic idea of the chaining approach is to find a se-

quence of statements involving internal variables that need to be executed prior

to the test goal. By requiring that these statements are executed, information

previously unavailable to the search can be utilized, possibly guiding it into



186 CHAPTER 7

potentially promising and unexplored areas of the test object’s input domain.

The chaining method used is based on the original approach devised by

Ferguson and Korel [FK96a]. The extended method incorporates a number of

novel improvements, these being:

1. The extended chaining method can handle conditions using logical AND

and OR connectives, which are extremely common in real-world code.

Therefore, the hybrid approach can tackle a wider range of programs

than the original approach.

2. The extended chaining method contains a “return to problem node” capa-

bility. If the problem node is encountered more than once by the original

chaining approach, it declares failure. The hybrid approach has the option

to generate more event sequences which may aid the test data generation

process, and overcome the problem node.

3. The extended method features an extended event sequence generation

algorithm. This uses the concept of an “influencing set” to identify all

variables that can have an influence on the problem node via some pro-

gram path. Event sequences are generated on the basis of assignments

to these variables. The original approach only considers last definition

assignments to variables involved in conditions at the problem node.

For nine test objects with simple input-output behaviour, test data could

be found for a specific “problem” statement in each test object with the hy-

brid approach. Test data was not found for eight problem statements with

the standard evolutionary approach, and only twice in ten attempts for the re-

maining test object problem statement. Whilst several authors have attempted

to solve the flag problem [Bot02, HHH+02, BS03, BBHK04, HHH+04], there

has been almost no work tackling other forms of internal variables problems,

such as counters, enumeration variables or internal variables inducing deceptive

landscapes.

7.1.5 Final Stage - The Sequence Hybrid Approach

The sequence hybrid approach, introduced in Chapter 6, combines elements

of the sequence and hybrid approaches. For the original nine state-based test

objects for which experiments were carried out with the standard and sequence

evolutionary approaches, higher levels of branch coverage was obtained with the

sequence hybrid approach. Full branch coverage was obtained with five of the
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test objects, and a 100% success rate in generating test data for all branches

over all search repetitions was achieved for four test objects.

A further experiment was conducted with a real-world industrial test object.

When comparing the sequence evolutionary approach with the sequence hybrid

approach, the sequence hybrid approach achieved a slightly higher coverage

rate, and a higher rate of success in finding test data for all branches in all five

experimental runs.

7.1.6 Overall Conclusions

This thesis has identified the problems that test objects with state behaviour

can cause for the standard evolutionary approach to evolutionary test data

generation. A solution was developed in three stages to handle these problems.

A number of experiments show the value of the approach for both test

objects with states, and also test objects with simple input-output behaviour.

In all the test objects considered, higher levels of branch coverage are obtained,

improving on previous results with the standard evolutionary approach.

7.2 Restrictions and Limitations

This section outlines some of the restrictions and limitations of the approach

developed.

7.2.1 Types of Programs

The method is currently limited to procedural test objects written in the C

language.

The scope of the data flow analysis for the generation of event sequences

is currently limited, in that program code utilizing dynamic memory through

the use of pointers cannot be handled. Thus test data can be generated for

individual modules, but not multiple instances of abstract data types.

The method is inhibited by high levels of nesting and the presence of short-

circuiting logical operators in programs. This is a general issue for evolutionary

test data generation, as discussed in Section 2.3.5. The approach developed

requires sequences of statements to be executed, and if many of these statements

are deeply nested or depend on the outcome of composed conditions using the

&& and || operators, there are more opportunities for these problems to inhibit

the test data search.

Programs with side-effects cannot be handled, as the event sequence model

can only handle one definition per event. Side-effects could be removed via a



188 CHAPTER 7

side-effect removal transformation [HHZM01].

Furthermore, the approach has not been tested with unstructured programs,

containing forward or backward jumps, for example through the use of break

or goto statements. Handling unstructured programs is not a major theoretical

problem for the approach, but not one that has been addressed.

7.2.2 Scalability

The method, as it currently stands, has some issues in the area of scalability. For

some programs, the chaining tree grows too large to be explored exhaustively.

This prevented full coverage from being obtained for a small number of the

test objects in the experiments. This is particularly problematic when the

test object’s code has a relatively high number of definitions for each variable,

meaning more event sequences are generated, or have recursive definitions for

which a variable is both defined and used in the same statement. The latter

can cause the same node to appear many times in the event sequence. The next

section describes how these problems might be circumvented.

7.3 Summary of Future Work

The approach currently has some limitations with respect to the type of pro-

grams that can be handled, and issues with scalability. These need to be ad-

dressed. Detailed areas for future work along these lines are described in the

following sections.

7.3.1 Improvement of Test Data Search in the Presence of Nest-

ing and Short-Circuiting Logical Operators

This is a general problem for evolutionary structural test data generation, which

was raised in Section 2.3.5. The problem is accentuated for finding test data to

execute event sequences, since there are more nodes to execute in turn. If the

test data search fails to find inputs to execute just one of the many nodes in

the sequence, the search for the overall event sequence will be deemed a failure.

