
XFix: An Automated Tool for the Repair of Layout Cross
Browser Issues

Sonal Mahajan
University of Southern California, USA

Abdulmajeed Alameer
University of Southern California, USA

Phil McMinn
University of She�eld, UK

William G. J. Halfond
University of Southern California, USA

ABSTRACT
Di�erences in the rendering of a website across di�erent browsers
can cause inconsistencies in its appearance and usability, resulting
in Layout Cross Browser Issues (XBIs). Such XBIs can negatively
impact the functionality of a website as well as users’ impressions
of its trustworthiness and reliability. Existing techniques can only
detect XBIs, and therefore require developers to manually perform
the labor intensive task of repair. In this demo paper we introduce
our tool, XFix, that automatically repairs layout XBIs in web appli-
cations. To the best of our knowledge, XFix is the �rst automated
technique for generating XBI repairs.

CCS CONCEPTS
•So�ware and its engineering →So�ware testing and debug-
ging; Search-based so�ware engineering;

KEYWORDS
Cross-browser issues; automated search-based repair; web apps.
ACM Reference format:
Sonal Mahajan, Abdulmajeed Alameer, Phil McMinn, and William G. J.
Halfond. 2017. XFix: An Automated Tool for the Repair of Layout Cross
Browser Issues. In Proceedings of 26th ACM SIGSOFT International Sympo-
sium on So�ware Testing and Analysis , Santa Barbara, CA, USA, July 2017
(ISSTA’17-DEMOS), 4 pages.
DOI: 10.1145/3092703.3098223

1 INTRODUCTION
Companies invest a signi�cant amount of e�ort to design and imple-
ment their websites. It is typical for companies to employ teams of
graphic designers, web programmers, and testers to get a website’s
“look and feel” correct across a plethora of browsers. �is e�ort is
important because inconsistencies in the appearance or usability
of a website when rendered in di�erent browsers, called Layout
Cross Browser Issues (XBIs), can signi�cantly impact users’ overall
evaluation of a website; particularly, impressions of trustworthiness
and reliability. Layout XBIs are discrepancies in the arrangement of
HTML elements in a web page when rendered in di�erent browsers,
and can occur frequently due to di�erences in the implementation
of HTML and CSS standards in di�erent browsers’ layout engines.
Layout XBIs are by far the most prevalent type of XBIs, observed
in over 56% of the websites [10].

In general, debugging and repairing XBIs is challenging and has
been a serious concern for web developers for a long time. For

ISSTA’17-DEMOS, Santa Barbara, CA, USA
2017. 978-1-4503-5076-1/17/07. . .$15.00
DOI: 10.1145/3092703.3098223

example, over 23,000 posts are reported for the search term “cross
browser” on StackOver�ow [12]. First, the sheer number of HTML
elements and CSS properties that could be faulty, coupled with
their complex interaction, makes it a di�cult and labor intensive
task. Second, repairing the XBIs by identifying correct �x values
for CSS properties without introducing new XBIs is complex given
the strong dependency between HTML and CSS, and their e�ect
on a page’s layout. �ird, developers need to repeat this task for
every browser showing an inconsistency. XBI testing tools such as
X-PERT [10] can only detect and identify faulty HTML elements;
�nding faulty CSS properties and �x values for a repair is still a
manual e�ort.

To address these limitations, we proposed a novel automated
technique [4] to repair layout XBIs in web applications. It uses
search-based techniques to identify repair solutions. Our key in-
sight is that the amount of layout deviation given by the position
and size of HTML elements of a web page rendered in di�erent
browsers can be used as a �tness function to guide the exploration
to likely solutions. When the amount of layout deviation converges
to zero, the layout of a web page renders consistently in two di�er-
ent browsers, and a fault has likely been identi�ed and repaired. In
our evaluation, our technique was able to repair 86% of the XBIs
detected by X-PERT and 99% of the XBIs observed by humans.

In this demo paper, we describe the implementation details of
our repair technique [4]. We implemented our technique in a tool
called XFix (available at h�ps://github.com/sonalmahajan/x�x). To
use XFix, users need to only provide a page under test and two
browsers showing layout deviations (i.e., XBIs). XFix processes
these inputs and modi�es the page under test with a CSS repair
patch that �xes the layout XBIs.

2 ENVISIONED USERS AND SCENARIOS
We envision the users of XFix as developers, testers, and support
engineers of web applications seeking repair solutions for layout
XBIs1. In this section, we discuss three usage scenarios in which
XFix can assist its users in �xing XBIs automatically.

