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There is a lack of serious tooling for mutation analysis for Rust, a safety-focused systems programming language seeing increased

adoption across the industry. As such, the testing technique has not been widely used on programs written in the language as of yet.

Without robust mutation analysis, Rust developers cannot determine test thoroughness. In response to this challenge, we designed

a mutation analysis pipeline for Rust, which overcomes the challenges of generating valid mutants caused by the strictness of the

language. Our approach accounts for Rust’s distinction between safe and unsafe operations, ensuring that safe mutations of valid Rust

programs — those with only valid unsafe code sections — can be safely evaluated within the same process, without the potential for

crashes or other undefined behavior invalidating the mutation analysis. We introduce mutation batching, our novel technique for

efficiently evaluating multiple mutations simultaneously, while guaranteeing they do not interact. Batching maximizes thread usage,

by executing significantly more test cases in parallel. As batching is NP-hard, we present multiple fast approximation algorithms

for grouping mutations. We implemented our techniques into a mutation analysis tool, mutest-rs, which we used in our empirical

evaluation on a diverse set of 22 Rust libraries and programs. We found that mutation batching reduces the overall runtime of mutation

analysis by up to 52.3% and also saving 73.8 seconds in one case, and that unsafe mutations are detected at a lower rate, of up to 53.4%.

Our mutation analysis tool is available at https://mutest.rs.
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1 Introduction

Rust is a systems programming language that guarantees memory and thread safety statically, and places a large

emphasis on automated testing. These qualities make it ideal for programs that require both performance and safety.

However, while the language provides built-in support for writing and running automated test suites, it lacks mature

mutation analysis techniques, which leaves Rust developers without a way of ensuring thorough testing of programs

written in the language.

Authors’ Contact Information: Zalán Lévai, University of Sheffield, Sheffield, UK, zblevai1@sheffield.ac.uk; Donghwan Shin, University of Sheffield,

Sheffield, UK, d.shin@sheffield.ac.uk; Phil McMinn, University of Sheffield, Sheffield, UK, p.mcminn@sheffield.ac.uk.

This work is licensed under a Creative Commons Attribution 4.0 International License.

© 2026 Copyright held by the owner/author(s).

Manuscript submitted to ACM

Manuscript submitted to ACM 1

https://mutest.rs
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0


2 Zalán Lévai, Donghwan Shin, and Phil McMinn

Being a compiled language used primarily for writing low-level, often safety-critical systems software (e.g. operating

systems, kernels, device drivers, networking tools, compilers), Rust faces a multitude of unique, additional challenges

when it comes to applying techniques based on code generation, such as mutation analysis. Rust programs are compiled

into native binaries and are not executed by a high-level virtual machine. This makes dynamic approaches to mutation

analysis impractical, and as such, static optimization approaches become necessary. In addition, the strict static analysis

of the language — both in terms of type safety, and memory restrictions — means that reliably generating valid Rust

programs that compile comes with particular challenges. This is highlighted by the two existing research works on test

case generation [48, 51], both of which place significant constraints on their code generation related to object lifetimes,

which Rust has strict rules around. For mutation analysis, this means that mutation operators have to be constrained

using tailored type checking and data flow analysis, which is not required for less strict languages such as Java, C, or

C++. For example, mutations must ensure that types remain exactly identical to the original program’s (e.g., the various

range types a..b, a..=b, etc. are all different, incompatible types), and that the resolution of complex type-relative

names (e.g., in method calls) remains unchanged, often requiring the addition of explicit type annotations. Because of

tracked memory lifetimes unique to Rust, mutation operators must also be careful of creating short-lived values that

might escape their scope. Furthermore, the presence of explicitly-annotated unsafe code sections means that special

care has to be taken to avoid any possibility of introducing undefined behavior into the program through mutations.

This is an important consideration for any in-process mutation evaluation technique, including sequential evaluation of

mutations, as undefined behavior from one mutation can influence the correctness of the rest of the mutation evaluation,

either by introducing subtle errors (e.g., memory corruption), or by crashing it entirely. Our distinction between safe

and unsafe mutations alleviates the need for evaluating every single mutation’s respective test cases in individual

processes each to protect from such occurrences. We discuss this fundamental safety property — defined by the Rust

project developers [56] as the guarantee that code cannot cause undefined behavior — throughout this paper. Finally,

mutation analysis approaches also have to be efficient in terms of their total runtime, both to make their use possible

on very large projects, and to make the widespread application of the approach more practical in general. Mutation

analysis approaches must scale well to large numbers of tests, mutations, and input source code. This is especially

important, as mutation analysis is widely considered to be a computationally expensive technique.

The research in this paper, along with its original conference paper version [36], is the first to consider mutation

analysis for the Rust programming language. To tackle the unique challenges facing mutation analysis and Rust, we

devise a robust, efficient mutation analysis pipeline for the language. We define five new, additional operators to cover

some of the most often used language features that are unique to Rust. We also define a set of rules to identify mutations

which could introduce undefined behavior, which we call “unsafe” mutations (corresponding to the definition of safety

in Rust). To tackle the high costs of performing mutation analysis, specifically the time required to evaluate mutations,

we devise a novel mutation evaluation cost reduction technique that we refer to as mutation “batching”.

Mutation Batching. Mutation batching addresses the inefficiency of evaluating mutations sequentially on modern,

parallel processors. While test cases may be run in parallel, if the mutations are evaluated one after another, then the

amount of parallelism that can be introduced will be bounded by the number of independent test cases corresponding

to each mutation. For example, if on a computer capable of running 10 concurrent threads, a mutation𝑚1 with only 3

corresponding test cases is evaluated, then only a maximum of 3 out of the 10 concurrent threads can be utilized to

evaluate the mutation, one for each of the test cases. This means that we effectively only utilize 30% of the compute

resources available to us. However, if we could also evaluate a mutation𝑚2 with 7 corresponding test cases alongside
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𝑚1’s 3 test cases, then we could utilize all 10 of the concurrent threads to evaluate the two mutations. This means that

we can effectively utilize 100% of the processors’ resources, and most importantly, we could reduce the overall runtime.

It is easy to see that mutations with few test cases, like𝑚1, are the common case, and that mutations reached by a large

number of test cases are significantly less common, especially as the number of available concurrent threads increases.

As such, it stands to reason that such an optimization can have a large impact on the runtime of mutation analysis. For

such an evaluation to be correct however, we must ensure that mutations𝑚1 and𝑚2 have no way of interacting with

each other, or altering each other’s behavior.

Thus, mutation batching is our novel process of grouping individual, “non-conflicting” mutations together into

optimal batches, while ensuring the correctness of the resulting mutation analysis. Non-conflicting mutations are sets

of mutations that cannot influence whether the other mutations in the set are killed or not, due to them appearing in

different, distinct parts of a program. Our technique determines which pairs of mutations are non-conflicting based

on an extensive, conservative static analysis of the functions potentially reachable from each of the test suite’s test

cases, based on their call graph. Mutations are then “classified” based on which function they mutate, and the set of

test cases their respective function is reachable from. If two mutations𝑚1 and𝑚2 appear in two different functions

exclusively reached by two different sets of test cases — {𝑡1, 𝑡2, 𝑡3} and {𝑡4, 𝑡5, . . . , 𝑡10}, respectively — then𝑚1 and𝑚2

are candidates for being placed in the same batch, and thus being evaluated together. By ensuring that mutations in a

batch are each exclusively reached by two different sets of test cases, we can also uniquely determine which mutation

in a batch was killed based on which test case failed. For example, if during the evaluation of the batch {𝑚1,𝑚2}, 𝑡1,
𝑡2 or 𝑡3 fails, then we know that only𝑚1 could have caused the failure, and as such,𝑚1 is known to have been killed.

Consequently, if 𝑡4, 𝑡5, . . . , or 𝑡10 fails, then𝑚2 is known to have been killed.

During evaluation, the test cases relevant to each individual mutation batch can be executed in parallel, evaluating

more concurrent test cases in fewer iterations, resulting in the increase in the utilization of the available parallel

processors previously described. This is in contrast to existing approaches for parallelizing mutation analysis [18, 32,

50, 57], which all use multiple, forked processes for individual mutations. Our approach is fundamentally different, and

instead focuses on increasing the amount of parallelizable work. Compared to running mutations in parallel processes,

mutation batching, with its in-process parallelism, has the advantage of introducing significantly less overhead, and

having much more control over the entire evaluation.

The conflicts between mutations that form the basis of mutation batching can be described in terms of graph theory

(Section 3.4.1). Since mutation batching is an NP-hard problem, we present fast, greedy approximation algorithms for

producing batches of mutations based on the compatibilities between them: a fully-deterministic greedy algorithm, and

a partially-deterministic algorithm that we call epsilon-greedy (𝜖-greedy) batching (Section 3.4.2).

At the end of the process, our pipeline creates a single meta-mutant program [60] to represent the generated

mutations, alongside the mutation batches created up front. This meta-mutant program statically embeds all mutations,

building on the idea of conditional mutation [30]. Our injected test harness is then able to dynamically enable sets of

mutations while evaluating individual batches.

Original Conference Paper and the mutest-rs Project. To accompany this paper and our future research work, we also

develop the first mature mutation analysis tool for Rust, called mutest-rs [34], our ongoing tool and mutation analysis

project which implements our pipeline and techniques. This paper’s description and evaluation of mutest-rs is an

extension of the original conference paper [36] that was presented at the 16th IEEE International Conference on Software

Testing, Verification and Validation (ICST) 2023. We used an early version of mutest-rs to evaluate our approach on 10
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critical and commonly-used Rust programs and libraries (referred to in Rust as “crates”). Our empirical results showed

that mutest-rs is applicable to a range of Rust subjects, and can reliably generate mutants, while also demonstrating

that batching is effective for reducing mutation analysis runtimes. The contributions of the original ICST conference

paper are as follows:

(1) A set of mutation operators suitable for Rust programs, including adaptations of thirteen existing operators, and

five new, additional operators specifically designed for the language (Section 3.2).

(2) An algorithm for batching mutations for simultaneous, parallel, and efficient mutation evaluation (Section 3.4).

(3) A definition of mutation safety based on Rust’s distinct safe and unsafe scopes, allowing for the mutation of

system programs without the fear of introducing undefined behavior (Section 3.5).

(4) The results of an empirical evaluation of the reduction in testing time possible with mutation batching in practice,

revealing a reduction in the overall mutation analysis runtime for a diverse set of commonly-used Rust subject

programs [36].

While the empirical evaluation of that early version of mutest-rs and mutation batching had positive results —

warranting further research and development of the tool and our technique — we only presented and evaluated a single

approximation algorithm for mutation batching, with many of the choices in this algorithm unevaluated, and further

experimentation left as an item of future work.

Changes to mutest-rs and Additional Contributions. Since our original evaluation of mutest-rs, we have made changes

to the tool, and its pipeline, to improve it further. First, unsafe mutations (Section 3.5) — which mutest-rs was not able

to safely evaluate before, can now be evaluated in isolated child processes (alongside safe mutations running in the

main process), ensuring that they do not affect the main mutation analysis process (RQ2 in Section 5). Second, we have

made changes to how mutations are activated in mutest-rs during mutation evaluation
1
, which results in significantly

improved runtimes across all subjects both with and without mutation batching applied (Section 3.1). It is important to

note that this means that reported runtimes are not directly comparable to those present in the original conference

paper, as runtimes for both batched, and unbatched runs have improved significantly. Third, and most notable for this

paper, we have implemented a number of additional mutation batching algorithms intomutest-rs, including randomized

batching, and a new, partially probabilistic algorithm called epsilon-greedy batching (Section 3.4). In this paper, we

evaluate mutest-rs on a much larger variety of Rust programs than previously, using over double the amount of subject

programs going from 10 to 22, further strengthening our results. The additional contributions that this paper makes

over the original ICST 2023 conference paper, therefore, are as follows:

(5) A theoretical analysis of mutation batching and its complexity in terms of graph theory (Section 3.4.1).

(6) A set of additional mutation batching algorithms, including alternative ordering heuristics for the original greedy

algorithm, and a new, partially probabilistic algorithm that we call epsilon-greedy batching. (Section 3.4.2).

(7) The results of an empirical evaluation (Section 4) evaluating:

(a) the validity of our five new, additional mutation operators, showing that their mutations are detected at a

similar or lower rate to those of traditional mutation operators, by up to 24.3% (RQ1 in Section 5);

1
Specifically, we have removed all lock-based synchronization around the central, generated data structure that is used to enable and disable mutations in

the meta-mutant program, referred to as the active mutant handle (Section 3.1). This structure is accessed very frequently during mutation evaluation,

especially with mutations in “hot” code paths. As the locking ultimately did not add to or change the safety guarantees of the meta-mutant execution, we

removed it from mutest-rs.
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(b) the prevalence of unsafe mutations, and their adverse effects which our approach mitigates, showing that 5

out of the 22 subjects resulted in unsafe mutations, and that they were detected at a lower rate, by up to 74.6%

less (RQ2 in Section 5);

(c) the reduction in testing time possible with mutation batching on an updated, much wider set of commonly-used

Rust subject programs, showing an overall reduction in the mutation analysis runtime of up to 52.3%, and 73.8

seconds saved in the case of one subject (RQ3 in Section 5);

(d) the original greedy mutation batching algorithm against randomized mutation batching, and the new epsilon-

greedy mutation batching algorithm, using a variety of greedy ordering heuristics (RQ3 in Section 5).

Our tool, empirical data, and our full replication package including scripts to reproduce our experiments are

available online [34, 35]. The latest version of our tool, mutest-rs, alongside documentation and examples, is available

at https://mutest.rs.

2 Background

2.1 Mutation Analysis

Mutation analysis is a software testing technique that aims to measure the quality of a program’s test suite through

its ability to recognize faults automatically injected into the program [1, 11, 21, 27, 37]. In mutation analysis, these

faults are based on common faults competent programmers might mistakenly introduce, according to the “Compe-

tent Programmer Hypothesis” [1, 11]. Such faults are generated automatically based on the original program by adding

small syntactical changes. The resulting faulty programs are referred to as mutants. To perform mutation analysis, the

original test suite is evaluated against these mutant programs. If any test case in the test suite fails in the presence

of mutations, then that mutation is considered to have been “killed” by the test suite. One of the results of mutation

analysis is the mutation score, which is the percentage of mutations that have been killed by the test suite.

Mutation analysis is considered to be a computationally expensive technique, as it requires multiple evaluations of

the test suite proportional to the number of mutants that are being evaluated.

2.2 The Rust Programming Language — Testing, and Mutation Analysis

Rust is a relatively new, emerging programming language that aims to bring compiler-proven memory safety to low-level

systems programming, making it a performant, safer alternative to C, and C++. Because of its safety characteristics

and low-level control, the language has seen increased adoption throughout many parts of the industry, especially

in safety- and performance-critical applications [53]. However, despite its success in the industry, to date, Rust has

received little attention from software testing research, and research on applying testing techniques to the language is

sparse, with only two notable papers attempting test case generation [48, 51]. Specifically, the practice of mutation

analysis — the use of automatically generated code defects to measure the quality of a program’s test suite in recognizing

faults [1, 11, 21, 27, 37] — has not been attempted by any research dedicated to the language to the authors’ knowledge,

to date.

Rust is a safety-focused programming language with both static analysis and testing at its core. It has built-in

automated testing facilities: functions can be marked with the #[test] attribute and are then evaluated by the included

test harness provided by the rustc reference Rust compiler. Each unit of code, referred to in Rust as a “crate”, can

be tested individually through its unit tests — test functions defined “next to” program code, and integration tests —
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test modules defined outside of program code. These built-in testing tools are used by the majority of Rust’s thriving

ecosystem of library crates, which become common dependencies of most projects.

Despite the testability advantages of Rust, a full-featured mutation analysis technique does not exist, hitherto, for the

language, although two relatively limited solutions exist — mutagen [7], and cargo-mutants [46]. Bogus’s mutagen is

able to apply simple AST transformations to Rust programs to produce mutants. These mutants are not guaranteed to be

valid programs, and are all compiled separately. Pool’s cargo-mutants only implements a form of extreme mutation [5, 6]

— a simplified form of mutation analysis that involves replacing entire function bodies, and more recently, a limited

form of binary operator mutation. However, it shares the same limitations as mutagen around the validity of mutants,

and separate compilation of mutated programs. Both of these existing approaches generate a large number of invalid

mutants because they do not consider the semantics of the program (e.g. types, lifetimes, control flow). They both

operate purely on program syntax, rather than semantics, and as a result are also highly limited in the kinds of mutations

they can produce, are generally inefficient at both mutation generation and evaluation, and are difficult to apply in

practice. In our research of open-source Rust subject programs, we have not found evidence of the usage of either

mutagen or cargo-mutants in the forms of either relevant configuration files or code annotations, which are required

for the usage of both of these tools. This can be seen as an indicator for the lack of widespread application of mutation

testing in the Rust ecosystem.

Meanwhile, although not explicitly built for Rust programs, the research of Denisov and Pankevich [12] into the

mutation analysis of LLVM bytecode — the instruction language Rust compiles to by default — mentions its potential

applicability to Rust. However, a number of problems arise from bytecode-based mutation analysis over source-based

approaches. First, mutations may be easily introduced in external library code less relevant to the tested program,

such as the standard library, which the programmer has no control over. Mutation analysis should ideally only test

the program’s own code, and stop at external API boundaries. Many of these cases can be avoided by augmenting

the bytecode with source location information, which is widely available, as shown by Chekam et al.’s [9] work on

Mart. However, issues such as inlining of the code of external functions can still result in, for example, the loss of

mutable locations in the program, such as the site of the inlined call to the external library itself. This issue remains

an inherent limitation of bytecode-based approaches, due to the lossy nature of source code to bytecode conversion.

Second, many bytecode mutations, while representable in bytecode, do not have source code counterparts, and thus

could not have been written by a programmer. These mutations are thus not relevant to the programmer. The results

seen with generic LLVM bytecode mutation [9, 12, 22, 23] reinforce the need for research based on language-specific,

source-based analysis.

2.3 Considerations Towards Implementing Mutation Analysis for Rust

Multiple considerations have to be made when implementing mutation analysis for Rust towards the specific features

of the language. As highlighted by the two existing mutation analysis tools above, efficient, and reliable mutation

analysis has its challenges. Due to the extensive static analysis performed by the language, it is important for mutation

analysis tools to reliably generate valid programs. This is for efficiency, to avoid unnecessary compilation, and analysis

of mutant programs.

Most notable is Rust’s safety paradigm, which requires special attention when applying mutation analysis. Rust

statically proves the memory safety of programs, although this requires developers to abide by its safety rules, which is

defined as the guarantee that code cannot cause undefined behavior [56]. Unlike languages such as C, C++, or Java,

Rust restricts unsafe operations to blocks specifically annotated as unsafe. As such, when more flexibility is required,

Manuscript submitted to ACM



A Comprehensive Analysis of Batching Algorithms for Efficient, Safe, Parallel Mutation Analysis in Rust 7

dedicated unsafe code sections may be introduced to perform these unsafe operations, like dereferencing a raw pointer,

or calling an external C function through a foreign function interface (FFI) to interact with existing code. These unsafe

code sections have to be manually audited to ensure that they uphold safety contracts; i.e., guarantee that the code

cannot cause undefined behavior. The use of unsafe operations is discouraged, but is sometimes necessary, for example,

for interfacing with foreign code. Evans et al. [15] analyzed common Rust libraries, and found that around 30% of libraries

contained unsafe code, mostly through the use of unsafe function calls from library dependencies. Astrauskas et al. [3]

conducted a survey of Rust libraries, and found that unsafe code was used to achieve three main goals: “overcoming

aliasing restrictions” such as in data structures with complex sharing, or to overcome certain incompleteness issues,

“emphasizing contracts, and invariants”, for example annotating functions which require an invariant the compiler

cannot prove as unsafe; and “accessing a lower abstraction layer”, like foreign functions, or compiler intrinsics. This

clear divide between safe and unsafe operations as a language feature is, in systems programming, unique to Rust.

The complex interactions between safe and unsafe code have to be considered for mutation analysis to retain these

guarantees [56]. This is especially important for mutation analysis, where we are trying to introduce generated program

mutations while retaining the existing safety of the code.

Rust has an expressive expression-based syntax, which lends itself well to Untch et al.’s meta-mutant [58–60], and

Just et al.’s conditional mutation [30] approaches. These approaches minimize compilation time needed for mutants by

embedding mutations into a single program, called a meta-mutant, which results in only a single program needing to

be compiled. This meta-mutant program can then act as any of the constituent mutants based on an argument upon

invocation.