Baresel et al. propose a solution where all nested conditions are evaluated

at the same time [BSS02] (described in Section 2.3.5). However, all conditions

can only be evaluated at once if the variables involved are not modified between

one condition and the next. As suggested in Section 2.3.5, a side-effect removal

transformation [HHZM01] or the use of temporary variables could overcome

side-effects in conditions composed using short-circuiting logical operators. For

nested conditions, variables should not be modified between the outer condition
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and the inner nested condition. In the following code b is modified between the

if statements, and so the condition (b == c) cannot be evaluated at the same

time as (a == b):

if (a == b)

b ++;

if (b == c)

// execute this statement

However, a testability transformation approach [HHH+04], using an exten-

sion of the temporary variable idea suggested for composed conditions, could be

applied in this instance. The value of b could be assigned to a temporary vari-

able before the first condition and then incremented, which the latter condition

evaluated using the temporary variable:

t = b;

t ++;

– evaluate (a == b ∧ t == c) here for objective function

if (a == b)

b ++;

if (b == c)

// execute this statement

The conditions can now be evaluated for the purposes of computing the objec-

tive function before the nested if structure. The approach becomes more com-

plicated when the variables involved in nested conditions are modified within

nested structures themselves, for example:

if (a == b)

if (a == 0)

b ++;

else

b --;

if (b == c)

// execute this statement

However this could be transformed as follows:
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t1 = b;

t1 ++;

t2 = b;

t2 --;

– evaluate (a == b) ∧ ((a == 0 ∧ t1 == c) ∨ (¬a == 0 ∧ t2 == c))

here for objective function

if (a == b)

if (a == 0)

b ++;

else

b --;

if (b == c)

// execute this statement

where the objective function is modified so that both possible values for b when

the nested condition is reached can be taken into account.

Care needs to be taken when transforming conditions involving array refer-

ences or pointers, due to the possibility of introducing array out of bounds or

null pointer errors.

7.3.2 Static Analysis to Reduce the Size of the Chaining Tree

Further static analysis could be used to rule out unhelpful event sequences and

limit the growth of the chaining tree. For example, flag variables are often

assigned constant true or false values. If the current problem node requires a

flag to be true, then all last definitions involving the flag being set to false can

be safely ignored. However, the current algorithm for finding last definitions

does not analyse values assigned to variables.

Further rules could be included for the increment (++) and decrement (--)

operators. Suppose a problem node requires some variable counter to be equal

to 3, and the current value of counter is less than 3, then all last definitions

involving the decrement operator can be safely ignored.

7.3.3 Search Space Reduction using Variable Dependence Anal-

ysis

The VADA tool mentioned in Section 2.3.5 can reduce the search space for

finding test data by only considering the ranges of input variables that actually

have an outcome on the test goal.
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CFG
Node

s void counter_example(int a)

{

1 static int counter = 0;

2 if (a == 0)

3 counter ++;

4 if (counter == 5)

5 // target statement

}

Figure 7.2: Example for future research with search space reduction

Similar analysis could be applied to the finding of test data for event se-

quences with the state problem, since the input domain can become very large

as soon as a sequence of function calls is required.

Furthermore, test data could be reused from one execution of a function

to the next. In the example of Figure 7.2 the counter variable needs to be

incremented five times in order for the target statement to be executed. The

increment of the counter is purely dependent on a condition relating to the

inputs of the current function call (i.e. not on the values of other internal

storage variables). Therefore, the search only needs to find test data to execute

this increment statement once, and repeat this input for the other four calls,

rather than the search having to find five calls where the input value is zero on

each occasion.

7.3.4 Analysis of Assignments as a Result of Boolean Condi-

tions

The current method does not appreciate that variables assigned as the result

of boolean conditions, for example:

flag = (a > b);

have two distinct possible outcomes. This information could provide extra

guidance to the search. Currently the method cannot try and force flag to be

either true or false. The assignment is in fact equivalent to the following code:

if (a > b)
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flag = true;

else

flag = false;

In this instance, if the hybrid approach wanted to force one of the assignment

outcomes, the if statement would become a problem node, and the condition

a > b would be used to guide the search to one of the assignments. Further

work needs to extend the method so that boolean assignments are treated in a

similar manner to the latter version involving the if statement.

A similar situation occurs with the use of the ternary operator, for example:

x = (a > b) ? -1 : 1;

Again, the method does not recognize there are two distinct assignments pos-

sible to x. This statement is actually equivalent to the following code:

if (a > b)

x = -1;

else

x = 1;

which can be handled with ease by the hybrid approach.

7.3.5 Possible Improvement of Efficiency via Seeding

The best test data found for event sequences could be used to seed the search

for child event sequences. Take the example of Figure 7.3. The initial event

sequence is:

< (s, ∅), (6, ∅) >

The best test data diverges down the false branch at node 5 - where flag needs

to be true. The test data vector has the input b as zero in order to execute

node 4 as true. This input vector could be used to seed the searches of the child

event sequences, since b will still be required to be zero in order for node 6 to

be reached.

Future work needs to investigate whether seeding test data searches for

child event sequences will in general improve efficiency, and reduce the number

of objective function evaluations needed to find test data; since such a strategy
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CFG
Node

s void seeding_example(int a, int b)

{

1 int flag = 0;

2 if (a == 0)

3 flag = 1;

4 if (b == 0)

{

5 if (flag)

6 // target statement

}

e }

Figure 7.3: Example for future research with seeding

could also disadvantage the search by initializing it at an unhelpful starting

point, leading to more problem nodes being encountered.