Repair Web Pages in Development. While implementing a
website, web developers typically test it frequently on their “fa-
vorite” (reference) browser to ensure that it functions and renders
correctly. A�er testing successfully on the reference browser, de-
velopers then typically test for XBIs by checking the website’s
rendering compliance with other browsers. If XBIs are detected,
developers spend time and e�ort in debugging and repairing the
page. �is manual e�ort can be saved by using XFix.

1Herea�er, we refer to layout XBIs as simply XBIs.

https://github.com/sonalmahajan/xfix

ISSTA’17-DEMOS, July 2017, Santa Barbara, CA, USA Sonal Mahajan, Abdulmajeed Alameer, Phil McMinn, and William G. J. Halfond

Page	under	test		

(PUT)	

Reference	browser	

Test	browser	

X-PERT
User	

<l1,	e1,	e2>	

<l2,	e1,	e2>	

<ln,	e1,	e2>	

.	

.	

<e,	p,	v,	v’>	

Repaired	page		

(PUT’)	

✔	

✗	

Inputs	 XFix	tool	 Output	

Layout	XBIs	 Root	causes	
3.	Search	for		

candidate	fixes	

4.	Search	for	best		
combina6on		

of	candidate	fixes	
Candidate	fixes	

<e1,	p1,	v1,>	
.	
.	

<e2,	pn,	v1n>	

<e1,	p1,	v1,>	
.	
.	

<e2,	pn,	v1n>	

<e1,	p1,	v1,>	
.	
.	

<e2,	pn,	v1n>	

<e,	p,	v,	v’>	<e,	p,	v,	v’>	

1.	Ini6al	XBI	
detec6on	

CSS-label	map	

2.	Extract	root	
causes	

5.	Check	
Termina6on	

criteria	

Y	

N	

repair.css	

<e1,	p1,	v1>	

<en,	pn,	vn>	

.	

.	 <e,	p,	v,	v’>	

Figure 1: High-level overview of XFix tool

Repair Web Pages in Testing. A�er a web app has been im-
plemented, it is typically sent to testing teams for veri�cation and
validation. Testers usually check for XBIs during User Interface (UI)
testing, and if an XBI is detected, �le a bug report and assign it to a
developer for �xing. �e developer then manually �xes the bug and
reassigns it to testers for validation. �is is a fairly time consuming
process that is potentially further complicated if the development
and testing teams are not in the same geographic location. XFix
can assist testers in this scenario by automatically repairing the
detected XBIs, completely avoiding the loop of assigning a bug to a
developer and re-validating the �x.

Repair Web Pages in Maintenance. Owners of legacy web
applications (i.e., web applications in the maintenance phase of the
so�ware lifecycle) may want to maintain consistency of their web
applications across newly launched browsers or newer versions
of existing browsers. Production support engineers maintaining
legacy projects are generally di�erent to the original set of develop-
ers and testers, and may not have the required HTML expertise to
repair XBIs. It may also be expensive to hire new developers solely
for the purpose of �xing XBIs. In this case, XFix can e�ectively
assist the production support engineers in repairing XBIs observed
in existing web pages. �e engineer can validate the repair and if
satis�ed, deploy the �xed page in production.

3 TOOL DESCRIPTION AND USAGE
�e goal ofXFix is to repair XBIs detected in a web page by �nding
potential �xes for them. XFix is implemented in Java and is a
standalone tool that exposes a simple API to specify inputs and
run the repair technique. To facilitate easy management of third-
party dependencies, XFix is packaged as a Maven project. XFix
can be run on any platform, such as Windows, Linux, and macOS.
Since XFix analyzes the client side code of the page under test, it
is agnostic to the server side technology used.

Figure 1 shows a high-level overview of XFix. A user of XFix
is required to provide three inputs, a page under test (PUT), a

(a) Correct rendering of the page with Internet Explorer 11.0.33

(b) Displaying an XBI when rendered with Mozilla Firefox 46.0.1

Figure 2: Excerpts of the navigation bar on the IncredibleIndia homepage,
which has an XBI making the text unreadable in Firefox.

reference browser (R), and a test browser (T). Users of XFix to
provided R and T is a reasonable assumption in this domain, as
they typically know the expected appearance of the PUT. For the
PUT, the user needs to provide a URL pointing to the location of
the HTML page on the �le system where all the CSS, Javascript,
and media necessary for rendering the PUT can be accessed. For
providing R andT ,XFix provides an option to select a browser from
XFix’s supported set of browsers. XFix currently supports all the
versions of the three most widely used browsers, Firefox, Chrome,
and Internet Explorer (IE). More browsers can be easily added to
XFix by including the browser’s standalone server implementation
of the SeleniumWebDriver’s wire protocol. Note that R andT need
to be pre-installed on the user’s computer.