Among the safety goals of Rust is increased testability. As test cases are free functions, i.e., standalone functions

that are not methods associated to a type, Rust’s testing paradigm has no explicit support for setup and teardown

functions commonly found in testing frameworks for other languages. This simple approach to test cases may give

way for opportunities to optimize test running strategies further. In addition, the built-in test runner does not make

any guarantees about the execution order of test cases. These help avoid the introduction of flaky, order-dependent

tests [14, 44], and are, again, helpful when optimizing alternative testing approaches.

3 Approach

This section details our process of mutation analysis for Rust by first providing an overview of our mutation analysis

pipeline (Section 3.1), followed by sections explaining each aspect of our mutation analysis approach: our representation

of mutations in Rust and our additional mutation operators (Section 3.2); our construction of call graphs suitable to

represent complex Rust programs (Section 3.3); our technique for finding compatible mutations and batching them

together (Section 3.4); our mutation safety technique for avoiding undefined behavior (Section 3.5); and finally our

parallelized test evaluation method (Section 3.6). We implemented our pipeline and techniques into our mutation

analysis tool, mutest-rs.

3.1 Overview

At a high-level, our mutation analysis pipeline performs mutation analysis on a given Rust crate in two stages. The first

stage takes the input Rust source code, and produces the source code for the meta-mutant program, which represents

every generated mutation. The second stage takes this mutated source code, and produces the results of mutation

analysis. Figure 1 shows an overview of our mutation analysis pipeline, which we implemented in mutest-rs.
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src

Source Code
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Call Graph

(Section 3.3)

Call Graph
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(Section 3.2)

Mutations
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Mutations

(Section 3.4)
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and Harness

(Section 3.2 and 3.6)

src

Mutated

Source Code

Compile

Evaluate

Mutations

(Section 3.6)

%

Mutation

Results

Code Analysis and Mutation Generation

Mutation Evaluation

Fig. 1. A high-level overview of our mutation analysis pipeline with mutation batching, which we implemented in our mutation

analysis tool, mutest-rs. The gray boxes and black arrows represent the linear pipeline of steps taken by mutest-rs to performmutation

analysis, while the white boxes and gray, dashed arrows represent the data produced and used by each of the steps.

In the first stage (Code Analysis and Mutation Generation in Figure 1), our tool uses an augmented version of the

Rust compiler, rustc, to analyze the original source code and generate mutations from it. First, our tool generates a call

graph (Section 3.3) starting from the crate’s test functions (which we treat as entry points in the context of testing).

This ensures that our tool only mutates functions that are reachable by the test suite, and allows our tool to build a

mapping between mutations, and the tests that may reach them. This mapping is then used during the batching, and

later during the evaluation of the generated mutations. Second, our tool applies a set of mutation operators (Section 3.2)

to every possible location in the body of the previously selected functions. Third, the generated mutations are tested

for compatibility, and are batched by one of our mutation batching algorithms (Section 3.4). Finally, the tool inserts

the conditionally mutated code fragments which make up the mutations into a copy of the source code of the original

program, alongside the mutation and mutant metadata; and an injected global variable, ACTIVE_MUTANT_HANDLE, used

to control the currently active mutant. The tool replaces the entry point of the program (i.e., the main function) with a

call to the generic mutation test harness, which drives the evaluation of the mutation analysis. The output of the first

pass is the generated source code of the mutated program with injected code to drive the mutation analysis.

In the second stage (Mutation Evaluation in Figure 1), our tool compiles the generated source code of the mutated

program into a binary. This custom test binary is then executed to perform the evaluation of the mutations, and to

produce the results of mutation analysis.

3.2 Mutation Operators for Rust

We model mutation operators as a mapping from a source code location, a node in the original program’s abstract

syntax tree (AST), to a set of substitutions required to reproduce the mutation, if the mutation operator is applicable.

Every substitution is a pair of an existing syntax node, and a new, replacement syntax node. Substitutions may

replace existing expression nodes, or insert statements before or after an existing statement. The operators may make

substitutions at any node in the body of the function, not just the input location. (This means that we can usemutest-rs

to generate both first-, and higher-order mutations [25, 26] using our approach, although we only consider first-order

mutations in this paper.) First-order mutations can be represented as a singleton set of a single substitution.

Our implementation embeds the generated substitutions that make up the mutations using in-place conditional

expressions over an injected global state. This state represents the active mutations at runtime, and is managed by the

test harness. Figure 2 shows an example of such a conditional expression. First, substitutions of the various mutations are
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mem::size_of::<f32>() as u32 * 8

↓

match subst!(ACTIVE_MUTANT_HANDLE @ rep_13466) {

Some(subst) if subst.mutation.id == 1116 =>

mem::size_of::<f32>() as u32 + 8,

Some(subst) if subst.mutation.id == 1117 =>

mem::size_of::<f32>() as u32 / 8,

_ => mem::size_of::<f32>() as u32 * 8,

}

Fig. 2. Example of a match-based conditional expression used to embed substituted expression nodes alongside the original. Taken

from code generated for hashbrown (a subject used in our empirical study in Section 4.1), illustrating the mutations applied to a

memory offset calculation.

grouped by the location in the original source code they apply to. Then, for each substituted location, our tool replaces

the original node with a match-based conditional expression, with a branch for each substituted node, and a default

branch for the original expression. For inserted statements, this default branch is an empty block. This representation

of the substitutions supports nesting. By replacing subexpressions first, their corresponding substitution expression

gets placed into the default branch of any outer substitution expression.

We designed a set of fundamental mutation operators for programs written in Rust. These mutation operators filter

equivalent mutants directly, using a rule-based approach, which we describe in further detail for each mutation operator.

Thirteen of these mutation operators are adaptations of common operators used in almost all languages (e.g., by Major,

and PIT for Java), that are applicable to Rust. We refer to them as traditional mutation operators. Five are additional

operators that are tailored specifically to language features commonly used in Rust programs that are not covered

by the more common traditional operators. While most of these are not entirely new, they are all highly adapted (in

some cases restricted due to the strict rules of the language, while in other cases more generalized) to the commonly

found, unique code patterns in Rust programs. They are primarily intended to produce mutations with similar behavior

to mutations generated by other common mutation operators for other programming languages. Table 1 lists these

eighteen mutation operators, with the traditional and additional mutation operators introduced in this paper as follows:

The eight OpAddMulSwap, OpAddSubSwap, OpDivRemSwap, OpMulDivSwap, and the bitwise BitOpO-
rAndSwap, BitOpOrXorSwap, BitOpShiftDirSwap, and BitOpXorAndSwap traditional mutation operators target

binary operation expressions. These mutation operators, that replace existing operators with related counterparts, all

have to determine whether the trait required for the new operator is implemented by the operand types. For example,

the Instant timestamp type implements the Sub trait for subtraction but not the Add trait for addition, which limits

the applicable valid mutations. These mutation operators filter out such non-applicable mutations. For these mutations,

minimal equivalent mutant filtering is required, as either of the operands would have to be the identity of both the

original and the substituted binary operation for equivalence (e.g., i + 0 with OpAddSubSwap, where 0 is the identity

of both the addition and subtraction operations). The resulting mutation would be equivalent if the resulting value

was unused, but the Rust compiler already warns against such cases of dead code. This caveat applies to most of our

mutation operators more generally. It is worth noting that these mutation operators are more generic than most of

their original counterparts, as they apply to all types that implement the corresponding binary operator traits (i.e., they

implement the operation).
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Table 1. Mutation operators for Rust implemented in mutest-rs. The five mutation operators in bold are highly-adapted versions of

existing mutation operators, newly introduced in this paper. We refer to them as additional mutation operators.

Mutation Operator Description

ArgDefaultShadow Replace function argument with default value
1

BitOpOrAndSwap [32] Replace bitwise OR with bitwise AND, and vice versa

BitOpOrXorSwap [32] Replace bitwise OR with bitwise XOR, and vice versa

BitOpShiftDirSwap [32] Replace bitwise LSH with bitwise RSH, and vice versa

BitOpXorAndSwap [32] Replace bitwise XOR with bitwise AND, and vice versa

BoolExprNegate [32] Negate Boolean expression

CallDelete Delete function call, replace with default value
1

CallValueDefaultShadow Replace function call result with default value
1

ContinueBreakSwap Replace continue with break, and vice versa

EqOpInvert [32] Invert equality operator

LogicalOpAndOrSwap [32] Replace logical && with logical ||, and vice versa

OpAddMulSwap [32] Replace addition with multiplication, and vice versa

OpAddSubSwap [32] Replace addition with subtraction, and vice versa

OpDivRemSwap [32] Replace division with modulo, and vice versa

OpMulDivSwap [32] Replace multiplication with division, and vice versa

RangeLimitSwap Change inclusivity of range’s upper bound

RelationalOpEqSwap [1] Change relation operator’s bound with regard to equality

RelationalOpInvert [1] Invert relational operator

1
The default value for the type as defined by the implementation of the Default trait in Rust; i.e., the value of Default::default().

The remaining five BoolExprNegate, EqOpInvert, LogicalOpAndOrSwap, RelationalOpEqSwap, and Rela-
tionalOpInvert traditional mutation operators target various Boolean expressions. These mutation operators are more

similar to their original counterparts, as they are only applicable to Boolean-typed expressions. These mutations are

applicable in all cases, and are unlikely to produce truly equivalent mutants by themselves.

TheArgDefaultShadow additional mutation operator targets function arguments, replacing any argument passed to

a function parameter with the default value of the type — defined by the author of the type through the implementation

of the Default trait. By inserting a variable binding statement at the beginning of the function, mutest-rs can ensure

that the original function body does not have access to the passed argument. This is possible since Rust allows for

rebinding variable names, and has a common way of representing the intended default value of each type, by means of

the Default trait. The mutation operator only applies to types with this trait implemented. The mutations generated

by this operator cannot be equivalent mutants, unless the argument value is unused. In the case when the test suite

only ever invokes the function with the default argument value, the mutation will not be detected. However, this is an

indicator of either a lack of testing — if the test directly or indirectly influences the value of the function argument, or

dead program code (i.e., code that is never exercised within the program through any accessible means) rather than an

equivalent mutant. In the case of the default values originating from test cases, the mutation could be detected by a

sufficiently extensive test suite. In the case of the default values originating from fixed points in program code with

no other accessible code paths, it might be advisable for such non-exercised, untested code paths to be removed. This

mutation operator can be seen as a generalization of the existing AOC (Argument Order Change) and AND (Argument

Number Decrease) mutation operators, which are not directly applicable to Rust as these mutation operators target

method overloading not supported by the language.
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The CallDelete additional mutation operator targets function calls by deleting them, replacing the call with the

default value of the type — as defined by the type’s author through the Default trait. This mutation operator can be seen

as a restricted, Rust-specific version of statement deletion, as Rust’s strict rules make ad-hoc statement deletion difficult.

CallValueDefaultShadow additional mutation operator targets function calls in a more subtle way, by retaining the

function call and replacing the return value at the call site with the default value of the type, similarly to CallDelete.

This mutation operator is analogous to existing mutation operators targeting the return-sites of functions, but this

mutation operator achieves a similar effect by mutating the call-site instead. The difference between these mutation

operators is whether the side effects of the called function are retained with the mutation. These two mutation operators

filter out equivalent mutants; only applying to function calls which do not resemble a default constructor (i.e., take at

least one argument), and whose return type implements the Default trait and is not the () unit type. In addition, these

mutation operators filter out any mutations, which would cause infinite recursion through the insertion of the call to

the Default::default trait function implementation. When the function call is retained, the return type position is

explicitly annotated with the semantic type information from the original function call to ensure that the resolution of

the call remains unchanged after mutation.

The ContinueBreakSwap additional mutation operator targets loop control flow statements by replacing continue

expressions associated with loops with break expressions, and vice versa. This mutation operator only applies to loop

control flow statements in loops with no return values. Since continue and break statements represent jumps to

different parts of the code, they are unlikely to produce equivalent mutants. When considering the added complexity of

labels and optional loop return values, the implementation of this rule quickly requires extensive scope analysis.

Finally, the RangeLimitSwap additional mutation operator targets Rust’s range expression syntax by changing

whether the range is inclusive of its upper bound. This mutation operator is primarily intended to replicate traditional

mutations of for loop conditions (for (int i = 0; i <= 10; i++)), adapted to the range-based syntax of Rust

(for i in 0..=10). Since this mutation operator only targets bounded ranges, which are likely to be fully consumed

(by iterating over them), it is unlikely that these mutations would be equivalent mutants. While not a unique language

feature, ranges, along with iterators, make up the majority of loop and array interactions in Rust programs (with manual

indexing discouraged), making this an important operator addition for the language.

As mentioned previously,mutest-rs builds rule-based equivalent mutant filtering directly into the mutation operators,

which can catch the large majority of equivalent mutants. In addition, the mutation operators used are designed to

produce only a relatively small amount of overlapping behavior, and thus are intended to not be equivalent to each

other. Most of the mutation operators match distinct code patterns, and those that match similar patterns produce

mutations that exhibit slight differences in behavior that might otherwise be hard to notice.

3.3 Analyzing Function Calls as a Pre-Step to Batching

To be able to safely combine mutations, we must first analyze the functions — in which our mutations will be placed —

reachable by individual test cases, and build a call graph for the program. This call graph will be used to conservatively

determine dependencies between parts of the program, and ultimately give us the ability to check mutations for

compatibility with regards to mutation batching.

The nodes of a call graph represent unique functions defined in the program. The presence of a directed edge

between two functions indicates that that function represented by the source node contains a direct call to the function

represented by the destination node. To help us with resolving intricate generic function calls that can be commonly

found in Rust programs, we extend the construction of call graphs with the propagation of generic type arguments. This
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Require: Set of Test Functions 𝑇

Ensure: Mapping 𝐿 : Function 𝐹 → (Test Function 𝑇,Distance N)
Mappings: Function Definition→ Test Function 𝐶1,𝐶2, . . .← {}, {}, . . .
for all Function Definition 𝑡 ∈ 𝑇 do

Set of Function Calls 𝐶𝑡 ← functions called in body of 𝑡

for all (Function Definition 𝑓 ,Generic Type Arguments 𝑆) ∈ 𝐶𝑡 do
(Function Definition 𝑓 ′,Generic Type Arguments 𝑆 ′) ← resolve call to 𝑓 with types 𝑆

𝐶
(𝑓 ′,𝑆 ′ )
1

← 𝐶
(𝑓 ′,𝑆 ′ )
1

∪ {𝑡}
end for

end for
𝐿 ← {}
for all Distance 𝑑 ∈ ⟨1, 2, . . .⟩ do

Set of Function Definitions 𝐹𝑑 ← {𝑓 | ∀((𝑓 , _), _) ∈ 𝐶𝑑 }
Set of Function Definitions 𝐹Σ ← {𝑓 | ∀(𝑓 , _) ∈ 𝐿}
break if 𝐹𝑑 ⊆ 𝐹Σ ⊲ all functions have already been visited
for all ((𝑓 0, 𝑆0),𝑇 ′) ∈ 𝐶𝑑 do

𝐿𝑓 0 ← 𝐿𝑓 0 ∪ {(𝑡, 𝑑) | ∀𝑡 ∈ 𝑇 ′}
Set of Function Calls 𝐶𝑓 0 ← functions called in body of 𝑓 0

for all (𝑓 , 𝑆) ∈ 𝐶𝑓 0 do
⊲ combine generic type arguments from the call to the containing function with those of the local function call
Generic Type Arguments 𝑆+ ← fold type substitutions 𝑆0 into 𝑆

(Function Definition 𝑓 ′,Generic Type Arguments 𝑆 ′) ← resolve call to 𝑓 with types 𝑆+

𝐶
(𝑓 ′,𝑆 ′ )
𝑑+1 ← 𝐶

(𝑓 ′,𝑆 ′ )
𝑑+1 ∪𝑇 ′

end for
end for

end for

Fig. 3. Algorithm for constructing the walks of a fully-resolved call graph. Function calls are represented as tuples (𝑓 , 𝑆 ) , where 𝑓 is

the function being called, and 𝑆 is the set of local generic type arguments of the call. The output of the algorithm is 𝐿 : 𝐹 → (𝑇,N) , a
mapping between called functions and the tests they are reachability from, with a distance associated with each mapping. First,

function calls in the bodies of each of the test function entry points in set𝑇 is used to populate𝐶1. Then, for each consecutive depth 𝑑 ,

𝐶𝑑 is first used to populate the output mapping 𝐿 from the previous depth, and then function calls in the bodies of the functions in

𝐶𝑑 is used to populate𝐶𝑑+1, with the added step of first combining the generic type arguments from the previous depth, 𝑆0, with

those of the local function call, 𝑆 , thus propagating generic type arguments. The analogous code sections between the iteration of the

entry point functions, and consecutive iterations of called functions is highlighted.

helps us find the exact function definitions called by generic calls. We refer to the resulting call graph as a fully-resolved

call graph:

Definition 1 (Fully-resolved call graph). A fully-resolved call graph is a directed graph 𝐺𝐶 = (𝐹,𝐶) over a set of
root functions 𝑅, where:

• 𝐹 (function nodes) is a set of (𝑓 , 𝑆) tuples, where 𝑓 is a function definition, and 𝑆 is a set of type substitutions

applicable to 𝑓 ; and

• 𝐶 (call edges) is a set of directed edges between two function nodes, 𝐶 ⊂ 𝐹 × 𝐹 .
• The set of root functions 𝑅 may be any fully-resolved, non-generic functions. (These include entry points, like a

binary crate’s main function or test functions.)
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fn f1<T: T1>() -> T {

T::do_t1::<u8>(1)

}

let _ = f1::<S1>();

Fig. 4. A generic function call with a single level of indirection, which cannot be resolved without propagating type substitutions in

the call graph.

Based on the idea of fully-resolved call graphs, the algorithm in Figure 3 shows the process of building walks of the

call graph between test functions𝑇 , and functions of the program. Function calls are represented as (𝑓 , 𝑆) tuples, where
𝑓 is the function definition, and 𝑆 is the set of call-site type substitutions passed to the function. The output of the

algorithm, 𝐿 : 𝐹 → (𝑇,N), is a mapping between functions and tests, with a distance associated with each mapping. For

each mapping, distance is the length of the shortest call path between the two functions. 𝐶1,𝐶2, . . . ,𝐶𝑑 represent the

callees at their respective levels 𝑑 of the call tree. These get populated as the depth-wise iteration of the tree progresses.

The difference from the construction of a partially-resolved call graph is that the concrete types each generic

function is called with are taken into account. Instead of looking at just a function’s definition, each individual, uniquely

type-parameterized invocation of the function is resolved independently. This is analogous to the monomorphization of

generic functions performed during code generation in compiled languages [54].

Figure 4 is an example of a function call which cannot be resolved using the local context of the function definition

alone, but can be when using our approach for building a fully-resolved call graph. Inside the generic f1 function,

a call is made to the T1::do_t1::<V> generic trait function, with the known type parameter <V = u8>. Since the T

type parameter of the function is not known, the call can only be partially resolved to <T as T1>::do_t1::<u8>,

which does not identify the actual function body, as the type on which the do_t1 function is defined, is unknown.

Our technique instead looks at the function invocation f1::<S1> (and other invocations of the function f1 with

differing type arguments). By combining the types function f1 was invoked with (<T = S1>), with the call’s types

(<T = ?, V = u8>), it becomes possible to correctly resolve the same function call to S1::do_t1::<u8>.