7.3.6 Possible Improvement of Test Data Search using Multi-

Objective Optimization

The objective function for analyzing test data with respect to an event sequence

simply adds up the individual objective values of each event. Take the example

of Figure 7.4 and the event sequence:

< (s, ∅), (3, {flag1}), (5, {flag1, f lag2}), (6, ∅), (7, ∅) >

consider the two input vectors:

(1) (a=0, b=1)

(2) (a=1, b=0)

For input vector 1, the objective value of the second event, e2 = (3, {flag1})

is zero because the event is successfully executed, yet the objective value of

the third event e3 = (5, {flag1, f lag2}) has a branch distance of 1 since b=1

and node 5 is missed. The objective value of the input vector is the normalized

branch distance value of 1. For input vector 2, the reverse is true. The objective

value of the second event e2 is the normalized branch distance value of 1 since

node 3 is missed, yet the objective value of the third event is zero.
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CFG
Node

s void multiobjective_opt_example(int a, int b)

{

1 static int flag1 = 0, flag2 = 0;

2 if (a == 0)

3 flag1 = 1;

4 if (b == 0)

5 flag2 = 1;

6 if (flag1 && flag2)

7 // target statement

}

Figure 7.4: Example for future research with multi-objective optimization

Despite the fact that these different input vectors have different merits, they

both have the same overall objective value. Instead of cumulating the objective

values for each event, multi-objective optimization [CC99, Deb00] could be used

to optimize each event individually.

7.3.7 Heuristic Chaining Tree Search

If none of the static analysis techniques outlined above can limit the chaining

tree size, then it may be possible to search the chaining tree heuristically. Simple

initial experiments have been carried out by McMinn and Holcombe [MH03]

with the use of Ant Colony Optimization.
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Experimental Framework

A.1 Introduction

“ETState” is the name given to the experimental framework written to perform

all the experiments in this thesis. It is coded in Java, using version 1.4.2 of the

standard developer’s kit. It is designed to run in the Cygwin environment

on the Microsoft Windows platform. Cygwin is a Linux-style environment for

Windows operating systems [cyg04].

The framework implements the standard evolutionary approach (Section

3.3.2), the sequence evolutionary approach (Section 3.5), random testing (Sec-

tions 3.3.2 and 3.6.1), the hybrid approach (incorporating the extended chaining

approach) (Section 5.2), and the sequence hybrid approach (Section 6.2).

The framework ran on a Pentium IV PC running at 3GHz with 1Gb of

RAM, under the Windows XP operating system under normal load conditions.

The Cygwin environment used was version 1.5.9-1.

Implementation details of interest discussed here but not elsewhere in this

thesis include the preparation of test objects for experimental use, including

parsing, instrumentation and compilation; and details of the implementation

of the test data search, including interaction with the evolutionary algorithm,

execution of the test object, and collation of objective function values.

A.1.1 Overview of the System

Figure A.1 shows the components of the experimental framework. The test

object is prepared, as outlined in Section A.2, and compiled to a dynamic

link library (DLL). The DLL is compiled with the Java Native Interface (JNI)

headers so that it can be called directly by the ETState Java code.

The Peanuts evolutionary algorithm server was kindly provided by Daimler-

195
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Figure A.1: Overview of ETState test data evaluation process

Chrysler Research and Technology, and provides an interface to the publically

available GEATbx (Genetic and Evolutionary Algorithm Toolbox) MATLAB

library [gea04], written by Harmut Polheim. The Peanuts server runs on the

Windows platform, communicating over a network connection through a socket,

and uses GEATbx version 3.3. For all the experiments, the Peanuts server was

run on the same machine as ETState.

The Peanuts server sends individuals to ETState, which executes the test

object with the decoded test data. The test object is instrumented so that

ETState can be reported of the “condition distances” of conditions encountered

during execution of the program. This is described in detail in Sections A.2.4,

A.3.2 and A.3.3. From this information, ETState works out the path executed

and the overall objective value for the individual. Different objective functions

are used for different purposes in this thesis. Objective values are sent to

the Peanuts server, which uses this information to recombine and mutate the

population. A new generation of individuals is produced and sent to ETState.

The cycle continues until the required test data is found or the termination

criterion being used is met.

A.2 Preparation of Test Objects

Each test object is prepared according to the following steps:

1. Inlining of embedded function calls

2. Parsing of source code to XML
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3. Creation of internal model of source code

4. Test object instrumentation

5. Addition of reset functionality

6. Compilation of the modified test object to a dynamic link library

A.2.1 Inlining of Embedded Function Calls

The implementation of the extended chaining approach cannot currently anal-

yse data dependencies within embedded function calls, so for the purposes of

this thesis, the code contained within these calls is directly inlined into the

calling function by hand. The tools could easily be extended in future so that

embedded function calls can be analyzed, and this stage subsequently removed.

If the function call takes place within a branch condition, the function is inlined

immediately before the condition, and the return value is assigned to a tem-

porary variable. This temporary variable then replaces the function call in the

condition. Functions passing and returning values through pointer arguments

cannot currently be handled.

A.2.2 Parsing of Source Code to XML

Using a C parser kindly provided by DaimlerChrysler, the source code of the

test object is parsed and an abstract syntax tree is produced in XML format.

An interface specification is also created in XML format using a separate tool

also provided by DaimlerChrysler. The interface specification consists of the

ranges and precision of each input variable of each function in the test object.

A.2.3 Creation of Internal Model of the Test Object Source

Code

The abstract syntax tree of the code is read in, and an internal model of the

code is created by ETState. This includes a control flow and control depen-

dence graph. The control dependence graph is used in the calculation of ap-

proach levels in assigning objective function values (as described in Section

2.3.5). The control flow graph is used to find variable definitions when creat-

ing event sequences. Information about the composition of atomic conditions

within decisions is also collated, as this is information for computing branch

distance values (see Section A.3.3).
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A.2.4 Test Object Instrumentation

Each atomic condition appearing in a decision expression in the test object is

replaced by a function which takes two or more parameters - the identification

number of the condition, followed by the values of the variables or constants

involved in the condition. These functions compute the true and false “condition

distances” using the values used at the condition. The condition distances are

computed using the rules in Table 2.2. The value of K used is the smallest level

of precision for the types of the variables used in the condition. For example, if

a condition involves the comparison of two integer variables the value of K is

1.