We now summarize the di�erent stages of XFix’s technique in
the following subsections along with their implementation details.
Further algorithmic details of the technique are available in our
ISSTA’17 paper [4]. Figure 1 shows the di�erent stages of XFix
in italics. Figure 2 is used as a running example to explain the
di�erent stages. �e example shows screenshots of the menu bar
of one of our evaluation subjects, IncredibleIndia, as rendered in
IE (Figure 2a) and Firefox (Figure 2b). As can be seen, an XBI is
present in the menu bar, where the text of the navigational links
is unreadable in the Firefox browser (Figure 2b). �is particular
example was chosen because the repair is simple and easy to explain.
However, most XBIs are much more di�cult to resolve, with the
repairs o�en spanning over multiple elements and CSS properties.

<TOP-ALIGNMENT,	</HTML/BODY/DIV[3]/DIV/DIV,	/HTML/BODY/DIV[3]/DIV)>>	

label	 e1	 e2	

Figure 3: Layout XBI report from X-PERT with its constituent parts labelled

Stage 1: Initial XBI Detection. In this stage, XFix identi�es
the set of XBIs observed in the PUT rendered in T with respect to
R. XFix uses Selenium WebDriver to open R and T and render the
PUT in them, and then capture Document Object Model (DOM)
information including XPath, location, and size of the elements.
XFix then invokes X-PERT [10] by passing the two DOMs as input
to obtain a set, X , of detected XBIs. X-PERT reports each XBI as
the tuple 〈label, 〈e1, e2〉〉, where 〈e1, e2〉 is a pair of HTML elements
in the PUT that is inconsistent in layout in T with respect to R,
and label describes the layout problem. As shown in Figure 3 for
the running example of Figure 2, label TOP-ALIGNMENT indicates
that element e1 is positioned on the top edge of element e2 in R,
but not in T . Another example of a label reported by X-PERT is
LEFT-RIGHT that indicates that e1 is on the le� of e2 in R, but not

XFix: An Automated Tool for the Repair of Layout Cross Browser Issues ISSTA’17-DEMOS, July 2017, Santa Barbara, CA, USA

e1	

n1	

(10,	0)	

(10,	100)	

(a) Location of e1 and its neighbor, n1, in R

(10,	-20)	

(10,	80)	

(b) Location of e1 and n1 in T . Fitness score = 60.

(10,	-5)	

(10,	95)	

(c) Evaluating margin-top = 15px, Fitness score = 15.

Figure 4: Fitness score computation in stage 3 — lower �tness score indicates a better candidate �x (i.e., �tness is to be minimized)

in T . Note that we used the publicly available version of X-PERT
(h�ps://github.com/gatech/xpert) by making minor changes to �x
bugs and add accessor methods for data structures. Due to space
reasons, we describe the details of our changes to X-PERT on the
XFix project page (h�ps://github.com/sonalmahajan/x�x).

Stage 2: Extract Root Causes. In this stage, XFix extracts the
root causes for each XBI detected in stage 1. A root cause is de�ned
by the tuple 〈e,p,v〉, where e is an HTML element in the PUT, p is
a CSS property of e , andv is the value of p. For each XBI, XFix �rst
identi�es a set of CSS properties relevant to the label descriptor.
For doing this, we created a CSS-label map. For example, for the
TOP-ALIGNMENT label, the CSS properties margin-top and top
are relevant since they can alter the top alignment of an element
with respect to one another. Note that this CSS-label map is an
inherent part of XFix and does not require any further manual
input from the user. �en for each CSS property, p, in the identi�ed
set, XFix adds two root causes, one for e1 and one for e2 (Figure 5).