When constructing a Rust program’s call graph, it is important to consider every language feature with semantics

that can result in the introduction of a function call, not just explicit function calls. Most notably, this includes almost all

unary (* for dereferencing, - for negation, ! for logical negation), binary (+, -, *, /, %, |, ˆ, &, <<, >>, ==, !=, <, <=, >, >=,

and [] for indexing), and corresponding binary assignment operators, which have corresponding traits (i.e., interfaces)

that can be used to implement the operators for user-defined types. It also includes implicit calls to types’ Drop::drop

user-defined cleanup functions at the end of scopes, and implicit calls to iterators’ Iterator::next implementations

when the iterator itself is the “subject” of a for loop. It is also important to consider not just the function calls that are

made to definitions strictly within the program, but function calls to library code as well, as these library definitions

can then make further function calls back to program code. For example, a library function might be generic over a trait

(i.e., interface) and the library function is defined in such a way that it calls a user-defined trait function. If a type with

a program-defined trait implementation is passed into such a library function, then the library function will end up

calling back to program code via the trait implementation. It is worth noting however that even in such cases, only calls

to program code will ultimately be considered for mutation analysis, and the library call paths between program code

sections are only needed to establish full reachability analysis of all of the program code sections.
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In the case of dynamic polymorphism, the fully-resolved call graph must branch off into all possible implementations

of the function being called to cover any possible runtime function call. For Rust programs, we can distinguish between

three different kinds of runtime dynamic polymorphism, which we refer to as virtual calls, dynamic calls, and foreign

calls. Virtual calls refer to trait (i.e., interface) methods that can only be resolved dynamically, at runtime. Virtual calls

are represented as multiple call edges to all of the possible implementations of the trait in the program. For example,

when calling a trait function on a set of trait objects (e.g., iterating over a collection of orderable elements), the virtual

call is represented as a call edge to all type’s implementation of the function which implement the trait. Dynamic calls

refer to calls through opaque function pointer types, which do not represent any exact function definition. Dynamic

calls are represented as multiple call edges to all of the possible function definitions in the program with matching

function signatures. Foreign calls refer to calls made to foreign definitions (e.g. C library interfaces), and are the only

function call kind that cannot be represented fully, as it would require additional call graph analysis of the external

code in question. This is not an inherent limitation of our call graph technique however, and it is possible, as an item of

future work, to expand our graph analysis to extend to external code as well.

By employing a fully-resolved call graph, our approach is able to discover the exact functions reached by individual

test functions. However, compile-time call graph analysis has its limitations. Dynamic invocation through function

pointers cannot be covered exactly with a lightweight approach, and would require either extensive data flow analysis

to track what functions each function pointer may refer to, or the significantly more conservative approach of marking

such function invocations as being able to call any function with the same signature as the pointer’s type, which is

what our approach utilizes. In our approach, our tool simply uses information available from the compiler about the

function definition each function call refers to, and we acknowledge, that programs making heavy use of dynamic

function pointers may produce slightly overly conservative call graphs, which may, as a result, have an impact on the

effectiveness of mutation batching. However, the impact of dynamic function pointers on the accuracy of our call graph

and resulting mutation batching is drastically limited by the prevalence of these function calls. As Astrauskas et al. [3]

found in their extensive empirical evaluation covering 31,867 Rust crates, only 0.7% of all function calls were made to

either closures or raw function pointers. We discuss the prevalence of such function calls in our subjects in Section 4.3,

as part of our threats to validity. It is also important to note, that the limitations of static call graph construction are not

inherent limitations of mutation batching, and approaches based on runtime instrumentation are left as an item for

future work.

3.4 Mutation Batching

The evaluation of mutations takes up the majority of time spent on mutation testing. For larger projects, this limitation

may disqualify the use of automated mutation testing entirely, since it takes a prohibitively long time to perform.

Therefore, it is important to look for optimized evaluation techniques to reduce the time needed to get results. In

Rust, developers commonly make their test suites parallelizable, since the built-in test runner, by default, executes test

cases in parallel, through the use of multiple in-process threads. This presents an opportunity to further engineer safe

ways of improving the runtime of mutation analysis by parallelizing the evaluation of not just test cases, but multiple,

independent mutations, making even better use of available resources. The ability to evaluate multiple mutations

simultaneously makes significantly more efficient mutation analysis possible, but it cannot be performed without

caution.

Simultaneously enabling multiple mutations requires that changes in behavior remain uniquely identifiable through

test results, and that the mutations do not influence each others’ changes in behavior (i.e., they do not combine into a
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Fig. 5. Example of mutations in a call graph, separated by reachability-exclusivity. The two graphs represent two separate sets of

mutations which are each internally reachability-exclusive, but where no mutation from one set could be added to the other. Functions

(𝑓𝑖 ) are annotated with the mutations placed into them (𝑚𝑖 ). Highlighted edges represent the call paths that reach mutations from

their corresponding test cases. Inactive call paths and mutations are dimmed. Mutations𝑚1,𝑚2, and𝑚6 are reachability-exclusive

with regards to each other, and thus are compatible with each other. Mutation𝑚3 is not reachability-exclusive with𝑚1 because they

are both reachable from test 𝑡2. Mutation𝑚4 is not reachability-exclusive with𝑚1 and𝑚2, because they are both reachable from

tests 𝑡3 and 𝑡4 respectively. Mutation𝑚5 is not reachability-exclusive with𝑚2 because they are both reachable from test 𝑡5. Mutation

𝑚7 is not reachability-exclusive with𝑚1 and𝑚6, because they are both reachable from tests 𝑡1 and 𝑡6 respectively.

higher-order mutant). The first invariant can be upheld by ensuring that no two mutations are reachable from any of

the same test functions. This results in a one-to-one mapping between test case results, and mutation detection. The

second invariant then is automatically met by the above constraint: as the code executed by each test case only ever has

one mutation applied to it, no other mutation can influence its behavior. This constraint effectively produces disjunct

subprograms within the original program. We introduce the notion of reachability-exclusivity to formally represent

this constraint:

Definition 2 (Mutation reachability-exclusivity). Two mutations𝑚1 and𝑚2, reachable from the sets of tests 𝑇1
and 𝑇2, respectively, are said to be mutation reachability-exclusive iff 𝑇1 ∩𝑇2 = ∅.

The property of reachability-exclusivity is the precondition for mutation batching, our novel method for grouping

mutations together, while ensuring that no change in behavior occurs compared to the mutations being applied

individually. Mutation batching is a combination of this grouping strategy, and the corresponding test–mutation

mapping, that can be used to recover causality between test case failures and mutation detection. Figure 5 shows an

example of reachability-exclusivity, and mutation batching in action, on a call graph with various mutations applied.

When looking at the call subtree of any given test function, we can only ever reach a single enabled mutation from all

possible call paths combined.

Definition 3 (Compatible Mutations). Two mutations𝑚1 and𝑚2 are compatible with regards to mutation batching,

and thus can be batched together, iff they are reachability-exclusive.

Definition 4 (Conflicting Mutations). Two mutations𝑚1 and𝑚2 are conflicting with regards to mutation batching,

and thus cannot be batched together, iff they are not reachability-exclusive.
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edges (in blue) are drawn between compat-

ible pairs of mutations.

→

𝑚1

{𝑡1, 𝑡2, 𝑡3 }

𝑚2

{𝑡4, 𝑡5 }

𝑚3

{𝑡2 }

𝑚4

{𝑡3, 𝑡4 }
𝑚5

{𝑡5 }

𝑚6

{𝑡6, 𝑡7 }

𝑚7

{𝑡1, 𝑡6 }

(c) Graph of batched mutations, con-

structed by partitioning the mutation com-

patibility graph into cliques.

Fig. 6. The steps taken to batch mutations based on conflicting test cases. In all the above graphs, nodes represent mutations, red

edges represent conflicts between mutations, and blue edges represent that two mutations are compatible. Mutations may be labeled

with the set of test cases it is reachable from. The crossed-out conflict edges (in red) are labeled with the set of test cases that cause

the conflict, those which are common between the two mutations.

Since our mutation operators are guaranteed to not add new call edges to the call graph of the program, the

fully-resolved call graph we constructed earlier is (bar dynamic function calls through function pointers discussed in

Section 3.3) sound for determining reachability-exclusivity for the final meta-mutant program as well. The implementa-

tion of our approach, mutest-rs, generates such non-conflicting sets of mutations upfront, at compile time, and encodes

the necessary metadata to discern the test results corresponding to each mutation. The resulting static mutation batches

are then each evaluated by the test harness.

Definition 5 (Mutation Batch). A set of mutations 𝐵, where ∀𝑚1,𝑚2 ∈ 𝐵 : [𝑚1 and𝑚2 are compatible].

3.4.1 Theory behind Mutation Compatibility and Batching. When analyzed through the lens of graph theory, it can be

shown that mutation batching is equivalent to the problem of clique cover, i.e., partitioning a graph into cliques, over

the mutation compatibility graph.

Garey and Johnson [17] give the following definition to the clique cover problem: “Given graph 𝐺 = (𝑉 , 𝐸), and
positive integer 𝐾 ≤ |𝑉 |, can the vertices of 𝐺 be partitioned into 𝑘 ≤ 𝐾 disjoint sets 𝑉1,𝑉2, . . . ,𝑉𝑘 such that, for

1 ≤ 𝑖 ≤ 𝑘 , the subgraph induced by 𝑉𝑖 is a complete graph?”. Following from this definition, mutation batching can be

defined as the following instance of clique cover: 𝐺 = (𝑉 , 𝐸), where 𝑉 is the set of mutations, and 𝐸 is the set of edges

between compatible mutations. This works, because every batch, i.e., subgraphs of𝐺 , needs to have mutations in it that

are compatible with every other mutation in the same batch, meaning every subgraph of 𝐺 is a complete graph, i.e., a

clique. Importantly, every mutation is in exactly one batch, making batches disjoint sets of vertices, i.e., partitions.

Since mutation batching is equivalent to clique cover on the mutation compatibility graph, it follows that it is also

equivalent to graph coloring on the mutation conflict graph, given that the two problems can be transformed into each

other [31].

Definition 6 (Mutation Conflict Graph). An undirected graph 𝐺 = (𝑀,𝐶) over a set of mutations 𝑀 , where

undirected conflict edges 𝐶 ⊂ 𝑀 ×𝑀 are placed between every pair of conflicting mutations in𝑀 :

𝐶 = {(𝑚1,𝑚2) | ∀𝑚1,𝑚2 ∈ 𝑀, [𝑚1 and𝑚2 are conflicting]}.
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Definition 7 (Mutation Compatibility Graph). An undirected graph 𝐺 = (𝑀,𝐶) over a set of mutations𝑀 , where

undirected conflict edges 𝐶 ⊂ 𝑀 ×𝑀 are placed between every pair of compatible mutations in𝑀 :

𝐶 = {(𝑚1,𝑚2) | ∀𝑚1,𝑚2 ∈ 𝑀, [𝑚1 and𝑚2 are compatible]}.

Figure 6 shows the steps taken to perfectly batch mutations based on conflicting test cases, explained through graphs.

First, a mutation conflict graph (Figure 6a) is constructed by placing edges between every pair of conflicting mutations.

Then, a mutation compatibility graph (Figure 6b) is constructed as the complement graph of the mutation conflict graph.

Finally, compatible mutations are batched (Figure 6c) by partitioning the mutation compatibility graph into cliques,

each clique representing a mutation batch. This ensures that for each batch, every mutation is compatible with every

other mutation in the batch.

Garey and Johnson [17] write that clique cover is solvable in polynomial time in the following cases:

• for 𝐾 ≤ 2,

• for graphs containing no complete subgraphs on 3 vertices,

• for circular arc graphs,

• for chordal graphs, and

• for comparability graphs.

From these, comparability graphs stand out as potentially applicable. However, this requires that the edges of the

graph be defined by a strict partial order.

Mutation Compatibility Relation. Let Σ𝑀 be the set of all possible mutations. Let 𝐸𝑡 (𝑚),∀𝑚 ∈ Σ𝑀 be the set of test case

entry points that mutation𝑚 is reachable from based on the call subgraph of the test case entry points. Let 𝑐𝑚 be the

mutation compatibility relation on set Σ𝑀 of all mutations, where

∀𝑚1,𝑚2 ∈ Σ𝑀 :𝑚1 ≠𝑚2 ⇒ [𝑚1 𝑐𝑚 𝑚2 ≡ 𝐸𝑡 (𝑚1) ∩ 𝐸𝑡 (𝑚2) = ∅]

The mutation compatibility relation 𝑐𝑚 holds the following properties:

(1) Reflexivity: The relation 𝑐𝑚 is reflexive: ∀𝑚 ∈ Σ𝑀 : 𝑚 𝑐𝑚 𝑚, because every mutation may be batched with

itself, producing an equivalent batch with the same mutations.

(2) Symmetry: The relation 𝑐𝑚 is trivially symmetric: ∀𝑚1,𝑚2 ∈ Σ𝑀 : 𝑚1 𝑐𝑚 𝑚2 ⇒ 𝑚2 𝑐𝑚 𝑚1, and can be

represented for any set of mutations𝑀 using an undirected graph.

(3) Intransitivity: Let 𝐸𝑡 (𝑚1) = {𝑡1, 𝑡2, 𝑡3}, 𝐸𝑡 (𝑚2) = {𝑡4, 𝑡5}, 𝐸𝑡 (𝑚3) = {𝑡2}. Then, 𝑚3 𝑐𝑚 𝑚2 ∧𝑚2 𝑐𝑚 𝑚1, but

𝑚3��𝑐𝑚 𝑚1. Therefore, the relation 𝑐𝑚 is not transitive.

From this, it follows that mutation compatibility is not a partial order and as such does not form a poset. Mutation

batching remains an NP-hard instance of clique cover (i.e., partition graph into cliques). Most importantly, the lack

of transitivity of mutation compatibility makes any exact search method unfeasible in general. As Gramm et al. [19]

wrote, “Sensible inputs for clustering problems are expected to exhibit transitivity in the sense that if {𝑎, 𝑏} and {𝑏, 𝑐}
are edges, then probably also {𝑎, 𝑐} is an edge (that is, its clustering coefficient is high)”. Search methods benefit greatly

if they can rely on the relation being (mostly) transitive as it can greatly reduce the effective search depth.

Through experimentation with existing implementations of established algorithms [8, 19, 24], we were able to

confirm that perfectly batching mutations through graph algorithms is indeed not computationally feasible, even on

our smallest subject, given the number of graph edges (i.e., conflicts and compatibilities) and the resulting enormous

search space.
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Require: Set of Mutations𝑀

Sorting Heuristic Function 𝑓sort : 𝑀 → R
Probability 𝜖 ∈ [0, 1] ⊲ only in 𝜖-greedy algorithm

Ensure: Set of Mutation Batches B
Set of Mutation Batches B← {}
sort𝑀 by the element-wise value of 𝑓sort
for allMutation𝑚 ∈ 𝑀 do

if 𝑚 is unsafe then ⊲ (see Section 3.5 for the definition of mutation unsafety)
Mutation Batch 𝐵′ ← None

else if Random(0, 1) ≤ 𝜖 then ⊲ only in 𝜖-greedy algorithm
Mutation Batch 𝐵′ ← RandomCompatibleBatch(𝐵,𝑚)

else
Mutation Batch 𝐵′ ← FirstCompatibleBatch(𝐵,𝑚)

end if
if 𝑀 ′ ≠ None then

𝐵′ ← 𝐵′ ∪ {𝑚}
else

B← B ∪ {{𝑚}}
end if

end for

Fig. 7. Greedy, and 𝜖-greedy algorithm for creating a static batching B of non-conflicting mutations𝑀 , based on the mutation sorting

heuristic function 𝑓sort , which determines the order in which mutations are considered for batching. The additions in the 𝜖-greedy

algorithm compared to the original greedy algorithm are highlighted. See Figure 8 for the selection functions FirstCompatibleBatch

and RandomCompatibleBatch.

With all of these issues in mind, we need to look at how we can approximate these solutions instead.

3.4.2 Algorithms for Approximating Mutation Batching. We developed two fast approximation algorithms for mutation

batching: a fully-deterministic greedy algorithm (originally published in our ICST conference paper [36]), and a

new, partially-deterministic algorithm that we call epsilon-greedy (𝜖-greedy) batching. Figure 7 shows both of these

algorithms, with the additions of the new epsilon-greedy algorithm highlighted. Both the greedy and epsilon-greedy

algorithms create non-conflicting batches B of mutations𝑀 by first sorting mutations based on the mutation sorting

heuristic function 𝑓sort : 𝑀 → R, and then working through that list, in that order, adding mutations to the first mutation

batch they do not conflict with (see Figure 8a), and creating new mutation batches as necessary. For each mutation𝑚,

the choice of a compatible batch is stored in 𝐵′, and if a compatible mutation batch is found, then mutation𝑚 is added

to mutation batch 𝐵′, and if a compatible batch is not found, then a new mutation batch is created with only mutation

𝑚 as its initial member. This means that the first mutation is always stored in a new, “first” mutation batch, and future

iterations either add mutations to the mutation batches created up to that point, or create a new mutation batch which

may get extended by later iterations.

The epsilon-greedy algorithm is an extension of the greedy algorithm that takes an additional 𝜖 parameter, where

each mutation has an 𝜖 probability of being placed into a random compatible mutation batch (see Figure 8b), rather

than the first compatible mutation batch. These occasional probabilistic choices help the epsilon-greedy algorithm

escape local minima that the greedy algorithm would be “stuck in”, which happens if mutations in the existing set of

mutation batches prevent further mutations from being batched due to conflicts between them. It is worth noting that

the epsilon-greedy algorithm is equivalent to the greedy algorithm when 𝜖 = 0.
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function FirstCompatibleBatch(Set of Mutation Batches B, Mutation𝑚)

for allMutation Batch 𝐵′ ∈ B do
if ∀𝑚′ ∈ 𝐵′ : [𝑚 and𝑚′ are reachability-exclusive] then

return 𝐵′

end if
end for
return None

end function

(a) Selection function FirstCompatibleBatch chooses the first compatible mutation batch — which only consists of mutations

compatible with the input mutation𝑚 — from the current working set of mutation batches B.

function RandomCompatibleBatch(Set of Mutation Batches B, Mutation𝑚) ⊲ only in 𝜖-greedy algorithm
Set of Mutation Batches Bcompatible ← {𝐵′ ∈ B | ∀𝑚′ ∈ 𝐵′ : [𝑚 and𝑚′ are reachability-exclusive]}
return choose random element from Bcompatible , if any

end function

(b) Selection function RandomCompatibleBatch chooses a compatible mutation batch — which only consists of mutations compatible

with the input mutation𝑚 — through random sampling from the current working set of mutation batches B.

Fig. 8. Methods of selecting compatible mutation batches used in each iteration of the greedy, and 𝜖-greedy algorithms. The

RandomCompatibleBatch method in (b) is only used by the 𝜖-greedy algorithm. Both selection functions return the empty value

None if there are no mutation batches compatible with the input mutation𝑚 in the current working set.

To support multiple mutation sorting heuristics, the greedy, and epsilon-greedy algorithms take an 𝑓sort : 𝑀 → R

comparison function, which is used to sort the list of mutations before they are considered for batching, in that order.

This ordering greatly influences the outcome of these algorithms. The following ordering heuristics were considered

for the greedy, and epsilon-greedy algorithms:

(1) Ascending ordering by number of conflicts:𝑚 ↦→ |{𝑚′ ∈ 𝑀 | 𝑚 and𝑚′ are not reachability-exclusive}|.
This ordering ensures that the least “conflicting” mutations are batched first, with the goal of creating as large

mutation batches as possible, by first combining mutations that are less conflicting to make batches that are less

conflicting overall, which can later incorporate more mutations.

(2) Descending ordering by number of conflicts:𝑚 ↦→ − |{𝑚′ ∈ 𝑀 | 𝑚 and𝑚′ are not reachability-exclusive}|.
This ordering ensures that the most “conflicting” mutations are batched first, with the goal of creating fewer

really large, and more, evenly sized mutation batches.

(3) Random ordering, i.e., shuffling (baseline).

This ordering, which shuffles the mutations, is used as a baseline with which to compare the effects of heuristic

orderings in our evaluation (Section 4).

Originally, we ordered the list of mutations by the number of conflicts each individual mutation had, in descending

order. This was done with the goal of creating fewer very large batches and more, evenly sized ones from the set of

mutations, as the algorithm had to batch the most “conflicting” mutations first. This choice was based on findings from

anecdotal initial experimentation that we did not explore further in the original ICST conference paper [36].

In addition to the greedy, and epsilon-greedy algorithms outlined above, we also implemented a baseline random

batching algorithm, which for every mutation𝑚 in mutations𝑀 , places the mutation into a random compatible mutation

batch according to RandomCompatibleBatch in Figure 7, if any. If no compatible mutation batch exists for the given

mutation, the mutation is placed into a new mutation batch instead. This effectively mimics the behavior of the original
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let xs = [0; 3];

let i = 100;

let el = unsafe { xs.get_unchecked(i) };

(a) Example of unsafe code depending on its safe, but

incorrect enclosing scope.

fn size() -> usize {

100

}

let xs = [0; 3];

let el = unsafe {

let i = size() - 1;

xs.get_unchecked(i)

};

(b) Example of unsafe code depending on a call to a safe,

but incorrect function. The issue becomes clear if the

body of the called function is inlined.