The condition distances and the condition identification number is fed to

ETState for objective function computation purposes. ETState computes the

complete true and false branch distances using the individual atomic conditions

(see Section A.3.3).

The boolean outcome of the original condition is returned by the function

so that the normal flow of execution through the program is unchanged.

For example the following if statement:

if ((i1 > i2) && (d1 < d2))

{

// ...

would be instrumented as follows:

if (grt_than_int(5, i1, i2)) && less_than_dbl(6, d1, d2))

{

// ...

In the example, the function grt_than_int sends the true and false atomic

condition distances for predicates of the form a ≥ b for variables of type integer

to ETState. The function less_than_dbl sends the true and false condition

distances of predicates of the form a ≤ b for variables of type double to ETState.

Instrumentation of test objects was performed manually, but could be au-

tomated by creation of further tools.

A.2.5 Addition of Reset Functionality

In order to generate test sequences, is it necessary to be able to reset the test

objects to its initial state as required. This involves the addition of some extra

functionality by hand, if it is not already present. Again, the stages outlined in

this section could be performed automatically by the creation of further tools.
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Resetting Single Function Test Objects

In order to reset single function test objects with internal data declared using

the C static storage class, two manual changes are made to the test object so

that it can be reset in the course of testing.

The first change is the addition of an extra flag input to the interface of

the function. When the input value of the flag is true, the test object is reset.

The second change is the addition of a block of code to reset the internal

storage variables when the flag is true. This block is inserted into the function

immediately after the declaration of the static variables. After the reset is

performed, a return instruction is added to terminate execution of the function.

For example, the following function:

void reset_example(int in1, int in2)

{

static int internal_var = 0;

if (in1 > in2)

internal_var ++;

// ...

}

would be modified as follows:

void reset_example(int in1, int in2, int reset)

{

static int internal_var = 0;

if (reset)

{

internal_var = 0;

return;

}

if (in1 > in2)

internal_var ++;

// ...

}
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A.2.6 Resetting Multiple Function Test Objects

In order to reset modules with multiple functions, an extra reset function was

added to reset the internal state variables global to each function.

For example, the following module would have the following reset function

added:

static int counter = 0;

void function1(int a)

{

if (a > 0)

counter ++;

}

//...

void reset()

{

counter = 0;

}

A.2.7 Compilation of Test Object to a Dynamic Link Library

The test object, functions computing condition distances, and Java Native In-

terface (JNI) headers are compiled to produce a dynamic link library (DLL) so

that the test object can be directly called by the ETState code which is written

in Java.

Compilation is performed using the GCC C compiler version 3.3.1 for the

Cygwin environment.

A.3 Implementation Details of the Test Data Search

The test data search is a cycle involving the following steps

1. Retrieving a generation of individuals from the evolutionary algorithm

2. Decoding individuals to test data inputs

3. Calling of the test object with the test data

4. Tracing the flow of execution through the test object, retrieving branch

distance values
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5. Assigning objective function values to individuals.

A.3.1 The Evolutionary Algorithm Toolbox

The Peanuts server optimizes a vector of variables of integer or floating point

type. The first stage of communication involves sending a specification of the

vector of variables to be optimized, namely the maximum and minimum value

of each variable, and the precision to be used. The Peanuts server then sends

the first generation of randomly generated individuals. The client (ETState)

then performs objective function evaluations, and sends these values backs to

the Peanuts server, which recombines and mutates the individuals and sends

the next generation. The search terminates when test data has been found

(an objective value of zero has been found) or the stopping criterion (e.g. a

maximum number of generations, or a maximum number of generations without

an improvement in the best objective value) has been met.

An options file used by the server sets the number of individuals in a gener-

ation, the number of sub-populations, stopping criteria and so on (see Section

A.4).

A.3.2 Decoding Individuals, Test Object Execution, and Con-

dition Distance Feedback

The variable values making up each individual are decoded to test object inputs

where necessary (i.e. for the multi-function call sequence encoding described

in Sections 3.5 and 6.2, as part of the sequence approaches). The test object

DLL is then called with these input values. Condition distances are sent to

ETState corresponding to the atomic conditions evaluated during test object

execution, as a result of the instrumentation described in Section A.2.4. Using

this information, the path through the test object can be traced.

Take the example of Figure A.2. Suppose the test object is executed with

the input vector (a=10, b=20, c=30). For each condition and corresponding

true or false outcome, a numerical distance is returned to ETState (this is

because the condition may need to be evaluated to either outcome, depending

on the event sequence being considered):

Condition Outcome Predicate Numerical Distance

1 True a < b 0

1 False a ≥ b 20 − 10 + K = 21

2 True a > b 20 − 10 + K = 21

2 False a ≤ b 0
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CFG
Node

s void test_object(int a, int b, int c)

{

1 if (less_than_int(1, a, b))

{

2 // perform some action

}

3 if (grt_than_int(2, a, b) && grt_than_int(3, b, c))

{

4 if (eql_to_int(4, a, c))

{

5 // perform some action

}

6 // perform some action

}

e }

Figure A.2: Example for tracing execution paths

Numerical distances are computed using the rules in Table 2.2 where K =

1. Condition distances of zero indicate the condition was evaluated to the

corresponding outcome. Therefore it can be seen that the true branch was

taken from node 1 (as condition 1 evaluated to true), followed by the false

branch from node 3 (as condition 2 evaluated to false). Condition 3 was never

evaluated because evaluation of the overall decision at node 3 short-circuited

after condition 2, which had already determined the decision to be false. Node

4 was never reached, so condition 4 was not evaluated either. The path taken

was therefore < s, 1, 2, 3, e >.