Stage 3: Search for Candidate Fixes. In this stage, XFix per-
forms a guided search over each of the root cause tuples populated
in stage 2 to �nd individual candidate �xes. To do this, we imple-
mented a search to be used in a single variable mode inspired by the
variable search component of theAlternating VariableMethod (AVM)
technique [2]. �e AVM is a local search strategy that �rst estab-
lishes a direction for the search, and then rapidly explores the space
in that direction to �nd the optimal solution. We use the AVM tech-
nique as it accelerates the hill climbing search, thus helping achieve
a quick convergence. XFix uses the AVM in a single variable mode
by rese�ing the PUT to its original form before running the search
on a root cause tuple to �nd a potential �x value, v ′. For each root
cause processed, XFix reports a candidate �x tuple 〈e,p,v,v ′〉.
XFix applies each v ′ to the PUT rendered in T by using Sele-

nium WebDriver to execute a Javascript function that dynamically
modi�es the DOM of a web page. XFix then extracts the updated
DOM to compute the �tness score. �e �tness function analyzes
the relative layout deviation of e in the PUT when rendered in R
and T with respect to its local neighborhood. For quantifying the
layout deviation, XFix considers three components: (1) di�erence
in the location of e , (2) di�erence in the size of e , and (3) di�erences
in the location of e’s neighbors. �e �tness score is calculated as a
weighted sum of the three components. �e �tness function has a
minimizing goal, i.e., a lower �tness score indicates a be�er candi-
date �x. We set the radius as 2 for de�ning the local neighborhood,
and weights as 1, 2, and 0.5 for the three components, respectively.

1.	</HTML/BODY/DIV[3]/DIV/DIV,	margin-top,	-20px> 	 	 		
2.	</HTML/BODY/DIV[3]/DIV/DIV,	top,	0px>	
3.	</HTML/BODY/DIV[3]/DIV,	margin-top,	0px>	
4.	</HTML/BODY/DIV[3]/DIV,	top,	0px>	

Figure 5: Extracted set of root causes for the XBI in Figure 3

Continuing with the running example, consider the processing
of the root cause tuple 〈e1, margin-top,−20px〉. e1 is located at
(10, 0) and its neighbor, n1, at (10, 100) in R (Figure 4a). In T , e1 is
located at (10, -20) and n1 at (10, 80), leading to a �tness score of
60 (Figure 4b). Trying v ′ = 15px moves e1 to (10, -5) and n1 to (10,
95), resulting in a �tness score of 15 — indicating that the search is
progressing in the correct direction (Figure 4c).

Stage 4: Search for Best Combination of Candidate Fixes.
In this stage, XFix seeks to �nd a repair set for the PUT by �nding
an optimal combination of candidate �xes identi�ed in stage 3. �is
additional search is necessary since not all candidate �xes may be
required, as the identi�ed individual �xes may have duplicating,
multiplying, or competing e�ects. For example, candidate �x tuples,
〈e1, margin-top, 0px , 20px〉 and 〈e1, top, 0px , 20px〉 in our running
example both result in a �tness score of 0 (perfect repair), however
when applied together result in a multiplying e�ect introducing
another XBI. For this stage, XFix uses a directed random search to
identify the best combination. XFix selects a candidate �x with
a probability imp�x/impmax . Here imp�x is the improvement ob-
served in the �tness score when the �x was evaluated in stage 3 and
impmax is the maximum improvement observed over all candidate
�xes. XFix then dynamically applies each v ′ in the selected �x tu-
ples to the PUT, and uses the number of XBIs reported by X-PERT
as the �tness score. XFix adds the �x tuples resulting in the lowest
�tness score to the repair set. �e search terminates when (1) the
number of XBIs in the PUT equals zero, (2) the allo�ed resources
(maximum number of �tness evaluations = 50) are exhausted, or (3)
a saturation point is reached — i.e.,m = 10 consecutive tries result
in no �tness score improvement.

Stage 5: Check Termination Criteria. �is stage determines
whether XFix should terminate or continue searching for more
repair alternatives. For this, XFix �rst applies the identi�ed repair
to the PUT to create the modi�ed page PUT′, and runs X-PERT on
PUT′ to identify new set of XBIs, X ′. XFix terminates if the PUT
is completely repaired, X ′ shows no improvement compared to the
previous iteration, or X ′ reports more XBIs, making the current
repair unviable. If none of the termination conditions are satis�ed,
X ′ is assigned as the current set of XBIs,X , and PUT′ as the current
PUT, and XFix loops back to stage 2 for the next iteration.