Fig. 9. Unsafe code has hidden dependencies on the correctness of both its enclosing scope, and its called scopes.

greedy algorithm, but each choice of mutation placement is entirely random, rather than the greedy algorithm’s method

of placing mutations into the first compatible mutation batch. The random algorithm also performs no sorting or

shuffling before iterating over all mutations.

It is trivial that the epsilon-greedy algorithm is equivalent to the greedy algorithm when 𝜖 = 0. However, similarly, it

is also equivalent to the random algorithm when 𝜖 = 1. This means that the epsilon-greedy algorithm behaves very

differently depending on the value of 𝜖 . In our approach, with low values of 𝜖 (i.e., 𝜖 ≈ 0.1), we use the epsilon-greedy

algorithm as a way of augmenting the greedy algorithm with a small number of random choices.

It is important to note that only safe mutations — mutations defined in safe subtrees of the program — may be safely

evaluated in parallel, without any undefined behavior. Mutations that are inside unsafe blocks of code or are invoked

by unsafe code are not guaranteed to uphold the necessary guarantees. As such, unsafe mutations are put into their

own singleton mutation batch, i.e., a mutation batch which is a singleton set containing one and only one mutation. We

discuss these safety characteristics, and mutation safety next.

3.5 Mutation Safety — Avoiding the Spread of Unsafety

In Rust, safety is defined by the Rust project developers [56] as the guarantee that code cannot cause undefined behavior:

no dangling pointers, no use-after-frees, no out-of-bounds memory accesses, etc. Because of this, Safe Rust code, by

itself, cannot cause undefined behavior. Unsafe Rust code has no such guarantees, and allows for operations that may

introduce undefined behavior. These operations however are required to be annotated explicitly, by wrapping the code

in an unsafe block. This strict separation of safe and unsafe code allows for new considerations to be made when

applying mutation testing to Rust.

There is an intricate, asymmetric trust relationship between the way safe and unsafe Rust code interacts. Safe Rust

has to trust that any Unsafe Rust it interacts with was written correctly, and that the safety invariants assumed by the

compiler have been upheld. Unsafe Rust on the other hand cannot trust any Safe Rust it interacts with, without care,

and must be resilient to incorrect (but not undefined) behavior exhibited by Safe Rust code, as stated by the Rust project

developers [56]. In practice, however, due to the difficulty of writing resilient unsafe code, embeddings of Unsafe Rust

often depend on the correctness of the enclosing safe code section — its context (Figure 9a), and the correctness of the

safe code it calls (Figure 9b) for their own correctness [15]. Therefore, the relationship between safe and unsafe code

must be carefully considered, when introducing code changes into the program through generated mutations.
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fn x { [-]

fn y { [context-tainting]

unsafe { [unsafety]

fn z { [call-tainting] }

}

fn w { [extended call-tainting] }

unsafe fn u { [unsafety]

fn v { [call-tainting] }

fn r { [call-tainting, context-tainting]

unsafe { }

}

}

}

}

Fig. 10. Illustration of the mutation safety rules on a scope-level. Each scope is either an inlined call to a function or an unsafe block

of Rust code. Mutations have the safety of their containing scope. Within each scope, an annotation is placed in [] brackets to signify
applications of the safety rules, where [-] means no rule, i.e., safety. The body of function y is tainted because it contains unsafe

blocks. Function z is tainted because it is called from an unsafe block in function y. Function w is tainted because it is defined in a

body that contains unsafe blocks. Function u is defined as unsafe. Function v is tainted because it is called from unsafe function u.
Function r is tainted because it is called from unsafe function u, and it also contains an unsafe block.

In entirely Safe Rust, according to the safety rules mentioned above, mutations may cause undesired behavior but

they will never introduce undefined behavior. Mutations introduced into unsafe code however — including otherwise

safe code that unsafe code might (incorrectly) rely on — are likely to lead to the introduction of undefined behavior

which was not present in the original code. While this may be desirable to test for, such undefined behavior-inducing

mutations still have to be differentiated. For example, they have to be tested in a separate process to guard against the

newly-introduced undefined behavior causing the mutation test evaluation to crash or otherwise behave incorrectly.

We introduce the notion of safe and unsafe mutations to differentiate between mutations that may or may not cause

undefined behavior to be introduced, based on their location in safe and unsafe scopes respectively.

Definition 8 (Unsafe mutation). We consider mutation𝑚 unsafe if it fulfills at least one of the following conditions:

(1) 𝑚 has a direct or indirect unsafe block parent in the function body it is located in.

(2) 𝑚 is in a function body with an unsafe block but is not a direct or indirect child of an unsafe block. We refer to this

rule as context-tainting.

(3) 𝑚 is in the body of a function which is called directly or indirectly from an unsafe block. We refer to this rule as

call-tainting.

(4) 𝑚 is in the body of a function which is called directly or indirectly from a function body with an unsafe block, but

the call is not a direct or indirect child of an unsafe block. We refer to this rule as extended call-tainting.

Definition 9 (Safe mutation). We consider mutation𝑚 safe if it is not unsafe according to the definition above.

A safe mutation is guaranteed to not introduce undefined behavior into the program when applied. Figure 10 shows

an outline of how safe code becomes tainted by unsafe code as the call tree is traversed from an entry point, according

to the rules defined above. Tainted scopes — scopes which are matched by one of the tainting rules — are part of the

program’s extended unsafe scope. Mutations in the same scope have the same safety, and mutations in tainted or unsafe

scopes (i.e., the extended unsafe scope) become unsafe.

Manuscript submitted to ACM



22 Zalán Lévai, Donghwan Shin, and Phil McMinn

Mutation safety extends and complements the program safety rules of the Rust language, reflecting on the asymmetric

trust relationship between safe and unsafe Rust code. This similarity also extends to the expectations the Rust language

— and by extension our mutation safety rules — have towards program code, specifically unsafe code sections. The

Rust language makes no guarantees about any program behavior if the program contains incorrectly implemented

unsafe code sections that might lead to undefined behavior. Because of this, our mutation safety rules also cannot make

any guarantees about such incorrectly implemented unsafe code in the existing program code. For example, if a safe

function is declared with some “interior” unsafe code inside, then it is the responsibility of its authors to ensure that the

unsafe code follows the rules required from it by the Rust language. If those requirements are not met, then it can no

longer be considered a valid Rust program, according to the Rust language rules, and as such the rules of mutation

safety will also not apply correctly. However, the rules of mutation safety ensure that, given valid Rust code, which

must by definition have implemented all of its unsafe code correctly according to the language contract, we will not

introduce any undefined behavior using safe mutations, and only unsafe mutations may do so.

The rules of mutation safety must also be considered when designing mutation operators. Because mutation safety

is based on the call graph analysis of the original, unmutated program, any mutation introducing new function

calls must carefully consider mutation safety rules. In unsafe and tainted contexts, all mutations introduced will

be considered unsafe by default. In safe contexts, mutations which introduce calls to only safe functions can be

considered safe mutations according to the rules of mutation safety. However, any mutation which introduces a call to

an unsafe function will not just result in an unsafe mutation, but will also affect the safety of its containing function

scope. Of our eighteen mutation operators, only three of them can introduce new function calls into the program:

ArgDefaultShadow, CallDelete, and CallValueDefaultShadow. All three of these mutation operators introduce

a call to the type-dependent Default::default trait (i.e., interface) method, which is declared safe. Thus, they will

generate safe mutations in safe contexts.

3.6 Parallelized Test Evaluation

Our approach generates an instrumented program, which can be executed to perform mutation analysis. This program

includes conditionally branching code for all mutations, metadata representing the mutations and mutation batches,

and a generic mutation test harness. The harness acts as the main control loop of the program, iterating over mutation

batches, enabling and disabling mutations in the program, and evaluating the tests corresponding to mutations.

First, all tests are evaluated without any mutations applied. The information from this profiling test run is used to

sort tests by execution time. This ordering is later used for further test runs, in anticipation that the majority of the

time, mutations will not change the execution time of any test significantly. The results of the profiling test run is also

used to establish the timeout duration for tests, based on their execution time. This is important, since mutations may

change the code paths of the program in ways that can cause infinite loops, or just increase execution time significantly.

Compared to the overall test timeout we used in the original ICST conference paper [36], which was based on the

longest running test’s duration, we now determine test timeouts 𝑇timeout for each test case 𝑖 individually, as follows:

𝑇 𝑖
timeout = 𝑡𝑖 +max (0.1 · 𝑡𝑖 , 1s)

After the profiling test run, our technique finally performs the mutation analysis by applying each mutation batch

one-by-one, and evaluating it. A mutation batch is applied by changing the reference stored in the injected global

variable ACTIVE_MUTANT_HANDLE, which is referenced in all of the conditionally branching code generated bymutest-rs
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Time Remaining Test Cases Running Test Cases
Thread 1 Thread 2 Thread 3

Completed Test Cases

𝑖 = 0 (𝑡1,𝑚1 ) (𝑡2,𝑚1 ) (𝑡3,𝑚1 ) (𝑡4,𝑚2 ) (𝑡5,𝑚2 )

𝑖 = 1 (𝑡3,𝑚1 ) (𝑡5,𝑚2 ) (𝑡1,𝑚1 ) (𝑡4,𝑚2 ) (𝑡2,𝑚1 )

𝑖 = 2 (𝑡3,𝑚1 ) ���(𝑡5,𝑚2 ) (𝑡1,𝑚1 ) (𝑡2,𝑚1 ) (𝑡4,𝑚2 )×

𝑖 = 3 ���(𝑡5,𝑚2 ) (𝑡1,𝑚1 ) (𝑡3,𝑚1 ) (𝑡2,𝑚1 ) (𝑡4,𝑚2 )×

𝑖 = 4 ���(𝑡5,𝑚2 ) (𝑡4,𝑚2 )× (𝑡2,𝑚1 )✓(𝑡1,𝑚1 )✓(𝑡3,𝑚1 )✓

(a) Test evaluation of a single batch of mutations, timestep-by-timestep. At 𝑖 = 1, the test runner starts running (𝑡1,𝑚1 ) , the fastest
test case for mutation𝑚1; (𝑡4,𝑚2 ) , the fastest test case for mutation𝑚2; and (𝑡2,𝑚1 ) , the second fastest test case for mutation𝑚1.

At 𝑖 = 2, test case (𝑡4,𝑚2 ) fails, which means that mutation𝑚2 is detected. Thus, the test runner can remove all remaining tests for

mutation𝑚2 from the queue: { (𝑡5,𝑚2 ) }. At 𝑖 = 3, the test runner schedules the last remaining test case (𝑡3,𝑚1 ) in place of the now

completed test case (𝑡4,𝑚2 ) .

Time Remaining Test Cases Running Test Cases
Thread 1 Thread 2 Thread 3

Completed Test Cases

𝑖 = 0 (𝑡1,𝑚1 ) (𝑡2,𝑚1 ) (𝑡3,𝑚1 )

𝑖 = 1 (𝑡1,𝑚1 ) (𝑡2,𝑚1 ) (𝑡3,𝑚1 )

𝑖 = 2 (𝑡2,𝑚1 )✓(𝑡1,𝑚1 )✓(𝑡3,𝑚1 )✓

𝑖 = 3 (𝑡4,𝑚2 ) (𝑡5,𝑚2 )

𝑖 = 4 (𝑡4,𝑚2 ) (𝑡5,𝑚2 )

𝑖 = 5 (𝑡5,𝑚2 ) (𝑡4,𝑚2 )×

𝑖 = 6 (𝑡4,𝑚2 )× (𝑡5,𝑚2 )✓

(b) Test evaluation of mutations without batching, timestep-by-timestep. At 𝑖 = 3, evaluation of the second mutation starts,

independent from the first mutation. At 𝑖 = 5, test case (𝑡4,𝑚2 ) fails, which means that mutation𝑚2 is detected, however, the test

runner cannot stop execution there, as (𝑡5,𝑚2 ) is already running, despite its result not influencing the already known final outcome.

Fig. 11. Test evaluation of a single batch of mutations (showing the first batch of Figure 6c), and the same mutations without

batching, timestep-by-timestep. The empty box represents an empty thread with no running test case. Passed test cases are shown in

blue, failed test cases are shown in red.

(Figure 2). Once the mutation batch is applied, the harness evaluates the test cases corresponding to the mutations

in the batch, determining the detection of each mutation separately based on the results of the corresponding test

completions.

If a test runs for longer than the automatically determined test timeout 𝑇 𝑖
timeout , then its corresponding thread is

abandoned. The thread is kept running, but may terminate later, avoiding the potential for undesired state that would

be caused by forcibly terminating the thread. The parallel test runner used by the harness works using a fixed number

of threads. By modifying the queue of unscheduled tests during the test run, removing tests corresponding to mutations

which have already been detected, the number of evaluated test cases can be reduced. However, it is worth noting

that mutation batching can be used to evaluate the full test–mutation detection matrix, if desired, by disabling this

test culling behavior. This is useful for performing additional testing techniques, for example, mutation subsumption
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analysis [33], test generation [16, 20], test suite prioritization [13, 38, 49], and fault localization [40, 43]. In mutest-rs,

an exhaustive mutation evaluation can be performed, with or without the use of mutation batching, by adding the

--exhaustive flag.

In addition, before each mutation batch evaluation, the tests are reordered again using a stable sort, which bubbles

up a single test for each mutation in cycles, keeping the relative order — based on execution time — the same. This

ensures that the evaluation of all mutations starts as soon as possible, increasing the overall likelihood of a shorter

overall test run.

Figure 11 shows an example of how test cases 𝑡1, 𝑡2, . . . , 𝑡5 corresponding to two compatible mutations𝑚1,𝑚2 —

𝐸𝑡 (𝑚1) = {𝑡1, 𝑡2, 𝑡3}, 𝐸𝑡 (𝑚2) = {𝑡4, 𝑡5} — are evaluated with and without mutation batching. (These mutations, and their

corresponding test cases can be batched, since they are only reachable from a non-overlapping set of tests, see the first

batch of Figure 6c.) With batching (Figure 11a), the test runner can start the evaluation of test cases for both mutation

𝑚1, and mutation𝑚2 at the same time, with the help of the cyclic test ordering method described above. Due to multiple

mutations being evaluated at the same time, if a mutation’s test case is found to be failing, indicating that the mutation

was detected, then there is a higher likelihood of fewer unscheduled test cases remaining for the mutation which can

all be unqueued, leading to more effective pruning of unnecessary test case evaluations. Most importantly, the available

threads are fully utilized throughout the evaluation of the mutation batch. In comparison, without batching (Figure 11b),

the test runner has to evaluate mutation𝑚1, and mutation𝑚2 separately, one after another. In this scenario, overall

thread utilization is much lower; mutations which have few corresponding test cases never fill the available threads, and

there is more time spent overall on switching between mutations, when nothing is being evaluated. This also makes it

less likely that remaining test cases can be unqueued, as more test cases for the same mutation will already have been

started on a thread by the time a failing test case is reached, leading to less effective pruning of unnecessary test case

evaluations.

4 Evaluation

We used our tool implementing our technique, mutest-rs, to evaluate a series of research questions. Since Rust is a new

language in the field of mutation testing research, we need to evaluate the effectiveness of applying mutation analysis in

the first instance, by applying it to commonly-used and critical Rust code. We must also evaluate the effectiveness of our

five additional Rust mutation operators. Additionally, regarding mutations, we need to evaluate the potential impact of

undefined behavior causing mutations, and our technique for distinguishing them based on Rust’s safety. Furthermore,

since we have made improvements to the classic mutation analysis workflow in our approach — in particular, our

method of batching mutations — we also evaluate our mutation pipeline’s improved efficiency. Finally, we must address

the potential impact of non-deterministic, flaky tests [44], and evaluate the extent to which they may affect mutation

scores. Our research questions, therefore, are as follows:

RQ1: Mutations. How many mutations do traditional and our additional mutation operators produce, and how

effective are Rust test suites at detecting them? At what rate are our additional mutations subsumed at, compared to

traditional mutations?

We use this RQ to show that our new, additional mutation operators (Section 3.2) — tailored to the unique characteristics

of Rust code — are valid, and are comparable to traditional mutation operators in terms of the number of mutations they

produce, their detection rate, and the rate at which they are subsumed by traditional mutations.
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Table 2. Subjects used in our empirical study in descending order of criticality score. The subjects used are a combination of some of

the most downloaded Rust libraries and GitHub projects selected to represent a wide variety of use cases, project sizes, and testing

disciplines. Subjects are ordered according to their OpenSSF criticality score, shown in the last column.

Subject Description SLoC Unsafe
SLoC1

Unit
Tests

Crit.
Score

clap/clap_builder Command line argument parser 27941 0 (0.0%) 83 0.79

rand/rand_distr Library for sampling random distributions 6433 0 (0.0%) 128 0.76

rand/rand Library for random number generation 9178 30 (0.3%) 79 0.76

rand/rand_core Interfaces for random number generation 1651 0 (0.0%) 6 0.76

json/serde_json JSON serialization/deserialization library 22360 10 (0.0%) 135 0.73

regex/regex-syntax Regular expression parser 56934 0 (0.0%) 147 0.72

regex/regex-automata Regular expression automatas 64283 540 (0.8%) 129 0.72

regex/regex Regular expression library 11737 0 (0.0%) 51 0.72

chrono/chrono Date and time library 27741 1 (0.0%) 214 0.69

ripgrep/ripgrep Line-oriented search tool, similar to grep 12947 1 (0.0%) 114 0.69

ripgrep/grep-printer Printer for grep search results 8949 0 (0.0%) 105 0.69

ripgrep/grep-searcher Regular expression searcher 6361 4 (0.1%) 77 0.69

alacritty/alacritty OpenGL terminal emulator 19948 2609 (13.1%) 78 0.68

hashbrown/hashbrown Port of Google’s SwissTable hash map 23516 1803 (7.7%) 103 0.67

itertools/itertools Library to extend iterators 17680 15 (0.1%) 327 0.66

gleam/gleam-core Programming language for the Erlang VM 69970 0 (0.0%) 1719 0.66

image/image Image encoding/decoding/manipulation 35121 17 (0.0%) 212 0.66

bytes/bytes Library for working with bytes 9840 792 (8.0%) 125 0.65

rustls/rustls Modern TLS implementation 30737 0 (0.0%) 202 0.64

parking_lot/parking_lot Synchronization primitives 5136 367 (7.1%) 87 0.62

exa/exa Directory listing tool, similar to ls 10986 27 (0.2%) 406 0.61

bat/bat File printing tool, similar to cat 8850 0 (0.0%) 74 0.54

1
Number of SLoC that are considered to be in an unsafe safety context, according to the Rust language rules, including unsafe

definitions and blocks (counting signature lines and unsafe block delimiter lines), and excluding unsafe declarations without bodies.

RQ2: Safety. How many generated mutations are unsafe? At what rate are unsafe mutations detected? What is the

impact of evaluating these unsafe mutations?

We use this RQ to show that our approach distinguishes unsafe mutations (Section 3.5), and thus mitigates their impact:

the adverse effects of crashing mutations and mutations introducing undefined behavior.

RQ3: Reduced runtimes. What are the performance gains produced by reachability-exclusive mutation batching

with our old and new algorithms? How does the approach scale with project size and the number of mutations?

We use this RQ to show that our initial findings in our original conference paper [36] hold for a much wider set of

commonly-used Rust subject programs.

RQ4: Variance. What is the variance in mutation scores with our subjects?

We use this RQ to show that certain test behaviors, such as flaky tests and test timeouts, may affect mutation scores with

and without mutation batching.

4.1 Subjects

We started by listing the top 500 most downloaded Rust library crates — crates are Rust’s notion of packages, i.e., a

library or a binary — by “Recent Downloads” according to crates.io (Rust’s primary crate registry). In addition, we also
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collected the top 500 most starred Rust repositories — repositories which contain majority Rust code — on GitHub. From

the two datasets, we manually excluded crates that were thin wrappers around external libraries, primarily comprised

of unsafe code, contained at most an insignificant amount of executable code, used non-standard tests or a custom test

runner, or had an insignificant amount of unit tests. We combined the two datasets, resolved overlaps manually, and

grouped crates by project, i.e., GitHub repository. From this combined dataset, we selected projects with at least 100

test cases in any constituent crate. Within each selected project, we selected constituent crates with at least 75 test

cases. The final list of subjects were considered in descending order of the criticality score of the overall project given

by the 2022-06-07 OpenSSF criticality score dataset [2, 52]. The full dataset is available in our replication package [35].