Approach levels for program structures can be found by using the generated

control dependence graph and by analyzing the path of execution taken through

the test object, as described in Section 2.3.5.

A.3.3 Computing Branch Distance Values

Branch distances are computed by ETState using the individual condition dis-

tances fed back from test object execution. Where predicates consist of one

condition, the true and false branch distances are equivalent to the respective

true and false condition distances, normalized into the range 0-1 using Equation

2.1.
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However, when the branch predicate is made up of several conditions using

logical connectives, the branch distance must be assembled from the individual

conditions. The usual procedure for doing this is to employ Tracey’s rules for

logical connectives (Table 2.3). However with the C language, some conditions

may not be evaluated due to the use of short circuit operators. The method

used by ETState is to weight the distances of each atomic condition in the

overall composed condition, using assumed values for unevaluated conditions.

A similar algorithm is applied by Baresel [Bar02], but does not appear in the

literature.

In order to assign weights to each atomic condition, the overall expression

must first be decomposed into a tree, where the leaves of the tree are the atomic

conditions and the nodes are the short-circuit operators.

For example the expression ((a > b && b > c && c > d) || (c < d)) is

decomposed to the following tree:

 

|| 

&& c < d 

a > b b > c c > d 

weight: 1/2 weight: 1/2 

weight: 1/6 weight: 1/6 weight: 1/6 

weight: 1 

Starting at the root of the tree with an initial weight of 1, the weight of a

subcondition is assigned by dividing the weight of its parent condition across

itself and its siblings.

In the example, the weight of the overall expression is 1. Its subconditions

(a > b && b > c && c > d) and (c < d) stemming from the || operator are

each assigned a weight of 1

2
. The individual atomic conditions of a > b, b > c,

c > d are each assigned a weight of 1

2
÷ 3 = 1

6
.

The next step is to normalize each individual atomic condition distance into

the range 0-1 using Equation 2.1. If a condition is unevaluated, the normal-

ized distance is assumed to be 0 or 1 depending on whether its parent condi-

tion was evaluated as true or false. For example if b > c is unevaluated and

(a > b && b > c && c > d) is false, its true normalized distance is 1, and its

false normalized distance is 0. Each normalized atomic condition distance is

multiplied by the weight assigned to that atomic condition.
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Finally, Tracey’s rules for logical connectives (Table 2.3) are applied to find

the overall branch distance. For the example, the true distance of the expression

is calculated as:

min((norm true dist(a>b)
6 + norm true dist(b>c)

6 + norm true dist(c>d)
6 ), norm true dist(c<d)

2 )

where norm true dist is the normalized true condition distance of the condition.

A.4 Evolutionary Search Parameters

Evolutionary searches were conducted using version 3.3 of the publically avail-

able GEATbx library [gea04]. The GEATbx options file used is shown in Figure

A.3. Apart from the termination criterion, the same set of search parameters

were applied to each evolutionary search undertaken across all experiments

performed in this thesis. This parameter set is the same as that applied by

other authors in the field, for example Harman et al. [HHH+02] and Baresel

et al. [BPS03]. Individuals are composed of a vector of variables of integer

and floating-point types. The range is specified for each variable, as well as the

precision for floating-point variables. 300 individuals were used per generation.

This is split into 6 subpopulations of approximately 50 individuals each. Linear

ranking is utilized, with a selection pressure of 1.7. Individuals are recombined

using discrete recombination, and mutated using real-valued mutation.

Real-valued mutation is performed using “number creep” - the mutation of

variable values through the addition of randomly created values. The proba-

bility of mutating a variable value is the inverse of the number of variables in

the individual. The formula for mutating a variable value vari where i is the

locus of the variable in the chromosome is that as used by the “Breeder Genetic

Algorithm” [MSV93], is stated as follows:

vari
mut = vari + si × ri × ai

where:

• si ∈ {−1, 1} chosen randomly

• ri = r × domaini, where r is the “mutation range” and domaini is the

size of the domain of the variable i

• ai = 2−u×k, where u is a random number between 0 and 1, and k is the

“mutation precision”.
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The smallest relative mutation step size is 2−k with the largest being 20 = 1.

Mutation steps are therefore created in the range [ri × 2−k, ri]. The mutation

precision value k used was 16. Each subpopulation was assigned a different

value of r, this being 10−n, where n is the subpopulation number, 1 ≤ n ≤ 6.

Individuals migrate from one subpopulation to another throughout the pro-

gression of the search. The top 10% of each subpopulation are copied to the

migration pool. From this pool, the individuals are randomly selected to be

reinserted back into each subpopulation, replacing the worst individuals. Copy-

ing of individuals back into the same subpopulation is prevented by restricting

the random selection to individuals from other subpopulations only. Subpop-

ulations compete with one another, and so the number of individuals copied

back depends on the success of the population. This is determined by ranking

each subpopulation according to the average objective value of the individuals

within it. Unsuccessful subpopulations are not allowed to die off completely,

with the minimum number of individuals in a subpopulation being 5.
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% Specify 6 subpopulations of 50 individuals each:

NumberSubpopulation: 6

NumberIndividuals: 50

% Specify discrete recombination:

Recombination.Name: ’recdis’

% Specify real-valued mutation, with following ranges and precision:

Mutation.Name: ’mutreal’

Mutation.Range: 0.1 0.01 0.001 0.0001 0.00001 0.000001

Mutation.Precision: 16

% Terminate on maximum number of generations or found objective

% function value of 0:

Termination.Method: 1 3

% Termination.MaxGenerations varies for different experimental setups:

Termination.MaxGenerations: 200

% Terminate only when reach zero value of objective function:

Termination.Diff2Optimum: 0

% Known minimum of the objective function (best objective value):

System.ObjFunMinimum: 0

% Do only one minimization:

System.ObjFunAddPara: 1

Figure A.3: GEATbx option file
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Program Code for Synthetic

Test Objects with State

Behaviour

This section archives the program code for synthetic test objects with state

behaviour, as used in the experimental studies of Chapter 3 and Chapter 6.