Upon termination, XFix generates a repair.css �le (shown in
Figure 6 for the running example) containing the repair patch and
modi�es the PUT �le to include repair.css in the 〈head〉 section
of the HTML of the page. Note that a new repair.css is created
with a timestamp appended to the name for every run of XFix
to e�ectively resolve XBIs across di�erent test browsers for the
PUT. XFix generates the repair.css as follows. First, XFix adds
a browser speci�c quali�er corresponding to the test browser (e.g.,
-moz for Firefox) as shown in line 1 of Figure 6. Such quali�ers

https://github.com/gatech/xpert
https://github.com/sonalmahajan/xfix

ISSTA’17-DEMOS, July 2017, Santa Barbara, CA, USA Sonal Mahajan, Abdulmajeed Alameer, Phil McMinn, and William G. J. Halfond

direct the layout engine to use the provided alternate values for
the CSS property when it is rendered on a speci�c browser. For
example, the repair patch shown in Figure 6 is only applied if the
browser type is Firefox, and is ignored by the layout engines of
other browsers. Developers widely employ this approach to repair
XBIs. In our analysis [4] of the top 480 websites, 79% contained
this type of browser-speci�c CSS code. �en, for each �x tuple
〈e,p,v,v ′〉 in the repair set identi�ed in stage 4, XFix converts
the XPath of the element e to a CSS selector and adds it to the
browser speci�c quali�er block. For example, line 2 shows the CSS
selector derived from the XPath, /html/body/div[3]/div/div.
XFix then converts the �x value v ′, which is an absolute value
(e.g., margin-top:20px), to a relative �x value with respect to an
element’s parent’s dimensions, such as margin-top:1.7%. XFix
then adds this relative �x value for the CSS property p (line 3).

1.	@-moz-document	url-prefix()	{	
2.	 	html	>	body	>	div:nth-of-type(3)	>	div:nth-of-type(1)	>	div:nth-of-type(1)	{	
3.	 	 	margin-top:	1.7%	!important;		/*	20px	*/	
4. 	}	
5.	}	

Figure 6: repair.css generated for IncredibleIndia example of Figure 2

4 EVALUATION
In this section we summarize the results of our empirical evaluation
obtained by running XFix on 15 real-world web pages [4].
XFix was able to resolve an average of 86% (median 93%) XBIs

reported by X-PERT, and an average of 99% (median 100%) human
observable XBIs. XFix required a median running time of 14 min-
utes. XFix, on average, generates a repair patch of 9 CSS properties.
�is number is comparable to the browser-speci�c code size found
in our analysis of 480 Alexa websites.

We also conducted a human study to measure the impact ofXFix
on the cross-browser consistency of the page. Based on user ratings
we found that 78% reported an improved consistency of the page
a�er the �x. �is implies that XFix generated �xes that improved
the consistency of the subjects across the di�erent browsers.

5 RELATEDWORK
Many search based techniques have been proposed in the �eld of
so�ware program repair that focus on Java and C programs [3,
15]. To our knowledge, XFix is the �rst technique that can repair
presentation problems, such as XBIs, in web applications. Another
technique [14] uses static and dynamic analysis to propagate a
given client-side �x to the server-side source code. However, this
technique cannot �nd the �x automatically.

Cross Browser Testing (XBT) techniques, such as X-PERT [10]
and Browserbite [11], can be used to detect and localize XBIs. How-
ever, �xing the reported XBIs is still a manual e�ort.

Work in the �eld of web app presentation testing, such as Web-
See [5–7] and FieryEye [8, 9] focuses on detecting and localizing
presentation failures — a discrepancy in the actual and intended
appearance of a web page . Another technique, GWALI [1], can de-
tect layout failures in web pages a�er they are translated from one
language to another. �e ReDeCheck technique [13], uses a layout
graph to detect potential layout faults in responsive web pages.
�ese techniques are useful in detecting and localizing UI failures.
However, �xing the detected failures is still a manual process.

6 CONCLUSION AND FUTUREWORK
In this paper, we presented XFix, a fully automated tool for re-
pairing layout XBIs in web applications. XFix uses a two-phased
guided search approach to minimize the layout deviations observed
in a page rendered in di�erent browsers. �e strong results of our
evaluation indicate that XFix can be a useful and highly e�ective
tool for automatically repairing layout XBIs in web pages.

In future work, we plan to extendXFix to support repair of cross-
platform XBIs, such as across desktop and mobile environments.
We also plan to produce repair patches for the CSS dynamically gen-
erated from other sources, such as Sass and server-side Javascript.
Another direction we plan to work on is to automate the process of
�nding reference and test browsers from the set of XFix supported
browsers. �is can be possibly done by analyzing the XBIs reported
by X-PERT for pairwise combinations of the browsers.