In addition to this list of subjects, we included four crates that do not meet the above criteria from the original ICST

paper’s [36] subjects, namely: bat/bat, parking_lot/parking_lot, rand/rand_core, and regex/regex. We included

these four, smaller subjects to present comparative findings, and for the the sake of consistency with our original paper.

Table 2 lists the 22 subject crates involved in our experiments. These subjects vary widely in terms of intended purpose,

code size, testing methodology, and the resulting number of test cases. The largest subject, in terms of source lines of

code, is gleam/gleam-core with 69,956 lines, and the smallest is rand/rand with 1,651 lines. gleam/gleam-core has

the most test cases at 1,719, while rand/rand has the fewest test cases at 6. Compared to the 10 subjects we used in the

original ICST paper [36], these 22 subjects are significantly larger, with the largest subject in terms of the number of test

cases going from 406, in the case of exa/exa, to 1,719, in the case of gleam/gleam-core. The new set of subjects are also

a lot more varied in terms of their intended purpose and include, for example, parsers, automatas, interpreters, date and

time libraries, data encodings, data structures, synchronization primitives, graphical applications, and command-line

tools.

Table 2 also lists the number and percentage of unsafe source lines of code; lines of source code that correspond to

unsafe safety contexts, according to the Rust language rules, for each subject. This total includes unsafe definitions

and blocks (counting signature lines and unsafe block delimiter lines), and excludes unsafe declarations without

executable bodies (e.g., declarations of external C library interfaces). It is worth noting that the exclusion of unsafe

declarations without executable bodies is not a concern, since calls to these declared functions will still have to be

made from unsafe calling contexts, which mutest-rs counted. From this, we can see that 9 out of the 22 subjects

contain no unsafe lines of code, with an additional two subjects containing only 1 unsafe line of code. 18 out of

the 22 subjects had at most 0.8% of their source code be unsafe contexts. The subject with the most unsafe source

lines of code, alacritty/alacritty, had 13.1% of its source lines of code be unsafe contexts, with the majority

of these being calls to OpenGL functions. The other three subjects with significant unsafe source lines of code,

bytes/bytes, hashbrown/hashbrown, and parking_lot/parking_lot, all make use of unsafe operations to optimize

memory accesses in their low-level primitives.

4.2 Methodology

In preparation for the experiments, we forked each subject’s source code repository. This was done to pin down the

versions of the projects we were testing against, creating a stable test environment.

Rust projects primarily distinguish between two kinds of tests: unit tests, which are written as part of the program,

and integration tests, which are individual Rust files placed in a separate tests/ directory. Additional test kinds include

so-called “doctests” that evaluate Rust code blocks in documentation comments for validity, and experimental facilities

for writing benchmarks. However these were not considered in our work due to their specialized and experimental

natures respectively. This distinction extends to how these tests are compiled; with unit tests being compiled as part
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of the main program, when testing is performed (test code is omitted otherwise), and with integration test files each

analyzed and compiled as individual test programs, separately from the main program or library they correspond to.

Because of this, and because Rust compilation works by analyzing each compilation unit separately, mutest-rs cannot

currently analyze integration tests by default. While the primary focus of our research is unit tests, some of our subjects’

authors made the stylistic choice to write their unit tests in the form of integration tests. Because of this, we converted

these standalone “integration” tests into unit tests by moving them into the crate’s src/ directory. This made it possible

for mutest-rs to analyze these test cases as well, allowing for a more extensive evaluation of the subject’s test suite. All

necessary modifications to the subjects required for this evaluation are available in our replication package [35].

We wrote an experiment runner script to automatically perform the analysis on all selected subject crates. The

experiment runner invokes mutest-rs multiple times, with different sets of configuration options set each time. All

information is parsed automatically by the experiment runner from the verbose output of mutest-rs. In all of our

experiments, we configured mutest-rs to discard all unsafe mutations, since unsafe mutations are not guaranteed to be

free from undefined behavior and thus cannot be safely parallelized, as we explained in Section 3.4.2 and Section 3.5.

The experiment runner first runs mutest-rs to gather information about the generated mutant batches — including

the total number of mutations generated, and the distribution of mutations across batches — with the following

configurations presented in the original ICST conference paper [36]:

�B batching disabled; sequential evaluation of mutations with parallelized evaluation of reachable test cases

(baseline, corresponds to the example in Figure 11b);

g↓ greedy batching with reverse conflicts ordering, limited to 5 mutations in a batch;

G↓ greedy batching with reverse conflicts ordering, unlimited;

and the following additional configurations new to this paper:

R random batching (baseline);

G↑ greedy batching with conflicts ordering;

G∼ greedy batching with random ordering;

G𝜖↑ epsilon-greedy batching with 𝜖 = 0.1, and conflicts ordering;

G𝜖↓ epsilon-greedy batching with 𝜖 = 0.1, and reverse conflicts ordering;

G𝜖∼ epsilon-greedy batching with 𝜖 = 0.1, and random ordering.

After the initial runs, the experiment runner runs mutest-rs to completion for each previously listed configuration

to perform the mutation analysis. In all configurations, the same test ordering, filtering, and multi-threaded scheduling

is applied, regardless of the presence of batching. The experiment runner script performed ten evaluations for each

configuration to reduce the error in our timing measurements caused by background processes, and non-determinism.

The experiment runner script evaluated all configurations with some level of probabilistic behavior — i.e., random

batching, greedy batching with random ordering, and epsilon-greedy batching — with 30 different seeds each, with one

run performed for each seed. For each evaluation, the experiment runner collects the mutation score, the number of

mutations that the test suite detected and did not detect, the number of mutations that timed out, the number of tests

that mutest-rs evaluated to determine the detection of mutations in each mutant, and the time each stage of mutest-rs

took:

• function discovery, which consists of building the call graph of the test suite, determining which functions to

mutate, and the mutation safety of each scope (Section 3.3 and Section 3.5);
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• mutation operator application, the process of applying each mutation operator to every possible location in

the mutable functions, producing mutations (Section 3.2);

• mutation batching (Section 3.4);

• code generation, the process of applying the necessary modifications to the program’s AST, and printing the

resulting code (Section 3.2);

• compilation of the generated program;

• test profiling, the evaluation of the unmodified test suite to gather execution time metrics used for test ordering,

and determining test timeouts (Section 3.6);

• mutation evaluation, the evaluation of every mutant against the test suite (Section 3.6).

The experiment runner also recorded the total runtime of mutest-rs, which is effectively the sum of the runtime of

each of the relevant stages. This is the end-to-end time that it takes for a user ofmutest-rs to get the results of mutation

analysis from first invoking the tool. In configurations with mutation batching enabled, it includes both the overheads

of the mutation batching process, and the possible time gains in the compilation and mutation evaluation stages. We

refer to this as the total mutation analysis runtime, and this is the primary subject of RQ3.

Not all stages of mutest-rs are run, depending on whether batching is enabled or not, and while most stages are

identical across batching configurations, some perform more or less work depending on the presence of mutation

batching. While mutation batching requires that all stages of mutest-rs are run, the batching disabled (�B) configuration
omits the mutation batching step entirely. However, all configurations require that the call graph is built, as it is always

used for determining which test cases can reach which mutations. While the runtime of almost all stages should be

identical with or without batching, both the main mutation evaluation stage and the compilation stage are expected

to take a different amount of time depending on whether batching is used. As batching allows for a more compact

representation of the mutant metadata, this can speed up compilation significantly.

To provide more insight into the mutations produced by our five additional mutation operators, we perform a

dynamic mutation subsumption analysis on our subject programs. Mutation subsumption analysis is used to identify

redundancy in sets of mutations [33], which we use as a metric to compare our five additional mutation operators’

mutations to traditional mutations in RQ1. Specifically, we use dynamic mutation subsumption analysis, based on the

test case–mutation detection pairs resulting from exhaustive mutation analysis. We run these experiments separately

from the timed mutation analysis runs, as dynamic mutation subsumption analysis requires an exhaustive evaluation of

mutations, running every relevant test case for each mutation regardless of any previous detections.

In addition to these experiments, the experiment runner ran a separate, unique configuration of mutest-rs, which

performed no mutation batching, but instead generated unsafe mutations in addition to the safe mutations used in

every other experiment outlined above. This dataset including both safe and unsafe mutations was used to answer RQ2.
We ran the experiments concurrently on 10 core (20 thread) “slices” of a 64 core AMD Ryzen Threadripper 7980X

with 32 GiB of RAM each, running Fedora Server 39. We isolated each 10 core “slice” of the host computer using

Linux cgroups with each job getting exclusive access to its respective CPU cores. This effectively emulates multiple,

identical 10 core computers — representative of common developer systems — at the same time. We used the Slurm

workload manager to manage these concurrent “slices” as individual jobs, each running the experiments for a particular

subject. We built mutest-rs against the nightly-2024-05-16 version of rustc, and ran it with a thread pool of size 16

for executing the tests. Effectively, each concurrent computer “slice” allocated threads as follows:

• 16 exclusive threads to test execution (part of mutest-rs),
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Table 3. Number of function calls in each subject crate not directly resolvable to a singular function definition within Rust program

code. Total Calls refers to the total number of function calls encountered during call graph construction. Virtual Calls refers to the
number function calls that refer to trait (i.e., interface) methods that can only be precisely resolved dynamically, at runtime. Dynamic
Calls refers to the number of function calls through opaque function pointer types, which do not represent any exact function

definition. Foreign Calls refers to the number of function calls made to foreign definitions (e.g. C library interfaces), whose call graph

is not analyzed by mutest-rs.

Subject Total Calls Virtual Calls Dynamic Calls Foreign Calls

alacritty/alacritty 25848 9 (0.0%) 57 (0.2%) 0 (0.0%)
bat/bat 9871 42 (0.4%) 9 (0.1%) 0 (0.0%)
bytes/bytes 4697 20 (0.4%) 12 (0.3%) 0 (0.0%)
chrono/chrono 15710 5 (0.0%) 16 (0.1%) 0 (0.0%)
clap/clap_builder 148752 296 (0.2%) 106 (0.1%) 0 (0.0%)
exa/exa 10847 8 (0.1%) 0 (0.0%) 0 (0.0%)
gleam/gleam-core 725319 283 (0.0%) 674 (0.1%) 0 (0.0%)
hashbrown/hashbrown 17985 40 (0.2%) 25 (0.1%) 0 (0.0%)
image/image 130113 347 (0.3%) 200 (0.2%) 0 (0.0%)
itertools/itertools 66948 705 (1.1%) 9 (0.0%) 0 (0.0%)
json/serde_json 45297 2 (0.0%) 0 (0.0%) 0 (0.0%)
parking_lot/parking_lot 7772 1 (0.0%) 23 (0.3%) 24 (0.3%)
rand/rand 10841 18 (0.2%) 6 (0.1%) 1 (0.0%)
rand/rand_core 221 0 (0.0%) 0 (0.0%) 0 (0.0%)
rand/rand_distr 6542 0 (0.0%) 0 (0.0%) 3 (0.0%)
regex/regex 3962 20 (0.5%) 9 (0.2%) 0 (0.0%)
regex/regex-automata 73166 193 (0.3%) 37 (0.1%) 0 (0.0%)
regex/regex-syntax 65202 4 (0.0%) 38 (0.1%) 0 (0.0%)
ripgrep/grep-printer 6468 1 (0.0%) 0 (0.0%) 0 (0.0%)
ripgrep/grep-searcher 12065 16 (0.1%) 22 (0.2%) 0 (0.0%)
ripgrep/ripgrep 3662 43 (1.2%) 3 (0.1%) 0 (0.0%)
rustls/rustls 18232 84 (0.5%) 25 (0.1%) 0 (0.0%)

• 1 exclusive thread to test orchestration (part of mutest-rs),

• 1 exclusive thread to invoking experiments, and writing and processing mutest-rs logs (part of the experiment

runner), and

• 2 threads not used explicitly by any of our processes (however individual test cases of subjects may spawn

additional threads besides the test cases’ main thread).

4.3 Threats to Validity

It is important to consider the threats to the validity, and representativeness of the empirical results of this study.

The choice of the mutation operators applied are a threat to internal validity. Using a different set of mutation

operators may affect the number of mutations, the resulting batching of mutations, and the runtime of mutation analysis

and mutation testing. However, since the majority of the chosen mutation operators are frequently used in mutation

testing literature, we consider the reported results to be meaningful.

The potential presence of equivalent mutants is a threat to internal validity, as they can skew observed mutation

scores. To control this threat, our mutation operators implement extensive rule-based filtering of equivalent mutants,

which we describe in detail in Section 3.2. We also ensured that we used the exact same set of mutants for each tested
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mutant evaluation configuration, including the baseline non-batched evaluation, inclusive of any potentially remaining

equivalent mutants. While we acknowledge that Trivial Compiler Equivalence [42] — a technique for detecting some

cases of mutation equivalence based on whether the mutant code gets optimized to the same operations as the original

program — is a valid technique for estimating mutation equivalence of individual mutant programs, it is not directly

applicable to our meta-mutant based approach. Trivial Compiler Equivalence requires individual mutant programs for

the compiler-based optimization, while our approach generates a singular meta-mutant program containing all mutated

code branches. We consider the application of a meta-mutant compatible Trivial Compiler Equivalence approach, which

considers the equivalence of optimized meta-mutant code branches instead, an item of future work.

The choice of subjects are a threat to external validity. The reported results may be different for other crates.

Nevertheless, the analyzed crates vary in terms of program size, number of test cases, complexity and implemented

functionality, and cover many of the most common and critical projects currently available [52]. Therefore, we consider

the results to be valid, and representative.

Our mutation analysis approach is based on an extensive, conservative static call graph analysis technique. This

is used both for test–mutation reachability discovery, as well as for our mutation batching technique. As described

in detail in Section 3.3, the implementation of our call graph construction technique handles calls requiring runtime

dynamic dispatch — such as virtual calls to trait (i.e., interface) methods and dynamic calls through opaque function

pointers — by representing them as multiple call edges to all of the function definitions in the program that could

be called from that function call. This conservative approach ensures correctness, at the expense of capturing more

than the necessary amount of call relations. However, foreign calls to foreign definitions (e.g. C library interfaces) are

not represented fully in our current implementation. The presence of such foreign function calls is a potential threat

to internal validity. Table 3 lists the number of total function calls, and the number and percentage of virtual calls,

dynamic calls, and foreign calls for each of our subject crates. From this, we can see that virtual calls do not exceed 0.5%

of all calls in the large majority of cases and never exceed 1.2% of all calls; dynamic calls never exceed 0.3% of all calls;

and foreign calls are only present in 3 of the 22 subjects, with rand/rand only having 1 foreign call (0.0% of all calls),

rand/rand_distr only having 3 foreign calls (0.0% of all calls), and parking_lot/parking_lot only having 0.3% of

all of its calls being foreign calls. This shows that our call graphs — through our representation of virtual and dynamic

calls — are only marginally more expansive than necessary, and that only a small number of unresolved foreign calls

are present in 3 out of our 22 subjects.

The dynamic mutation subsumption analysis we perform for RQ1 is an approximation of “true” mutation subsump-

tion. Since it is based on the test case–mutation detection pairs resulting from mutation evaluation, the results are

dependent on the “granularity” of the test suite’s ability in distinguishing distinct program behaviors [33]. The use of

dynamic mutation subsumption analysis may be a threat to construct validity, however “true” mutation subsumption is

“undecidable to compute” [33], and not feasible to compute for our subject programs and their corresponding mutations.

When observing the effects of unsafe mutations in RQ2, we only consider those that crash any of their corresponding

test cases’ respective processes. While we focus on this effect of evaluating unsafe mutations as the most influential in

our discussion, we must note that crashes are only one possible side effect of undefined behavior, and many others

— like some memory corruption or aliasing violations — may not have obvious, observable side effects. The lack of

observing these alternative side effects is a potential threat to construct validity. We consider the analysis of other

potential side effects of unsafe mutations as an item of future work.

Defects in our compiler-integrated mutation testing tool, mutest-rs, are a threat to construct validity. We controlled

the threat in mutest-rs by maintaining and running an automated test suite based on several small example programs,
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Table 4. Numbers of mutations generated by traditional and additional mutation operators (Table 1), and the number of mutations

detected by each subject’s test suite with no mutation batching applied, and unsafe mutations excluded. The percentage of detected

mutations relative to the total number of mutations in the corresponding category is denoted in parentheses. Amongst traditional

and additional mutations, highlighted cells of total mutation counts (in blue) correspond to a higher number of mutations, and

highlighted cells of mutation detection rates (in blue) correspond to a lower detection rate in the corresponding subject.

Safe Mutations Traditional Mutations Additional Mutations
Subject Total Detected Total Detected Total Detected

alacritty/alacritty 1809 469 (25.9%) 844 212 (25.1%) 965 257 (26.6%)
bat/bat 506 345 (68.2%) 88 53 (60.2%) 418 292 (69.9%)
bytes/bytes 422 340 (80.6%) 121 102 (84.3%) 301 238 (79.1%)
chrono/chrono 2882 2532 (87.9%) 1338 1142 (85.4%) 1544 1390 (90.0%)
clap/clap_builder 1447 537 (37.1%) 468 169 (36.1%) 979 368 (37.6%)
exa/exa 888 758 (85.4%) 293 257 (87.7%) 595 501 (84.2%)
gleam/gleam-core 4173 4083 (97.8%) 522 512 (98.1%) 3651 3571 (97.8%)
hashbrown/hashbrown 273 214 (78.4%) 43 31 (72.1%) 230 183 (79.6%)
image/image 4885 3345 (68.5%) 2087 1434 (68.7%) 2798 1911 (68.3%)
itertools/itertools 1246 1107 (88.8%) 335 293 (87.5%) 911 814 (89.4%)
json/serde_json 1133 955 (84.3%) 489 421 (86.1%) 644 534 (82.9%)
parking_lot/parking_lot 163 161 (98.8%) 98 97 (99.0%) 65 64 (98.5%)
rand/rand 747 568 (76.0%) 329 257 (78.1%) 418 311 (74.4%)
rand/rand_core 179 139 (77.7%) 70 58 (82.9%) 109 81 (74.3%)
rand/rand_distr 2126 1442 (67.8%) 1679 1073 (63.9%) 447 369 (82.6%)
regex/regex 209 133 (63.6%) 28 23 (82.1%) 181 110 (60.8%)
regex/regex-automata 2698 2050 (76.0%) 1029 821 (79.8%) 1669 1229 (73.6%)
regex/regex-syntax 2709 2244 (82.8%) 1113 935 (84.0%) 1596 1309 (82.0%)
ripgrep/grep-printer 376 318 (84.6%) 165 141 (85.5%) 211 177 (83.9%)
ripgrep/grep-searcher 669 557 (83.3%) 301 246 (81.7%) 368 311 (84.5%)
ripgrep/ripgrep 97 78 (80.4%) 14 13 (92.9%) 83 65 (78.3%)
rustls/rustls 1127 713 (63.3%) 353 229 (64.9%) 774 484 (62.5%)

as well as manually analyzing the generated mutations, mutants, code, and mutation testing results. Moreover, over

the course of this study, mutest-rs has generated multiple millions of lines of valid Rust code (disregarding the

potential unchecked misuses of Unsafe Rust by explicitly generated unsafe mutations). We therefore conclude that the

implementations of the tools used in our experiments worked correctly.

Finally, we make our tool, scripts, data, detailed execution logs, and the repository forks of our subjects available in

our replication package [34, 35]. All versions of our tool, mutest-rs, are available at https://mutest.rs.

5 Results

RQ1: Mutations. How many mutations do traditional and our additional mutation operators produce, and
how effective are Rust test suites at detecting them? At what rate are our additional mutations subsumed at,
compared to traditional mutations?

In this paper and the original conference paper [36], we introduce five new, additional mutation operators in addition

to a selection of thirteen traditional mutation operators widely applied in mutation analysis literature (Table 1). To

evaluate these additional mutation operators, we look at the number of mutations they produce, and the number of

these mutations which are then detected by the respective program’s test suite, and compare them to those of our
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comprehensive set of traditional mutation operators. Table 4 lists the number of mutations produced by all mutation

operators, and additionally lists the number of these mutations grouped by whether they were produced by a traditional

mutation operator, or an additional mutation operator. In addition, the number of mutations detected by the respective

program’s test suite —with nomutation batching applied (�B) — is listed for each category of mutations, with a percentage

of detected mutations relative to the total number of mutations in the corresponding category.