Line numbers appear to the left of each line of code.

B.1 Anomaly Detector

#define MAX_ELEMENTS 40

static double vibration[MAX_ELEMENTS];

static int buffer_full = 0;

static int ptr = 0;

void add_data(double current_vibration)

{

vibration[ptr] = current_vibration;

ptr ++;

if (ptr == MAX_ELEMENTS)

{

ptr = 0;

buffer_full = 1;

}

}

int normal_limits()

{

207



208 APPENDIX B

if (buffer_full)

{

double total = 0, mean = 0,

variance = 0, last_element = 0;

int i, j;

int cur_pos = ptr-1;

if (cur_pos == -1)

{

cur_pos = MAX_ELEMENTS-1;

}

for (i=0; i < MAX_ELEMENTS; i++)

{

if (i != cur_pos)

{

total += vibration[i];

}

}

mean = total / (MAX_ELEMENTS-1);

total = 0;

for (j=0; j < MAX_ELEMENTS; j++)

{

if (j != cur_pos)

{

total += (vibration[j] - mean) *

(vibration[j] - mean);

}

}

variance = total / MAX_ELEMENTS-1;

last_element = (vibration[cur_pos] - mean) *

(vibration[cur_pos] - mean);

return (last_element > variance);

}

else

{

return 1;

}

}

void reset()

{

buffer_full = 0;
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ptr = 0;

}
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B.2 Array Difference

#define SIZE 10

typedef unsigned char Bool;

Bool diff(int incoming[SIZE])

{

static int last[SIZE];

static Bool init = 1;

int diff = 0;

int i;

if (!init)

{

for (i=0; i < SIZE; i++)

{

if (incoming[i] != last[i])

{

diff = 1;

}

}

}

if (diff || init)

{

for (i=0; i < SIZE; i++)

{

last[i] = incoming[i];

}

}

if (init)

{

init = 0;

}

return diff;

}
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B.3 Postcode

#define RESULT_ENTER_NEW_CHAR 0

#define RESULT_VALID 1

#define RESULT_INVALID 2

typedef unsigned char Bool;

static Bool is_letter(int unicode_char)

{

if (unicode_char >= 65 && unicode_char <= 90)

return 1;

else

return 0;

}

static Bool is_digit(int unicode_char)

{

if (unicode_char >= 48 && unicode_char <= 57)

return 1;

else

return 0;

}

static Bool is_space(int unicode_char)

{

if (unicode_char == 32)

return 1;

else

return 0;

}

static Bool is_lf(int unicode_char)

{

if (unicode_char == 12)

return 1;

else

return 0;

}

int validate_uk_postcode(int unicode_char)

{

static Bool pri_letter_1 = 1;

static Bool pri_letter_2 = 0;

static Bool pri_digit_1 = 0;

static Bool pri_digit_2 = 0;

static Bool space = 0;
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static Bool sec_digit = 0;

static Bool sec_letter_1 = 0;

static Bool sec_letter_2 = 0;

static Bool end = 0;

int result = RESULT_ENTER_NEW_CHAR;

if (pri_letter_1)

{

if (!is_letter(unicode_char))

{

result = RESULT_INVALID;

}

else

{

pri_letter_2 = 1;

pri_letter_1 = 0;

}

}

else if (pri_letter_2)

{

if (is_letter(unicode_char))

{

pri_digit_1 = 1;

pri_letter_2 = 0;

}

else if (is_digit(unicode_char))

{

pri_digit_2 = 1;

pri_letter_2 = 0;

}

else

{

result = RESULT_INVALID;

}

}

else if (pri_digit_1)

{

if (is_digit(unicode_char))

{

pri_digit_2 = 1;

pri_digit_1 = 0;

}

else

{

result = RESULT_INVALID;

}
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}

else if (pri_digit_2)

{

if (is_digit(unicode_char))

{

space = 1;

pri_digit_2 = 0;

}

else if (is_space(unicode_char))

{

sec_digit = 1;

pri_digit_2 = 0;

}

else

{

result = RESULT_INVALID;

}

}

else if (space)

{

if (is_space(unicode_char))

{

sec_digit = 1;

space = 0;

}

else

{

result = RESULT_INVALID;

}

}

else if (sec_digit)

{

if (is_digit(unicode_char))

{

sec_letter_1 = 1;

sec_digit = 0;

}

else if (is_letter(unicode_char))

{

sec_letter_2 = 1;

sec_digit = 0;

}

else

{

result = RESULT_INVALID;

}

}
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else if (sec_letter_1)

{

if (is_letter(unicode_char))

{

sec_letter_2 = 1;

sec_letter_1 = 0;

}

else

{

result = RESULT_INVALID;

}

}

else if (sec_letter_2)

{

if (is_letter(unicode_char))

{

end = 1;

sec_letter_2 = 0;

}

else

{

result = RESULT_INVALID;

}

}

else if (end)

{

if (is_lf(unicode_char))

{

pri_letter_1 = 1;

end = 0;

result = RESULT_VALID;