ACKNOWLEDGMENTS
�is work was supported by NSF grant CCF-1528163.

REFERENCES
[1] Abdulmajeed Alameer, Sonal Mahajan, andWilliam G.J. Halfond. 2016. Detecting

and Localizing Internationalization Presentation Failures in Web Applications. In
Proceeding of the 9th IEEE International Conference on So�ware Testing, Veri�cation,
and Validation (ICST).

[2] Joseph Kempka, Phil McMinn, and Dirk Sudholt. 2015. Design and Analysis of
Di�erent Alternating Variable Searches for Search-Based So�ware Testing. In
�eor. Comput. Sci., Vol. 605. 1–20.

[3] Fan Long and Martin Rinard. 2015. Staged Program Repair with Condition
Synthesis. In Proceedings of the 10th Joint Meeting on Foundations of So�ware
Engineering (ESEC/FSE).

[4] Sonal Mahajan, Abdulmajeed Alameer, Phil McMinn, and William G.J. Halfond.
2017. Automated Repair of Layout Cross Browser Issues Using Search-Based
Techniques. In Proceedings of the 26th International Symposium on So�ware Testing
and Analysis (ISSTA).

[5] Sonal Mahajan andWilliam G. J. Halfond. 2014. Finding HTML Presentation Fail-
ures Using Image Comparison Techniques. In Proceedings of the 29th IEEE/ACM
International Conference on Automated So�ware Engineering (ASE) – New Ideas.

[6] Sonal Mahajan and William G. J. Halfond. 2015. Detection and Localization of
HTML Presentation Failures Using Computer Vision-Based Techniques. In Pro-
ceedings of the 8th IEEE International Conference on So�ware Testing, Veri�cation
and Validation (ICST).

[7] Sonal Mahajan and William G. J. Halfond. 2015. WebSee: A Tool for Debug-
ging HTML Presentation Failures. In Proceedings of the 8th IEEE International
Conference on So�ware Testing, Veri�cation and Validation (ICST) – Tool track.

[8] Sonal Mahajan, Bailan Li, Pooyan Behnamghader, and William G. J. Halfond.
2016. Using Visual Symptoms for Debugging Presentation Failures in Web
Applications. In Proceedings of the 9th IEEE International Conference on So�ware
Testing, Veri�cation and Validation (ICST).

[9] Sonal Mahajan, Bailan Li, and William G. J. Halfond. 2014. Root Cause Analysis
for HTML Presentation Failures Using Search-based Techniques. In Proceedings
of the 7th International Workshop on Search-Based So�ware Testing (SBST).

[10] Shauvik Roy Choudhary, Mukul R. Prasad, and Alessandro Orso. 2013. X-PERT:
Accurate Identi�cation of Cross-browser Issues in Web Applications. In Proceed-
ings of the International Conference on So�ware Engineering (ICSE).

[11] Nataliia Semenenko, Marlon Dumas, and Tnis Saar. 2013. Browserbite: Accurate
Cross-Browser Testing via Machine Learning over Image Features. In Proceedings
of the IEEE International Conference on So�ware Maintenance (ICSM).

[12] Stackover�ow. 2017. Stackover�ow Cross-browser Posts. Retrieved Jan 2017
from h�p://stackover�ow.com/questions/tagged/cross-browser

[13] �omas A. Walsh, Phil McMinn, and Gregory M. Kap�ammer. 2015. Automatic
Detection of Potential Layout Faults Following Changes to Responsive Web
Pages. In International Conference on Automated So�ware Engineering (ASE).

[14] Xiaoyin Wang, Lu Zhang, Tao Xie, Yingfei Xiong, and Hong Mei. 2012. Au-
tomating Presentation Changes in Dynamic Web Applications via Collaborative
Hybrid Analysis. In Proceedings of the ACM SIGSOFT 20th International Sympo-
sium on the Foundations of So�ware Engineering (FSE).

[15] Westley Weimer, �anhVu Nguyen, Claire Le Goues, and Stephanie Forrest. 2009.
Automatically Finding Patches Using Genetic Programming. In Proceedings of
the 31st International Conference on So�ware Engineering (ICSE).

http://stackoverflow.com/questions/tagged/cross-browser

	Abstract
	1 Introduction
	2 Envisioned Users and Scenarios
	3 Tool Description and Usage
	4 Evaluation
	5 Related Work
	6 Conclusion and Future Work
	References