From this, we can determine that for 20 out of 22 subjects, the additional mutation operators collectively generated

significantly more mutations than the traditional mutation operators, with only one subject, rand/rand_distr, having

significantly fewer mutations produced by additional mutation operators than by traditional mutation operators. The

largest difference was in the case of gleam/gleam-core, where the additional mutation operators produced 3,129 more

mutations than the traditional mutation operators. This can be attributed to the subject program making heavy use of

function calls, while having fewer instances of complex mathematical or Boolean expressions.

When it comes to the detectability of these additional mutations, less than half of the subjects had a similar rate of

detection (within 3%) to the mutations produced by traditional mutation operators. On average, across all subjects, our

additional mutations were detected at a very similar rate to the traditional mutations, with a mean rate of 75.5% of

additional mutations (median of 79.3%) and 76.6% of traditional mutations (median of 82.5%) being detected by our

subjects’ test suites. The largest deviation in detection rate was in the case of regex/regex, whose additional mutations

were detected at a 21.4% lower rate than traditional mutations. In the case of regex/regex, traditional mutation

operators only produced 28 mutations, of which 82.1% were detected, while the additional mutation operators produced

four times more mutations at 110, of which only 60.8% were detected. Similarly, in the case of ripgrep/ripgrep,

traditional mutation operators only produced 14 mutations, of which 92.9% were detected, while the additional mutation

operators produced almost six times more mutations at 81, of which only 78.3% were detected; a difference of 14.5%.

The largest difference in detection rate where traditional mutations were detected at a lower rate than our additional

mutations was in the case of rand/rand_distr, where additional mutation operators produced 73.4% fewer mutations

than traditional mutation operators, and the mutation detection rate increased by 18.6%, meaning that more of the

additional mutations were detected.

In addition to the mutation detection-based analysis above, we also performed dynamic mutation subsumption

analysis on our generated mutations, grouped by their mutation operators. It is worth noting that, as opposed to static

mutation subsumption — which gives concrete subsumption relations between either pairs of mutations or all potential

mutations that can be generated by pairs of mutation operators applied to the same locations — dynamic mutation

subsumption is derived only from test case–mutation detection pairs, and is thus limited by the “granularity” of the test

suite in distinguishing distinct program behaviors. Therefore, these numbers can only be seen as an approximation of

static mutation subsumption rates. Table 5 lists the rate mutations generated by our additional mutation operators

are subsumed by mutations generated by traditional mutation operators, as well as the rate mutations generated by

traditional mutation operators are subsumed by other mutations generated by traditional mutation operators, with

the latter acting as a baseline for our additional mutation operators. In addition, the table again lists the number of

mutations produced by all mutation operators.

From this, we see that the rates of mutation subsumptions between mutations generated by our additional mutation

operators and mutations generated by traditional mutation operators are largely comparable, and in some cases even

significantly lower. 18 out of the 22 subjects show high rates (≥ 60%) of mutation subsumption amongst traditional

mutations. The baseline corresponding mutation subsumption rate of traditional mutations is matched or lower

for 19 out of the 22 subjects with CallDelete and CallValueDefaultShadow mutations, 12 out of the 22 subjects by
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Table 5. Rate mutations are dynamically subsumed by mutations generated by traditional mutation operators, for each subject crate,

based on test–mutation detections. Each value refers to the percentage of mutations of the corresponding kind that are dynamically

subsumed by (other) traditional mutations. A crossed-out cell (—) means that the corresponding mutation operator did not generate

any mutations for the subject. Highlighted cells, in blue, correspond to mutation subsumption rates of additional mutation operators

that match or are lower than the mutation subsumption rate of traditional mutations of the same subject.

. . .mutations subsumed by other traditional mutations

Subject Safe
Mut’s Traditional

Arg-
Default-
Shadow

Call-
Delete

CallValue-
Default-
Shadow

Continue-
Break-
Swap

Range-
Limit-
Swap

alacritty/alacritty 1809 24.9% 28.0% 22.1% 21.8% 41.7% 23.1%

bat/bat 506 53.4% 55.5% 55.4% 53.8% 50.0% 75.0%

bytes/bytes 422 81.2% 40.5% 44.5% 44.5% — 62.5%

chrono/chrono 2882 84.2% 74.9% 77.7% 77.7% 100.0% 52.9%

clap/clap_builder 1447 35.7% 42.9% 32.5% 32.0% 0.0% 50.0%

exa/exa 888 84.3% 53.9% 56.7% 56.7% 100.0% —

gleam/gleam-core 4173 93.5% 69.6% 89.9% 90.9% 81.3% 40.0%

hashbrown/hashbrown 273 62.8% 42.1% 43.8% 46.7% — 0.0%

image/image 4885 68.3% 71.6% 60.0% 60.0% 71.4% 77.1%

itertools/itertools 1246 86.3% 78.7% 64.4% 63.7% 42.9% 76.5%

json/serde_json 1133 84.1% 74.2% 72.1% 68.9% — 100.0%

parking_lot/parking_lot 163 41.8% 14.3% 17.2% 34.5% — —

rand/rand 747 77.2% 78.6% 66.5% 66.0% — 75.0%

rand/rand_core 179 82.9% 85.7% 73.3% 73.3% — 60.0%

rand/rand_distr 2126 63.4% 95.2% 73.5% 73.5% 66.7% 60.0%

regex/regex 209 71.4% 36.4% 34.2% 35.5% 100.0% 80.0%

regex/regex-automata 2698 74.7% 82.4% 63.3% 61.9% 41.7% 92.3%

regex/regex-syntax 2709 82.7% 75.3% 79.8% 75.9% 65.2% 78.1%

ripgrep/grep-printer 376 79.4% 89.7% 76.5% 76.5% 100.0% 100.0%

ripgrep/grep-searcher 669 81.4% 87.2% 81.5% 100.0% 83.3% 81.4%

ripgrep/ripgrep 97 85.7% 83.3% 77.8% 77.8% 80.0% —

rustls/rustls 1127 62.6% 43.3% 56.8% 55.2% 100.0% 47.8%

ArgDefaultShadow mutations, 12 out of the 19 applicable subjects by RangeLimitSwap mutations, and 7 out of the 16

applicable subjects by ContinueBreakSwap mutations. Overall, we see an improvement in mutation subsumption rates

in 68.3% of the subject-additional mutation pairs (where the corresponding mutation was applicable to the subject)

compared to the corresponding rate of traditional mutation subsumption.

For all 22 subjects, at least one of the additional mutation operators produced mutations which had lower mutation

subsumption rates than traditional mutations. For 17 out of the 22 subjects, at least three of the additional mutation

operators produced mutations which had lower mutation subsumption rates than traditional mutations. Across all

five additional mutation operators, the mean rate of mutation subsumption was matched or lower for 18 out of 22

subjects compared to traditional mutations, with the maximum increase of 10.4% in the case of rand/rand_distr, and

the maximum decrease of 33.2% in the case of bytes/bytes.

Across all 22 subjects, all five additional mutation operators had lower mean mutation subsumption rates than

traditional mutations, with CallDelete and CallValueDefaultShadow having 11.0% and 9.8% lower mean mutation

subsumption rates respectively, ArgDefaultShadow and RangeLimitSwap improving on traditional mutations overall
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with their 7.2% and 6.2% respective lower mean mutation subsumption rates, and ContinueBreakSwap showing similar

rates with a 0.7% lower mean mutation subsumption rate compared to traditional mutations.

There is no correlation between the number of mutations generated and the prevalence of mutation subsumptions,

with higher numbers of mutations not correlating with higher rates of mutation subsumptions amongst traditional

mutations (𝜌 = 0.10), or otherwise. However, rates of mutation subsumptions of our additional mutations by traditional

mutations are correlated with rates of mutation subsumptions of traditional mutations by other traditional mutations,

with CallDelete and CallValueDefaultShadow being the two most correlated (𝜌 = 0.80 and 𝜌 = 0.77 respectively),

followed by ArgDefaultShadow (𝜌 = 0.66), ContinueBreakSwap (𝜌 = 0.59) and RangeLimitSwap (𝜌 = 0.44). This is

expected, and is most likely to be caused by the respective subject test suites’ differing “ability” to distinguish distinct

program behaviors.

In conclusion for RQ1, the five additional mutation operators produce, in general, more mutations than

the thirteen traditional mutation operators widely applied in mutation analysis literature. These additional

mutations are, in the majority of cases, detected at a similar rate to traditional mutations, with a mean detection

rate of 75.5% for additional mutations and 76.6% for traditional mutations across our subjects. However, there

are big variances in detection rates across the individual subjects, with some subjects detecting additional

mutations at a significantly lower rate than traditional mutations, by up to 21.4%, and with other subjects

detecting traditional mutations at a significantly lower rate than additional mutations, by up to 18.6%. Our

additional mutations are dynamically subsumed, on average, at a lower rate by traditional mutations than

traditional mutations are subsumed by other traditional mutations, according to the subjects’ test suites,

with 68.3% of the subject-additional mutation pairs having matched or lower subsumption rates than the

corresponding traditional mutations.

RQ2: Safety. How many generated mutations are unsafe? At what rate are unsafe mutations detected? What
is the impact of evaluating these unsafe mutations?

We introduced the notion of mutation safety in Section 3.5 to be able to distinguish between mutations that may

introduce undefined behavior into a program, from those that will not. To quantify the impact that these potentially

unsafe mutations might have on mutation analysis, we compare the number of unsafe mutations generated, to the

number of safe mutations generated. Table 6 lists the number of safe mutations, the number of unsafe mutations,

and the number of unsafe mutations which caused a crash for each subject crate, alongside the percentage of unsafe

mutations compared to the total number of mutations generated, and the percentage of crashed mutations compared to

the number of unsafe mutations generated.

From this, we see that mutest-rs generates unsafe mutations for 6 out of the 13 subjects with any unsafe SLoC

(Table 2), as the majority of subjects do not contain enough unsafe code formutest-rs to generate unsafe mutations. The

subjects mutest-rs was able to generate unsafe mutations for are the ones with the most significant amount of unsafe

SLoC (Table 2), with the exception of alacritty/alacritty, which has no unsafe mutations despite its significant

unsafe SLoC count. This can be attributed to the fact that the majority of unsafe SLoC in alacritty/alacritty’s

code are simple calls to the foreign OpenGL C API functions. However, out of the 6 subjects that mutest-rs was able to

generate unsafe mutations for, 2 of the subjects contained crashing mutations, which were all successfully distinguished

by our technique, thus avoiding all potentially crashing mutations. Evaluating these crashing unsafe mutations would
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Table 6. Number of unsafe mutations compared to the number of safe mutations generated for each subject crate. The percentage of

crashed mutations relative to the number of unsafe mutations is denoted in parentheses.

Safe Mutations Unsafe Mutations Crashed Mutations1

Subject Total Detected Total Detected Total / Detected

alacritty/alacritty 1809 469 (25.9%) 0 — —

bat/bat 506 345 (68.2%) 0 — —

bytes/bytes 422 340 (80.6%) 303 227 (74.9%) 8 (2.6%)
chrono/chrono 2882 2532 (87.9%) 0 — —

clap/clap_builder 1447 537 (37.1%) 0 — —

exa/exa 888 758 (85.4%) 0 — —

gleam/gleam-core 4173 4083 (97.8%) 0 — —

hashbrown/hashbrown 273 214 (78.4%) 86 79 (91.9%) 1 (1.2%)
image/image 4885 3343 (68.4%) 0 — —

itertools/itertools 1246 1107 (88.8%) 0 — —

json/serde_json 1133 955 (84.3%) 4 0 (0.0%) 0 (0.0%)
parking_lot/parking_lot 163 163 (100.0%) 171 156 (91.2%) 0 (0.0%)
rand/rand 747 568 (76.0%) 14 12 (85.7%) 0 (0.0%)
rand/rand_core 179 139 (77.7%) 0 — —

rand/rand_distr 2126 1442 (67.8%) 0 — —

regex/regex 209 133 (63.6%) 0 — —

regex/regex-automata 2698 2050 (76.0%) 398 90 (22.6%) 0 (0.0%)
regex/regex-syntax 2709 2243 (82.8%) 0 — —

ripgrep/grep-printer 376 318 (84.6%) 0 — —

ripgrep/grep-searcher 669 557 (83.3%) 0 — —

ripgrep/ripgrep 97 78 (80.4%) 0 — —

rustls/rustls 1127 713 (63.3%) 0 — —

1
Crashes are only one possible side effect of undefined behavior, and many others – like some memory corruption or aliasing violations

— may not have obvious side effects.

have prohibited the efficient evaluation of mutations by crashing the analysis process either directly, or through subtle

uncontrollable corruptions introduced into the running process.

For 5 out of the 6 subjects, mutest-rs was able to generate fewer unsafe than safe mutations, with the only exception

being the case of parking_lot/parking_lot, where mutest-rs generated 163 safe mutations and 8 more unsafe

mutations at 171. This can be primarily attributed to parking_lot/parking_lot being the smallest subject, in terms of

SLoC, with one of the highest proportions of unsafe SLoC (Table 2). 2 subjects had a similar number of safe and unsafe

mutations (including parking_lot/parking_lot), and 4 subjects had considerably more safe than unsafe mutations.

Among the subjects that we were able to generate unsafe mutations for, the detection rate of unsafe mutations

is significantly different from safe mutations in all cases, with the most significant being regex/regex-automata,

where only 22.6% of unsafe mutations are detected compared to 76.0% of safe mutations, a difference of 53.4%. While

there was a larger difference in detection rate in the case of json/serde_json, this was only because none of its four

unsafe mutations are detected, while 84.3% of its safe mutations are detected. Overall, from the 6 subjects with unsafe

mutations available, we can see that the detection rate of unsafe mutations is generally lower than the detection rate of

safe mutations, which may suggest that unsafe code is less thoroughly tested.

While the data shows that in the majority of cases no unsafe mutations are generated due to the lack of unsafe code, it

also highlights that a portion of unsafe mutations are crashing mutations, which when not properly discerned, can result
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Table 7. Mean mutation analysis runtimes in seconds of safe mutations across the various subject crates without mutation batching

(�B), and with mutation batching using the various mutation batching configurations (R, G↑ , G↓ , g↓ , G∼, G𝜖↑ , G𝜖↓ , G𝜖∼, as defined in

Section 4.2). Highlighted cells, in blue, correspond to the lowest mean mutation analysis runtime for each subject.

Subject �B R G↑ G↓ g↓ G∼ G𝜖↑ G𝜖↓ G𝜖∼

alacritty/alacritty 30.5 36.8 27.8 27.9 28.0 36.7 36.4 36.7 36.8

bat/bat 11.2 11.7 10.6 10.4 10.4 11.6 11.4 11.6 11.5

bytes/bytes 22.6 28.7 24.2 26.0 31.3 23.2 25.1 25.8 23.5

chrono/chrono 76.1 59.5 49.7 50.8 49.6 60.6 60.9 59.9 59.4

clap/clap_builder 14.5 23.4 14.2 13.3 12.1 23.2 21.4 22.7 23.0

exa/exa 7.6 9.4 6.8 6.8 6.9 9.6 9.6 9.6 9.6

gleam/gleam-core 461.0 403.4 397.8 401.2 387.2 406.4 402.2 402.7 401.5

hashbrown/hashbrown 20.0 19.5 18.8 18.8 18.6 19.7 19.4 19.4 19.6

image/image 545.1 517.1 483.2 535.1 538.6 516.1 494.5 521.4 482.5

itertools/itertools 21.5 17.9 13.8 14.8 13.8 17.5 17.5 18.3 18.1

json/serde_json 13.8 12.8 9.5 9.0 9.8 12.8 12.4 12.4 12.7

parking_lot/parking_lot 161.1 118.9 121.5 119.8 120.0 119.7 120.6 120.0 118.0

rand/rand 17.0 18.3 15.7 18.6 18.3 17.7 17.7 19.4 17.7

rand/rand_core 0.6 0.8 0.5 0.5 0.5 0.8 0.8 0.8 0.8

rand/rand_distr 119.7 125.4 104.7 519.9 482.6 124.4 115.4 307.2 125.6

regex/regex 2.8 3.3 2.7 2.8 2.8 3.3 3.2 3.1 3.3

regex/regex-automata 1385.6 1295.4 1600.0 1453.7 1454.5 1596.6 1628.2 1493.9 1593.7

regex/regex-syntax 117.1 151.2 126.8 134.7 134.1 157.8 161.1 171.7 157.8

ripgrep/grep-printer 4.1 4.6 4.0 3.9 3.9 4.6 4.6 4.5 4.6

ripgrep/grep-searcher 143.0 147.1 143.8 142.3 142.7 141.4 147.2 145.9 144.4

ripgrep/ripgrep 2.8 2.8 2.9 2.9 2.9 3.1 2.8 2.8 3.2

rustls/rustls 22.4 20.7 17.3 18.0 10.7 19.1 19.6 20.0 19.3

in the inability to run an efficient mutation analysis evaluation process to completion. Crashing is only one possibly

side effect of unsafe mutations, and the remaining unsafe mutations may have each caused silent memory corruption,

aliasing violations, or other silent undefined behavior that are difficult to detect, and can all non-deterministically

influence the results of mutation analysis if they are not isolated into separate processes.

In conclusion for RQ2, while only 6 out of the 22 subjects resulted in mutations which were unsafe, 2 out

of these 6 subjects contained crashing mutations. Our technique is able to successfully distinguish unsafe

mutations from safe mutations, and thus avoid all crashing mutations in all cases. From the 6 subjects with

unsafe mutations available, we can determine that unsafe mutations are generally detected at a lower rate than

safe mutations, by up to 53.4% less, which may suggest that unsafe code is less thoroughly tested.

RQ3: Reduced runtimes. What are the performance gains produced by reachability-exclusive mutation
batching with our old and new algorithms? How does the approach scale with project size and the number
of mutations?

The primary goal of mutation batching is to reduce mutation analysis runtimes. This is done by increasing the number

of test cases that can be evaluated in parallel at any given time, leading to a higher utilization of the available resources,

and thus reducing the overall time required for mutation analysis to complete.
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Fig. 12. Mean mutation analysis runtimes of safe mutations across the various subject crates with the various deterministic greedy

mutation batching configurations (G↑ , G↓ , g↓), relative to mutation analysis runtimes without mutation batching (�B), in percentages.

Table 7 shows the mean total runtimes of mutation analysis in seconds of safe mutations across the subject crates of

various sizes without mutation batching (�B), and with mutation batching using the various algorithms and configurations

(R, G↑, G↓, g↓, G∼, G𝜖↑, G𝜖↓, G𝜖∼). These runtimes are the total time taken formutest-rs to process the subject programs,

generate and batch mutations (where applicable), and perform mutation analysis by evaluating the test cases against

the mutants, referred to as the total mutation analysis runtime (Section 4.2).

Reduction of Mutation Analysis Runtimes with Deterministic Greedy Mutation Batching. When comparing total mutation

analysis runtimes between the non-batched (�B), and the greedily, deterministically batched (G↑, G↓, g↓) runs (Figure 12),
we see an improvement in 18 out of the 22 subjects in at least one of the batched configurations Among the four

non-improved subjects, ripgrep/ripgrep shows marginally longer runtimes, by 0.1 seconds, with greedy mutation

batching compared to the baseline non-batched runs. The other three non-improved subjects are all significantly

impacted by large variances in test case timeouts. In the case of bytes/bytes and regex/regex-syntax, we see an

increase of around 1% in the rate of mutation timeouts (i.e., the proportion of all mutations of the subject which timed

out) over the baseline non-batched runs, while in the case of regex/regex-automata, all mutation analysis runs are

significantly impacted by test case timeouts, with a baseline mean rate of mutation timeouts of 50.0%, rising to between

88.2% and 91.3% during the bathed runs. Among the subjects with improved runtimes, 6 subjects exhibit marginal

improvement of less than a second. These are primarily small subjects with unbatched (�B) runtimes under fifteen

seconds. The other 12 subjects see much more significant improvements. The largest relative improvement in runtime

is in the case of rustls/rustls, where our approach reduced the original, unbatched (�B) runtime by 52.3% using the

g↓ mutation batching configuration. The largest absolute improvement in runtime is in the case of gleam/gleam-core,

where our approach reduced the original, unbatched (�B) runtime of 461.0 seconds (∼ 7.7 minutes) down to 387.2 seconds

(∼ 6.4 minutes), by 16.0%, using the g↓ mutation batching configuration, an improvement of 73.8 seconds, or about 1.2

minutes.
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Fig. 13. Mean mutation analysis runtimes of safe mutations across the various subject crates with the various deterministic greedy

mutation batching configurations (G↑ , G↓ , g↓), relative to mutation analysis runtimes with random batching (R), in percentages.