}

else

{

result = RESULT_INVALID;

}

}

return result;

}
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B.4 Sliding Window

#define SEND_WINDOW_SIZE 3

#define RECEIVE_WINDOW_SIZE 3

#define MSG_SIZE 20

typedef unsigned char Bool;

// SENDER SIDE STATE

static int sender_seq_no = 0;

static int sender_last_ack_received = -1;

static int sender_last_frame_sent = -1;

static int sent[SEND_WINDOW_SIZE];

static int sender_data[SEND_WINDOW_SIZE][MSG_SIZE];

// RECEIVER SIDE STATE

static int receiver_next_frame_expected = 0;

static int received[RECEIVE_WINDOW_SIZE];

static int received_data[RECEIVE_WINDOW_SIZE][MSG_SIZE];

static Bool send_window_not_full()

{

if (sender_last_frame_sent - sender_last_ack_received

< SEND_WINDOW_SIZE)

{

return 1;

}

else

{

return 0;

}

}

static Bool is_in_window(int seq_no, int min, int max)

{

int pos = seq_no - min;

int max_pos = max - min + 1;

if (pos < max_pos)

{

return 1;

}

else

{

return 0;

}
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}

static Bool is_next_frame(int seq_no, int next_frame)

{

if (seq_no == next_frame)

{

return 1;

}

else

{

return 0;

}

}

static send_msg_on_network(int seq_no, int data[MSG_SIZE])

{

// not implemented

}

static send_ack_on_network(int seq_no)

{

// not implemented

}

static deliver_to_application(int data[MSG_SIZE])

{

// not implemented

}

void initialise()

{

int i;

for (i=0; i < SEND_WINDOW_SIZE; i++)

{

sent[i] = 0;

}

for (i=0; i < RECEIVE_WINDOW_SIZE; i++)

{

received[i] = 0;

}

sender_seq_no = 0;

sender_last_ack_received = -1;

sender_last_frame_sent = -1;

receiver_next_frame_expected = 0;

}
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Bool send(int msg[MSG_SIZE])

{

if (send_window_not_full())

{

int slot = sender_seq_no % SEND_WINDOW_SIZE;

sent[slot] = 1;

sender_last_frame_sent ++;

sender_seq_no ++;

send_msg_on_network(sender_seq_no, msg);

return 1;

}

else

{

return 0;

}

}

void receive_ack(int ack_no)

{

// sender side

if (is_in_window(ack_no,

sender_last_ack_received + 1,

sender_last_frame_sent))

{

while (sender_last_ack_received != ack_no)

{

int slot = (sender_last_ack_received + 1) % SEND_WINDOW_SIZE;

sent[slot] = 0;

sender_last_ack_received ++;

}

}

}

void receive_frame(int seq_no, int data[MSG_SIZE])

{

if (is_in_window(seq_no,

receiver_next_frame_expected,

receiver_next_frame_expected + RECEIVE_WINDOW_SIZE - 1))

{

int slot = seq_no % RECEIVE_WINDOW_SIZE;

int i;

received[slot] = 1;

for (i=0; i < MSG_SIZE; i++)

{

received_data[slot][i] = data[i];

}
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if (is_next_frame(seq_no, receiver_next_frame_expected))

{

while (received[slot])

{

deliver_to_application(received_data[slot]);

received[slot] = 0;

receiver_next_frame_expected ++;

slot = receiver_next_frame_expected % RECEIVE_WINDOW_SIZE;

receiver_next_frame_expected ++;

}

send_ack_on_network(seq_no);

}

}

// else ignore frame

}
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B.5 Smoke Detector

const double LEVEL = 0.003;

const int DANGER = 3;

const int WAIT_TIME = 3;

void smoke_detector(double level, int* signal_on, int* signal_off)

{

static int time = 0, off_time = 0;

static int detected = 0, alarm_on = 0, waiting = 0;

time ++;

if (level > LEVEL && detected < DANGER)

{

detected ++;

}

else if (level <= LEVEL && detected > 0)

{

detected --;

}

if (!alarm_on && detected == DANGER)

{

alarm_on = 1;

*signal_on = 1;

}

if (alarm_on)

{

if (!waiting && detected == 0)

{

waiting = 1;

off_time = time + WAIT_TIME;

}

if (waiting && detected == DANGER)

{

waiting = 0;

}

if (waiting && time >= off_time)

{

waiting = 0;

alarm_on = 0;

*signal_off = 1;

}
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}

}
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B.6 Sortcode

#define RESULT_ENTER_NEW_CHAR 0

#define RESULT_VALID 1

#define RESULT_INVALID 2

typedef unsigned char Bool;

static Bool is_digit(int unicode_char)

{

if (unicode_char >= 48 && unicode_char <= 57)

return 1;

else

return 0;

}

static Bool is_dash(int unicode_char)

{

if (unicode_char == 45)

return 1;

else

return 0;

}

static Bool is_lf(int unicode_char)

{

if (unicode_char == 12)

return 1;

else

return 0;

}

int validate_sortcode(int unicode_char)

{

static Bool digit_set_1 = 1;

static Bool digit_set_2 = 0;

static Bool digit_set_3 = 0;

static Bool dash_1 = 0;

static Bool dash_2 = 0;

static Bool end = 0;

static int pos = 0;

int result = RESULT_ENTER_NEW_CHAR;

if (is_digit(unicode_char))

{

if (digit_set_1 && pos == 1)
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{

digit_set_1 = 0;

dash_1 = 1;

}

else if (digit_set_2 && pos == 4)

{

digit_set_2 = 0;

dash_2 = 1;