Comparing Deterministic Greedy Mutation Batching to RandomMutation Batching. Comparing non-batched (�B) mutation

analysis runtimes to those of the random baseline batches (R), we see that 9 subjects have improved mean mutation

analysis runtimes with random batching (R), and 7 subjects have regressed mean mutation analysis runtimes with

random batching (R), with the remaining 6 subjects having similar mean mutation analysis runtimes to their unbatched

(�B) runs. Among the 9 subjects with significantly improved mutation analysis runtimes, 4 of the subjects are large —

with mutation analysis runtimes over 150 seconds, and 5 of the subjects are medium-sized — with mutation analysis

runtimes around 10 to 80 seconds.

In comparison to the baseline random batching (R) runtimes, the deterministically batched (G↑,G↓, g↓) runs (Figure 13)
see further significant improvements with the subjects where random batching (R) already had a significant effect, and

an additional 9 subjects where the deterministically batched (G↑, G↓, g↓) runs improve on runtimes, where random

batching (R) did not. For all but three subjects, at least one of the deterministically batched (G↑, G↓, g↓) runs have
significantly lower mutation analysis runtimes than with the baseline random batching (R), with the exception of

ripgrep/ripgrep, parking_lot/parking_lot, and regex/regex-automata. In the case of ripgrep/ripgrep and

parking_lot/parking_lot, the difference is marginal, with deterministically batched (G↑, G↓, g↓) runs taking 0.1 and

0.9 seconds longer respectively. In the case of regex/regex-automata, the deterministically batched (G↑, G↓, g↓) runs
have longer runtimes by 10.9%, largely due to a difference in the rate of mutation timeouts.

Comparing The Various Ordering Heuristics Used with Deterministic Greedy Mutation Batching. To look at the effects of

the greedy mutation batching algorithm’s ordering heuristic, we compare total mutation analysis runtimes between the

various greedily, deterministically batched (G↑, G↓, g↓) runs, and the greedily batched runs using random ordering

(G∼), which we use as a baseline (Figure 14).

Compared to the greedily batched runs using random ordering (G∼), the greedily batched runs using the various

conflict orderings (G↑, G↓, g↓) have lower mutation analysis runtimes in the case of 20 subjects, while random ordering
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Fig. 14. Mean mutation analysis runtimes of safe mutations across the various subject crates with the various deterministic greedy

mutation batching configurations (G↑ , G↓ , g↓), relative to mutation analysis runtimes with deterministic greedy mutation batching

using random ordering (G∼), in percentages.

has lower mutation analysis runtimes in the case of only 2 subjects. The various conflict orderings thus show a consistent

improvement over the baseline random ordering.

Comparing the two conflict orderings with each other (G↑ vs. G↓, g↓), we see that ascending ordering by number

of conflicts (G↑) produces lower mutation analysis runtimes in the case of 7 subjects, while descending ordering by

number of conflicts (G↓, g↓) produces lower mutation analysis runtimes in the case of 11 subjects. While the difference

is marginal in the case of most subjects, it is important to point out the case of rand/rand_distr, which has outlier

mutation analysis runtimes when applying greedy mutation batching with descending ordering by number of conflicts

(G↓, g↓), as mutation analysis runtimes are increased well beyond the original, non-batched runtimes, which is not the

case when using ascending ordering by number of conflicts. This is because while only 2.7% of mutations time out

when using greedy mutation batching with ascending ordering by number of conflicts (G↑), same rate as with baseline,

unbatched runs, using descending ordering by number of conflicts (G↓, g↓) results in 45.9% and 53.1% of mutations

timing out respectively.

Overall, we can determine that using either ascending ordering by number of conflicts (G↑) or descending ordering

by number of conflicts (G↓) results in lower mutation analysis runtimes at about the same rate, with the difference

between the two orderings being marginal in the majority of cases.

The Effects of Limiting the Maximum Size of Mutation Batches on Deterministic Greedy Mutation Batching. To look at the

effects of limiting the maximum size of mutation batches on the greedy mutation batching algorithm, we compare total

mutation analysis runtimes between two versions of the greedily batched mutation analysis runs, one with no limit

on the maximum size of mutation batches (G↓), and one with a limit of 5 on the maximum size of mutation batches

(g↓), referred to as “small batching” in the original conference paper [36] (Figure 15). We see that, in the case of 18

subjects, the two configurations have very similar total mutation analysis runtimes, within three seconds of each other,
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Fig. 15. Mean mutation analysis runtimes of safe mutations across the various subject crates with deterministic greedy mutation

batching with a limit of 5 on the maximum size of mutation batches (g↓), relative to mutation analysis runtimes with no limit on the

maximum size of mutation batches (G↓), in percentages.

with the remaining 4 subjects showing more significant differences. Amongst the 4 subjects with more significant

differences, only one subject, bytes/bytes, had worse runtimes by limiting the size of the mutation batches, with the

“smaller batches” (g↓) taking 31.3 seconds, 5.3 seconds longer than without limiting the maximum size of mutation

batches (G↓), a 20.3% difference. The remaining 3 subjects benefitted from limiting the size of the mutation batches,

with gleam/gleam-core taking 14.0 seconds less using the “smaller batches” (g↓), a 3.5% difference, rand/rand_distr

taking 37.2 seconds less, a 7.2% difference, and most significantly rustls/rustls, taking 7.4 seconds less with the

batch size limits enabled, a difference of 40.9%.

Overall, while limiting the maximum size of mutation batches (g↓) resulted in faster mutation analysis runtimes in

the case of 12 subjects, and not limiting the maximum size of mutation batches (G↓) resulted in faster mutation analysis

runtimes in the case of 10 subjects, it is still difficult to determine which of them provide a higher reduction in runtimes

overall, as the two tested configurations (G↓, g↓) perform similarly across the majority subjects, with the differences

being largely marginal.

Comparing Epsilon-Greedy Mutation Batching to Deterministic Greedy Mutation Batching. To look at the effects of the

additional 𝜖 parameter in our new epsilon-greedy mutation batching algorithm, we compare total mutation analysis

runtimes between the deterministic non-𝜖 (G↑, G↓, G∼), and the 𝜖 (G𝜖↑, G𝜖↓, G𝜖∼) variants of the corresponding greedily

batched runs (Figure 16).

First, we compare the baseline batching cases with random ordering (G∼ vs. G𝜖∼), where we see the two perform

very similarly, with runtimes within five percent of each other in all except one cases, and with the 𝜖 variant of the

greedy mutation batching algorithm having lower mean runtimes in the case of 12 subjects, and the non-𝜖 variant

having lower mean runtimes in the case of 10 subjects.
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Fig. 16. Mean mutation analysis runtimes of safe mutations across the various subject crates with epsilon-greedy mutation batching

(G𝜖↑ , G𝜖↓ , G𝜖∼), relative to mutation analysis runtimes with deterministic greedy mutation batching using random ordering (G∼), in
percentages.

Comparing the resulting mean mutation analysis runtimes between 𝜖 and non-𝜖 greedy mutation batching with

ascending ordering by number of conflicts (G↑ vs. G𝜖↑), we see a much bigger difference, with the 𝜖 variant (G𝜖↑)

having lower runtimes in the case of only 2 subjects, and the non-𝜖 variant (G↑) having lower runtimes in the case

of the remaining 20 subjects, with significant differences across almost all subjects. Notably, the 𝜖 variant (G𝜖↑)

performs significantly worse in the cases of alacritty/alacritty, chrono/chrono, clap/clap_builder, exa/exa,

json/serde_json, itertools/itertools, and regex/regex-syntax.

Similarly, comparing the resulting mean mutation analysis runtimes between 𝜖 and non-𝜖 greedy mutation batching

with descending ordering by number of conflicts (G↓ vs. G𝜖↓), we see the 𝜖 variant (G𝜖↓) having lower runtimes in the

case of only 4 subjects, and the non-𝜖 variant (G↓) having lower runtimes in the case of the remaining 18 subjects,

with similarly significant differences across almost all subjects. Notably, the 𝜖 variant (G𝜖↓) performs significantly

worse in the cases of alacritty/alacritty, chrono/chrono, clap/clap_builder, exa/exa, itertools/itertools,

json/serde_json, and regex/regex-syntax. The 𝜖 variant (G𝜖↓) however performs significantly better, in comparison,

in the case of rand/rand_distr, with 26.7% fewer mutation timeouts.

Overall, we can determine that using epsilon-greedy mutation batching with 𝜖 = 0.1 introduces a lot of noise into the

algorithm, resulting in generally worse mutation analysis runtimes across the majority of subjects. It is worth noting

that the results may differ with different values of 𝜖 .

Improvements in Compilation Times. Because mutation batching — in addition to improving the time it takes to evaluate

mutations through increased parallelism — also reduces the amount of meta-mutant metadata required, it can have a

positive effect on compilation times, which is a significant part of the total mutation analysis runtime for compiled

languages like Rust. This is especially important for Rust, as it performs significant static analysis on the program

during each compilation. Table 8 shows the mean time it took, in seconds, to compile the meta-mutant of safe mutations
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Table 8. Mean compilation times in seconds of safe mutations across the various subject crates without mutation batching (�B),
and with mutation batching using the various mutation batching configurations (R, G↑ , G↓ , g↓ , G∼, G𝜖↑ , G𝜖↓ , G𝜖∼, as defined in

Section 4.2). Highlighted cells, in blue, correspond to the lowest mean compilation times for each subject.

Subject �B R G↑ G↓ g↓ G∼ G𝜖↑ G𝜖↓ G𝜖∼

alacritty/alacritty 12.8 17.8 8.9 8.9 8.9 17.9 17.4 17.6 17.8

bat/bat 2.1 2.6 1.7 1.7 1.7 2.6 2.4 2.6 2.5

bytes/bytes 1.3 1.3 0.7 0.8 0.7 1.3 1.2 1.3 1.2

chrono/chrono 56.2 41.3 31.4 33.1 31.3 42.4 42.6 41.9 41.3

clap/clap_builder 11.2 20.0 10.8 9.9 8.9 19.9 18.1 19.4 19.7

exa/exa 4.9 6.8 4.2 4.2 4.2 6.9 7.0 6.9 6.9

gleam/gleam-core 208.7 192.8 168.2 167.4 167.7 193.4 190.4 189.1 189.1

hashbrown/hashbrown 1.2 1.4 0.9 0.8 0.9 1.4 1.3 1.3 1.4

image/image 165.5 103.1 88.6 77.6 78.6 104.1 114.9 97.8 98.0

itertools/itertools 11.5 8.0 4.6 4.5 4.6 8.0 8.1 8.0 8.1

json/serde_json 10.4 9.8 6.5 6.0 6.9 9.8 9.4 9.5 9.7

parking_lot/parking_lot 0.6 0.8 0.5 0.5 0.5 0.8 0.6 0.7 0.9

rand/rand 2.9 2.7 1.5 1.5 1.8 2.7 2.7 2.7 2.7

rand/rand_core 0.3 0.6 0.3 0.3 0.3 0.6 0.6 0.6 0.6

rand/rand_distr 27.2 12.5 9.0 8.5 7.7 12.6 12.7 12.7 12.5

regex/regex 1.2 1.7 1.1 1.2 1.2 1.7 1.6 1.6 1.7

regex/regex-automata 28.5 41.0 17.2 14.2 14.8 42.6 42.5 40.8 41.4

regex/regex-syntax 28.0 66.6 29.7 28.8 29.0 66.9 65.5 66.8 66.3

ripgrep/grep-printer 1.6 2.0 1.4 1.4 1.4 2.0 2.0 2.0 2.0

ripgrep/grep-searcher 2.9 5.5 3.2 2.9 3.2 6.2 3.6 4.6 6.3

ripgrep/ripgrep 1.4 1.4 1.4 1.4 1.4 1.7 1.4 1.4 1.7

rustls/rustls 8.5 6.4 4.2 4.2 3.5 6.4 6.5 6.3 6.4

generated by mutest-rs, across the subject crates of various sizes without mutation batching (�B), and with mutation

batching using the various algorithms and configurations (R, G↑, G↓, g↓, G∼, G𝜖↑, G𝜖↓, G𝜖∼).

From this, we see that greedy mutation batching (G↑, G↓, g↓) improves meta-mutant compilation times in all cases,

with the exception of regex/regex-syntax, where compilation times remain comparable. In some cases, such as when

non-batched meta-mutant compilation times are significant, mutation batching improves mutation analysis runtimes

significantly through a reduction in compile times. In other cases, such as parking_lot/parking_lot, the difference

in compilation times is minimal, however mutation analysis runtimes are significantly reduced through the improved

parallelism of test evaluation during mutation evaluation with mutation batching. We can also determine that mutation

batching with random ordering (G∼), and epsilon-greedy mutation batching configurations (G𝜖↑, G𝜖↓, G𝜖∼) improve

compile times in fewer cases, primarily amongst subjects with longer non-batched compilation times.

Overall Trends Across Mutation Batching Configurations. Overall, across all of the mutation batching configurations, the

subjects gleam/gleam-core, image/image, parking_lot/parking_lot, chrono/chrono, and rand/rand_distr have

themost improvedmutation analysis runtimes, while rustls/rustls sees themost significant improvement in runtimes

proportionally, with an improvement of up to 52.3%. Only three subjects, bytes/bytes, regex/regex-automata and

regex/regex-syntax, have worse mean mutation analysis runtimes across all of the mutation batching configurations

compared to the original, non-batched (�B) runs, primarily due to an increase in the number of timed out mutations.

Manuscript submitted to ACM



A Comprehensive Analysis of Batching Algorithms for Efficient, Safe, Parallel Mutation Analysis in Rust 43

Among the 22 subjects, only one, namely rand/rand_distr, has outlier mutation analysis runtimes with certain

mutation batching configurations applied, which is also caused by an increase in the number of timed out mutations.

Large subjects — those with high non-batched mutation analysis runtimes — reliably see improvement across the

board, while smaller subjects have more varied results, with the original greedy algorithms performing well. This

suggests that we can expect to see similarly large improvements with other large projects as well, and potentially

further improvements as project sizes, numbers of tests cases, and mutation analysis runtimes grow further. Looking at

the variance in the rate of improvement, we can determine that subjects with shorter non-batched mutation analysis

runtimes have more variance in the rate of improvement across the various mutation batching configurations.

Some of the reduction in runtime in general can be attributed to the reduction in the amount of embedded meta-

mutant metadata with mutation batching, as the same number of mutations can be represented with significantly fewer

mutant program descriptors. In a compiled language, like Rust, the amount of such metadata has a significant impact

on compilation times, and as such should be minimized.

In conclusion for RQ3, we see an improvement in 19 out of the 22 subjects in mean mutation analysis

runtimes using greedy mutation batching, with improvements of up to 52.3% in the case of rustls/rustls,

and 73.8 seconds in the case of gleam/gleam-core. We can determine that overall, using either ascending

ordering by number of conflicts or descending ordering by number of conflicts as an ordering heuristic for

greedy mutation batching results in lower mutation analysis runtimes at around the same rate, and that it is

difficult to determine whether limiting the maximum size of mutation batches improves mutation analysis

runtimes. We see that epsilon-greedy mutation batching with 𝜖 = 0.1 results in marginally worse mutation

analysis runtimes across the majority of subjects.

RQ4: Variance. What is the variance in mutation scores with our subjects?

Mutation batching changes how mutations — and their corresponding test cases — are evaluated, without affecting

the detection of individual mutations, and thus the overall mutation score. However, this can only be guaranteed in

cases where the test suite shows no behavioral variance across repeated, and potentially slightly differing runs. For

example, the presence of flakiness and non-determinism in test suites, or the presence of test timeouts in the test

suite can cause the behavior of the test suite to change across repeated runs of identical or slightly different execution

environments and configurations. In such cases, certain mutations’ detection with mutation batching may be affected

by the variance in the test evaluation process, which might result in slightly altered mutation scores. The variance in

mutation scores with and without mutation batching — when present — can be primarily attributed to flaky test effects,

like order dependence or the presence of shared state, which is commonly regarded as undesirable for robust testing,

in part because it prohibits efficient, parallel test execution. It may also stem from other forms of test run variance,

like test case timeouts, which may cause a particular test case to either run to completion or time out, depending on

the exact timeout and the test environment. It is important to note that mutation batching does not introduce these

variances, as they are already present across multiple, repeated mutation analysis runs without mutation batching.

Mutation batching may only be affected by existing variance in test suite runs. Table 9 shows the mean mutation score

of the various subject crates from safe mutations without mutation batching (�B), and with mutation batching using the

various algorithms and configurations (R, G↑, G↓, g↓, G∼, G𝜖↑, G𝜖↓, G𝜖∼).
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Table 9. Mean mutation scores from safe mutations across the various subject crates without mutation batching (�B), and with

mutation batching using the various mutation batching configurations (R, G↑ , G↓ , g↓ , G∼, G𝜖↑ , G𝜖↓ , G𝜖∼, as defined in Section 4.2).

Highlighted cells, in blue, correspond to mutation scores that equal the corresponding unbatched mutation score for each subject.

Subject �B R G↑ G↓ g↓ G∼ G𝜖↑ G𝜖↓ G𝜖∼

alacritty/alacritty 25.9% 25.9% 25.9% 25.9% 25.9% 25.9% 25.9% 25.9% 25.9%

bat/bat 68.2% 68.2% 68.2% 68.2% 68.2% 68.2% 68.2% 68.2% 68.2%

bytes/bytes 80.6% 80.9% 80.6% 80.8% 81.1% 80.6% 80.6% 80.7% 80.6%

chrono/chrono 87.9% 87.9% 87.9% 88.1% 87.9% 88.0% 87.9% 88.0% 88.0%

clap/clap_builder 37.1% 37.1% 37.1% 37.1% 37.1% 37.1% 37.1% 37.1% 37.1%

exa/exa 85.4% 85.4% 85.4% 85.4% 85.4% 85.4% 85.4% 85.4% 85.4%

gleam/gleam-core 97.8% 98.0% 98.3% 98.1% 98.1% 98.1% 98.3% 98.1% 98.0%

hashbrown/hashbrown 78.4% 78.4% 78.4% 78.4% 78.4% 78.4% 78.4% 78.4% 78.4%

image/image 68.5% 68.4% 68.5% 68.5% 68.5% 68.4% 68.5% 68.5% 68.4%

itertools/itertools 88.8% 88.8% 88.8% 88.8% 88.8% 88.9% 88.8% 88.8% 88.9%

json/serde_json 84.3% 84.7% 84.2% 84.5% 84.6% 84.6% 84.2% 84.5% 84.6%

parking_lot/parking_lot 98.5% 97.3% 95.1% 99.5% 99.5% 96.9% 94.6% 98.9% 95.4%

rand/rand 76.0% 76.1% 76.0% 76.3% 76.0% 76.0% 76.0% 76.3% 76.0%

rand/rand_core 77.7% 77.6% 77.7% 77.7% 77.7% 77.6% 77.6% 77.6% 77.6%

rand/rand_distr 67.8% 67.8% 67.8% 81.7% 79.1% 67.8% 67.8% 76.5% 67.9%

regex/regex 63.6% 63.6% 63.6% 63.6% 63.6% 63.6% 63.6% 63.6% 63.6%

regex/regex-automata 76.0% 88.2% 94.2% 96.9% 96.8% 98.1% 94.6% 97.5% 98.1%

regex/regex-syntax 82.8% 82.8% 83.0% 82.9% 82.9% 82.8% 83.2% 82.9% 82.8%

ripgrep/grep-printer 84.6% 84.6% 84.6% 84.6% 84.6% 84.6% 84.6% 84.6% 84.6%

ripgrep/grep-searcher 83.3% 83.3% 83.3% 83.3% 83.3% 83.3% 83.3% 83.3% 83.3%

ripgrep/ripgrep 80.4% 80.4% 80.4% 80.4% 80.4% 80.4% 80.4% 80.4% 80.4%

rustls/rustls 63.3% 63.3% 63.7% 63.8% 63.3% 63.4% 63.6% 63.8% 63.5%

We can determine that, out of the 22 subjects, 13 subjects have the exact same mutation score with and without

mutation batching, and across all of the various mutation batching configurations. These subjects do not exhibit flaky test

and mutation outcomes on repeated invocations, and have either no mutation timeouts at all (7 subjects), or have a very

low rate of timed out mutations at less than 0.6% of all evaluated mutations. A further 6 subjects only show differences

in their mutation scores within 0.5% with mutation batching compared to their original, non-batched mutation scores,

with a median difference of less than 0.3% across all of the various batching configurations. Among the remaining 3

subjects, namely parking_lot/parking_lot, rand/rand_distr and regex/regex-automata, we can determine that

their mutation scores are partly determined (or at least largely impacted) by the number of timed out test cases in

individual runs, with both the rate of mutation timeouts and mutation scores varying across repeated invocations of

the same mutation analysis configuration. In the case of rand/rand_distr, only three batching configurations (G↓,
g↓, G𝜖↓) show a variance in mutation scores, inline with when the baseline, unbatched mean mutation timeout rate of

2.7% is exceeded, at 45.9%, 53.1%, and 26.4% respectively. In the case of parking_lot/parking_lot, mutation timeout

rates are consistently high across unbatched and all batched runs, between 85.1% and 97.1%, with variances in the

rate of mutation timeouts even across repeated runs. Mean mutation scores closely follow the trends in these mean

mutation timeout rates across unbatched and all batched runs, showing that mutation scores are largely dependent on

exactly which test cases time out during each mutation analysis run. In the case of regex/regex-automata, variances

in mutation scores again largely follow variances in the rates of mutation timeouts, with the baseline, unbatched

mutation timeout rate of 50.0% exceeded in all batched configurations, between 75.6% and 94.6%. Variances in the rates
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of mutation timeouts during repeated invocations of the same configuration are also very high, which is also reflected

in the variance of mutation scores during these repeated invocations. The median mutation score variance compared to

the baseline, unbatched mean mutation score across all subjects is 0.0% in the case of all batched configurations.