}

else if (digit_set_3 && pos == 7)

{

digit_set_3 = 0;

end = 1;

}

if (pos != 2 && pos != 5)

{

pos ++;

}

else

{

result = RESULT_INVALID;

}

}

else if (is_dash(unicode_char))

{

if (dash_1)

{

dash_1 = 0;

digit_set_2 = 1;

}

else if (dash_2)

{

dash_2 = 0;

digit_set_3 = 1;

}

if (pos == 2 || pos == 5)

{

pos ++;

}

else

{

result = RESULT_INVALID;

}

}

else if (is_lf(unicode_char) && end && pos == 8)
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{

result = RESULT_VALID;

digit_set_1 = 1;

end = 0;

pos = 0;

}

else

{

result = RESULT_INVALID;

}

return result;

}
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B.7 Stack

#define MAX_ELEMENTS 40

#define NO_ERROR 0

#define STACK_UNDERFLOW 1

#define STACK_OVERFLOW 2

static double elements[MAX_ELEMENTS];

static int size = 0;

static int error = 0;

double pop()

{

error = NO_ERROR;

if (size <= 0)

{

error = STACK_UNDERFLOW;

}

if (error == NO_ERROR)

{

size --;

return elements[size];

}

else

{

return 0;

}

}

void push(double element)

{

error = NO_ERROR;

if (size > MAX_ELEMENTS)

{

error = STACK_OVERFLOW;

}

if (error == NO_ERROR)

{

elements[size] = element;

size ++;

}

}
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int check_error()

{

return error;

}

int check_size()

{

return size;

}

void reset()

{

size = 0;

error = 0;

}
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B.8 Telephone Number

#define LINE_FEED_CHAR 12

#define ZERO_CHAR 48

#define ONE_CHAR 49

#define TWO_CHAR 50

#define THREE_CHAR 51

#define FOUR_CHAR 52

#define FIVE_CHAR 53

#define SIX_CHAR 54

#define SEVEN_CHAR 55

#define EIGHT_CHAR 56

#define NINE_CHAR 57

typedef unsigned char Bool;

void validate_uk_tel_no(int unicode_char, Bool* valid, Bool* error)

{

static int position = 0;

static Bool local = 0;

static Bool international = 0;

static Bool national = 0;

*valid = 0;

*error = 0;

if (unicode_char == LINE_FEED_CHAR)

{

if (local && position == 7)

{

*valid = 1;

}

else if (national && position == 11)

{

*valid = 1;

}

else if (international && position == 14)

{

*valid = 1;

}

else

{

*error = 1;

}

}

else if (unicode_char >= ZERO_CHAR && unicode_char <= NINE_CHAR)

{
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if (position == 0)

{

if (unicode_char == ZERO_CHAR)

{

national = 1;

}

else

{

local = 1;

}

}

if (position == 1 && unicode_char == ZERO_CHAR && national)

{

international = 1;

national = 0;

}

if ((position == 2 || position == 3) &&

unicode_char != FOUR_CHAR && international)

{

*error = 1;

}

if (position == 4 && international && unicode_char == ZERO_CHAR)

{

*error = 1;

}

position ++;

}

else

{

*error = 1;

}

if (*error)

{

position = 0;

international = 0;

local = 0;

national = 0;

}

}
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B.9 Vending Machine

typedef unsigned char Bool;

#define CHOC_COST 9

#define CRISPS_COST 8

#define COKE_COST 6

// change

static int ten_pennies = 10;

static int five_pennies = 10;

static int two_pennies = 10;

static int one_pennies = 10;

// stock of various items

static int no_of_choc = 10;

static int no_of_crisps = 10;

static int no_of_coke = 10;

// initialise

static int inserted = 0;

void reset()

{

ten_pennies = 10;

five_pennies = 10;

two_pennies = 10;

one_pennies = 10;

no_of_choc = 10;

no_of_crisps = 10;

no_of_coke = 10;

inserted = 0;

}

static Bool check_have_change()

{

if (ten_pennies > 0 && five_pennies > 0 &&

two_pennies > 0 && one_pennies > 0)

{
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return 1;

}

else

{

return 0;

}

}

void insert_coinage(int coin, int amount)

{

if (coin == 1)

{

one_pennies += amount;

inserted += amount;

}

else if (coin == 2)

{

two_pennies += amount;

inserted += amount * 2;

}

else if (coin == 5)

{

five_pennies += amount;

inserted += amount * 5;

}

else if (coin == 10)

{

ten_pennies += amount;

inserted += amount * 10;

}

}

void buy_item(int item_id)

{

if (item_id == 0 && no_of_choc > 0)

{

if (inserted > CHOC_COST)

{
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inserted -= CHOC_COST;

no_of_choc -= 1;

}

}

else if (item_id == 1 && no_of_crisps > 0)

{

if (inserted > CRISPS_COST)

{

inserted -= CRISPS_COST;

no_of_crisps -= 1;

}

}

else if (item_id == 2 && no_of_coke > 0)

{

if (inserted > COKE_COST)

{

inserted -= COKE_COST;

no_of_coke -= 1;

}

}

}

void get_change()

{

if (check_have_change())

{

while (inserted > 10 && ten_pennies > 0)

{

inserted -= 10;

ten_pennies -=1;

}

while (inserted > 5 && five_pennies > 0)

{

inserted -= 5;

five_pennies -=1;

}
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while (inserted > 2 && two_pennies > 0)

{

inserted -= 2;

two_pennies -=1;

}

while (inserted > 1 && one_pennies > 0)

{

inserted -= 1;

one_pennies -=1;

}

}

}
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