The observed variances in mutation scores may be due to a number of reasons, including potential shared state, and

environmental factors (e.g., network or filesystem calls). In the case of our subjects, these factors contribute to the

variances in the number of test timeouts across unbatched and all batched configurations, which result in the observed

variances in mutation scores. However, we theorize that behavior arising from these factors is more likely to cause

additional test failures, and as such, additional, false positive mutation detections, explaining the occasional slight,

overall increase in mutation scores. It is worth noting that the observed variances in test timeouts occurred despite

generous timeouts calculated for each test by mutest-rs (Section 3.6). Amongst our subjects, without mutations applied,

the affected tests ran for up to around 1.5 milliseconds only, for which our automatically determined timeouts were just

over a second. As such, these non-deterministic test timeouts happened even though our mutation evaluation process

gave these test cases orders of magnitude more time to terminate.

In conclusion for RQ4, Mutation batching does not affect the mutation score of deterministic test suites,

but may be affected by existing variances in the test evaluation process, such as test timeouts. Out of the 22

subjects, 13 subjects have the exact same mutation score with and without mutation batching, and a further

6 subjects only show differences in their mutation scores within 0.5% of their non-batched mutation scores.

Amongst our subjects, the occasional variances in mutation scores can be attributed to variances in the number

of test case timeouts.

6 Discussion

6.1 Examining and Analyzing the Mutation Compatibility Graphs

As discussed in Section 3.4.1, mutation compatibility graphs provide the basis for mutation batching, as the problem

of mutation batching is equivalent to finding cliques in a mutation compatibility graph. We noted however that, in

practice, mutation compatibility graphs are large, complex, and not transitive by definition, making computation of a

perfect solution infeasible.

To quantify the complexity of mutation compatibility graphs, and to investigate its clustering properties, we analyze

the invariants of the mutation compatibility graph of mutations of each subject; instances of the abstract mutation

compatibility graph outlined above. Table 10 shows the number of safe mutations, which correspond with the nodes

of the mutation compatibility graph, the number of mutation conflicts (i.e., the number of edges in the mutation

conflict graph), the number of mutation compatibilities (i.e., the number of edges in the mutation compatibility graph),

the 3-cycle transitivity of the mutation compatibility graph, and the diameter of the mutation compatibility graph

corresponding to the safe mutations generated for each subject. Percentages are also noted for mutation conflicts and

compatibilities, which are the percentage of the respective edges compared to the complete graph of the corresponding

mutations. Since the two edge sets are inverses of each other and together they make a complete graph, these percentages

add up to one hundred percent.

Firstly, we see that the ratio of conflicts to compatibilities — i.e., which mutation relation edges correspond to a conflict

and to a compatibility respectively, varies highly across the subjects. In the case of 15 out of the 22 subjects, there are

more mutation compatibilities than conflicts, while 2 out of the 7 remaining subjects have remarkably low percentages of
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Table 10. Properties of the safe mutations — and their corresponding mutation compatibility graphs — produced for each subject.

“Transitivity” and “Diameter” are properties of each subject’s mutations’ respective mutation compatibility graph. Diameter is not listed

for individual subjects separately in a standalone column, as the value is 2 in all cases. Amongst mutation conflicts and compatibilities,

highlighted cells, in blue, correspond to the higher of the two values for each subject. For the Transitivity column, highlighted cells, in

blue, correspond to values of 0.70 or higher for each subject.

Subject Safe
Mutations

Mutation
Conflicts

Mutation
Compatibilities

Transitivity
(3-cycles)

alacritty/alacritty 1809 562653 (34.4%) 1072683 (65.6%) 0.56

bat/bat 506 24780 (19.4%) 102985 (80.6%) 0.78

bytes/bytes 422 13352 (15.0%) 75479 (85.0%) 0.87

chrono/chrono 2882 1775029 (42.8%) 2376492 (57.2%) 0.63

clap/clap_builder 1447 923064 (88.2%) 123117 (11.8%) 0.16

exa/exa 888 119195 (30.3%) 274633 (69.7%) 0.70

gleam/gleam-core 4173 5968202 (68.6%) 2736676 (31.4%) 0.40

hashbrown/hashbrown 273 8577 (23.1%) 28551 (76.9%) 0.83

image/image 4885 3630168 (30.4%) 8299002 (69.6%) 0.75

itertools/itertools 1246 76653 (9.9%) 698982 (90.1%) 0.91

json/serde_json 1133 248981 (38.8%) 392297 (61.2%) 0.57

parking_lot/parking_lot 163 9278 (70.3%) 3925 (29.7%) 0.45

rand/rand 747 52713 (18.9%) 225918 (81.1%) 0.81

rand/rand_core 179 3679 (23.1%) 12252 (76.9%) 0.71

rand/rand_distr 2126 349079 (15.5%) 1909796 (84.5%) 0.84

regex/regex 209 10669 (49.1%) 11067 (50.9%) 0.55

regex/regex-automata 2698 2220787 (61.0%) 1417466 (39.0%) 0.47

regex/regex-syntax 2709 2955912 (80.6%) 712074 (19.4%) 0.21

ripgrep/grep-printer 376 17811 (25.3%) 52689 (74.7%) 0.71

ripgrep/grep-searcher 669 221538 (99.1%) 1908 (0.9%) 0.00

ripgrep/ripgrep 97 4494 (96.5%) 162 (3.5%) 0.33

rustls/rustls 1127 101244 (16.0%) 533257 (84.0%) 0.86

mutation compatibilities, with ripgrep/ripgrep’s 97 mutations at 3.5%, and ripgrep/grep-searcher’s 669 mutations

at only 0.9%. It is important to point out that the ratio of mutation compatibilities to mutation conflicts appears to

have no strong correlation with the improvements in runtimes measured in RQ3, and some of the subjects with the

most-improved runtimes have a low mutation compatibility to mutation conflict ratio, such as gleam/gleam-core, and

parking_lot/parking_lot.We do however see a strong correlation between the percentage ofmutation compatibilities,

and the transitivity of the corresponding mutation compatibility graph.

Secondly, and as a result of the correlation noted earlier, we see that the transitivity of the mutation compat-

ibility graphs varies highly across subjects too, and ranges between 0.16 for clap/clap_builder, and 0.91 for

itertools/itertools, with 11 out of the 22 subjects having mutation compatibility graphs with transitivity at

least 0.70. The median transitivity of the mutation compatibility graphs is 0.66. These results indicate that improved,

search-based optimization algorithms for mutation batching might be feasible in some cases, and would be able to

make further improvements to runtimes with mutation batching; a potential topic of future research. We see that the

diameter — the maximum distance between any pair of mutations — of all subject’s mutation compatibility graphs is 2,

which shows that these graphs are highly connected. This is common for large, complex graphs in general. The one
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outlier mutation compatibility graph is the one associated with ripgrep/grep-searcher with a transitivity of 0.00,

however this can be attributed to the subject’s remarkably low 0.9% rate of mutation compatibilities.

The ratio of mutation compatibilities to mutation conflicts is highly dependent on how the code is organized. Dividing

up the program into more, distinct, individually tested modules gives mutation batching a greater ability to batch

mutations further, giving rise to additional reduction in mutation analysis runtimes.

7 Related Work

7.1 Applying Mutation Analysis to Rust Programs

There are two notable pieces of research works on software testing for Rust, however both of these works are focused

on test case generation, rather than applying alternative software testing techniques. Takashima et al. [51] used

complex program synthesis techniques to generate test suites for libraries. They encoded type, ownership, and lifetime

constraints, and were able to generate valid Rust code that utilized complex patterns to interface with library APIs.

Their work does an excellent job of highlighting the difficulties of generating valid Rust programs, in particular, for test

case generation. In this work, we specifically focused on the challenges of generating Rust code based on existing, valid

Rust code through mutations, rather than test case generation. Sharma et al. [48] generated random Rust programs

that respected the ownership, borrowing, and lifetime rules of the language in order to test alternative Rust compiler

implementations. They did this by generating random, context-aware ASTs which conformed to the grammar of the

language. Due to their lack of data flow analysis, they had to place slightly stricter restrictions on their generated code

than the actual borrowing rules of Rust, and could not generate code which exercised the lifetime coercion rules of the

language. Their technique can be best thought of as an advanced, compiler-specific fuzzing technique, and showcases

the limitations of generating Rust programs based on syntactical approaches.

Research into applying testing techniques to Rust is currently sparse. While mutation analysis has been widely applied

to many languages [27], this work constitutes the first piece of research on the testing technique that specifically targets

the Rust programming language. While, as previously discussed in Section 2, we found two existing, relatively limited

hobbyist mutation tools for the language — Bogus’s mutagen [7] and Pool’s cargo-mutants [46], and noted that LLVM

bytecode mutations, like Denisov and Pankevich’s [12] work may be adaptable to Rust programs, these approaches

both have significant limitations associated with them. Bothmutagen, and cargo-mutants only support a very basic set

of mutation operators, generate large numbers of invalid mutants due to their limited, syntax-based approaches, and do

not optimize mutation evaluation in any way; mutants are compiled, and run one-by-one, sequentially. While there are

multiple works discussing generic mutations on LLVM bytecode [9, 12, 22, 23], they all share the same fundamental

limitations; mutations are easily introduced in external library code that is not part of the written program code,

and many bytecode mutations do not have source code counterparts. This work specifically focuses on source code

mutations, which alleviates all of these problems, and performs efficient mutation analysis through a meta-mutant

model, rather than by editing bytecode directly.

7.2 Existing Approaches and Tools for Mutation Analysis

It is important to compare our approach to well-established mutation analysis tools targeting other languages. Two

mutation analysis tools stand out in terms of their recent research coverage and popularity: Just’s Major [28], and

Coles et al.’s PIT [10], both for Java. Major uses a set of syntax-based, compiler-assisted mutation operators, and

embeds the resulting mutations into a single meta-mutant. It implements test case prioritization based on a monitored
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reference run, but is unable to evaluate test cases in parallel. This in many ways mirrors some of the fundamental

characteristics of our approach, however, we improve on Major using an extended set of mutation operators, along

with a highly parallel test scheduler which is able to parallelize execution of test cases pertaining to multiple mutants,

resulting in the simultaneous evaluation of multiple mutants. Meanwhile, PIT primarily uses bytecode mutations to

avoid compilation overhead. This has many of the same drawbacks as previously discussed with LLVM bytecode

mutation tools, primarily the ability to generate “junk” mutations unrepresentable by a developer in source code. In

addition, PIT also trades mutation operator expressivity with its bytecode approach compared toMajor, as it cannot

analyze higher-level language constructs.

7.3 Reducing the Cost of Mutation Analysis through Test Case Prioritization

There has also been a lot of attention towards alternative techniques for reducing the cost of mutation analysis. These

techniques are given excellent coverage in the survey by Pizzoleto et al. [45], including works that, as with this work,

have sought to reduce the cost of evaluating mutations, that correspondingly fall into Offutt and Untch’s “do faster”,

and “do smarter” [41] categories. Among these existing cost reduction techniques, we must highlight the differences

between approach, and related work in test case prioritization and process-based parallelism approaches.

In order to prioritize test cases during mutant evaluation, Zhang et al. [62] used a family of techniques to prioritize,

and reduce the number of tests cases needed to determine the set of killed, and surviving mutants. The did so by

applying heuristics relating to code coverage, and execution history. Unlike our approach, which prioritizes fast test

cases based on their original, unmutated execution times, they prioritized test cases that executed more statements

before reaching the active mutation. Mateo and Usaola [39] applied statement coverage analysis to determine which

tests reach mutations, so as to remove other tests from consideration. This builds on a similar approach taken by

Schuler and Zeller [47] when developing the Javalanche mutation testing tool for Java. Just et al. [29] took these ideas

beyond mutation reachability to derive information about state infection. Compared to the analysis performed by these

techniques, our approach only relies on the possibility of functions being reachable by individual tests, which can be

determined statically, upfront, based on the construction of a call graph, without the need to perform any expensive,

instrumented runtime analysis.

7.4 Reducing the Cost of Mutation Analysis through Parallelism

The fundamental idea for modern process-based parallel mutation evaluation techniques was first proposed by

King and Offutt [32], as the “split-stream” execution method in their interpreter-based mutation analysis tool. They took

advantage of the unique property of program mutations; that mutant programs are identical in execution to the original

program up until the point of mutation. By tracking the state of the program at these diverging points, they suggested

that duplicate work could be reduced. However, they noted that the overhead of keeping track of the large numbers of

program states necessary for this approach was not feasible in most cases. More recently, this approach has been tested

through various process-based approaches. Tokumoto et al. [57] implemented split-stream execution of mutants for

C a bytecode interpreter to instrument program execution. However, their approach’s reliance on an instrumented

interpreter limited the performance of each mutant compared to an equivalent compiled program. Gopinath et al. [18]

combined mutations close to each other for split-stream execution by forking the meta-mutant process at each point of

divergence, and running the forked processes simultaneously. Sun et al. [50] performed a larger-scale study of a similar

approach, grouping mutations in the same block together, and forking the program execution for each individual mutant,

again, running the forked processes simultaneously. More recently, Vercammen et al. [61] implemented split-stream
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execution of mutants for C and C++ programs using the Clang and LLVM compiler infrastructure, instrumenting the

mutant program and forking it for each individual mutant during execution. These approaches seek to optimize the

common code paths between the generated mutants, reducing repeated work across mutant evaluations. However, there

are various problems, and costs associated with split-stream, and process-based parallelization of mutant execution.

Methods that fork the running program at points of divergence are limited by the amount of shared code up to the point

of the first execution of a mutation. Keeping track of the large number of program states possible in most programs also

comes with a significant memory overhead, even when implemented though forking. Forked processes also generally

execute slower than regular processes, or threads in a process, due to their copy-on-write memory semantics, and

context switching overhead respectively. Our approach addresses these shortcomings by having a fundamentally

different approach to parallelism. Rather than processes, our approach uses lightweight threads to schedule test cases,

and to increase the amount of parallelizable work, schedules test cases for multiple non-conflicting mutations at the

same time.

7.5 Mathematical Theory behind Mutation Batching

Bampis et al.’s [4] theoretical work into bounded max-coloring of graphs, a theoretically more computationally feasible

approach to graph coloring (and clique cover) in cases where the maximum clique size can be bounded, may be applicable

to mutation batching. They wrote that bounded and unbounded max-coloring of graphs “are also equivalent with

scheduling problems where jobs correspond to the vertices of a graph, which describes incompatibilities between them”.

Unfortunately, hitherto, no exact algorithm, and implementation has been made available for the problem of bounded

max-coloring of graphs to the authors’ knowledge.

8 Conclusions and Future Work

Mutation analysis is a valuable testing technique that is often regarded as computationally expensive, preventing its

use on large programs and test suites. While solutions to better utilize parallel computation to evaluate mutations in

less time overall have been proposed and evaluated in existing research, they all make use of individual, expensive

processes, with significant overhead.

In this paper, and its ICST predecessor [36], we propose a novel technique for speeding up mutation analysis through

better utilization of parallel computers without the overhead cost of processes — mutation batching. We implement our

technique in a tool called mutest-rs, a novel, robust mutation analysis tool for the safety-focused Rust programming

language, alongside a set of mutation operators with Rust programs in mind. To accommodate mutation analysis

to systems-level Rust programs, we introduce the notion of mutation safety, which allows mutest-rs to distinguish

between mutations which may have the ability to introduce undefined behavior into the program, and those which do

not.

Mutation batching is a novel technique that increases the utilization of parallel processors for test evaluation during

mutation analysis by applying multiple, compatible mutations at the same time. This increases the number of test

cases that can be parallelized at any one point in the mutation evaluation process, leading to better use of available

resources, and a shorter overall mutation analysis runtime. To ensure that mutations do not influence each other’s

behavior, only mutations that are in distinct parts of the program are considered compatible with regards to mutation

batching. This is determined ahead of time, based on a fully-resolved call graph used to prove which test cases the

mutations are reachable from. This property ensures that we can determine individual mutation detection through the

test case that signaled the change in behavior. To complete mutation batching, mutations are partitioned into groups of
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intercompatible mutations, forming mutation batches. For this, we use greedy, heuristics-based algorithms in mutest-rs

to approximate optimal mutation batching.

We usemutest-rs on 22 subject Rust programs of various sizes, testing methodologies, and test suite sizes to evaluate

mutation batching, and our mutation analysis approach. To ensure that our additional mutation operators are comparable

to existing, traditional mutation operators used throughout mutation analysis research, we compare them side-by-side,

and find that our additional mutations are detected at a similar or lower rate than traditional mutations. We find that

the prevalence of unsafe mutations across our subjects is low, but significant in the cases we encounter it. We use

versions of our greedy mutation batching algorithm to determine the effect of mutation batching as a whole, as well

as the effect of various variations of the greedy algorithm on mutation analysis runtimes. Our experiments show

that mutation batching translates into a significant decrease in the runtime of mutation testing evaluation, with an

improvement in mean mutation analysis runtimes in 18 out of 22 subjects, with improvements of up to 52.3% in the

case of rustls/rustls, and 73.8 seconds in the case of gleam/gleam-core. We also conclude that mutation batching

does not affect the mutation score of deterministic test suites, but may cause deviations in the case of flaky tests, with a

median deviation of 1.6%.

In addition, we discuss the thread utilization characteristics of test case evaluation with batched mutation analysis,

and find that mutation batching significantly reduces the amount of test case “waterfalls”, in which the test threads are

not utilized in parallel as a result of evaluating small mutations with few test cases. We also explore and discuss the

properties of the graphs of mutation compatibilities resulting from mutation batching to explore the feasibility of using

search-based optimization algorithms for mutation batching.

As part of our future work, we plan to explore the use of search-based optimization algorithms to find improved

approximations for mutation batching with a focus on reducing runtimes, and additional techniques for reducing

the unused parallel capacity of modern computers further and reducing “waterfalls” throughout test case execution.

While the reachability metrics derived from static call graphs are sufficient for the majority of programs, we intend to

investigate the use of additional runtime coverage information, and how it might improve mutation batching. Since

mutation batching is language-agnostic and may have wider applicability beyond Rust, we encourage future work to

implement the technique for use in other programming languages.

With regard to the threat of potentially remaining equivalent mutants, we intend on exploring novel techniques for

applying the fundamental ideas behind Trivial Compiler Equivalence to meta-mutant programs, such as those generated

by mutest-rs. Such a tailored Trivial Compiler Equivalence approach could be used to further reduce the number of

potentially remaining equivalent mutants through checking for equivalence in the already compiled program code,

while keeping the efficiency characteristics of meta-mutants. By inspecting only the branching parts of the compiled

meta-mutant specifically, we can avoid inspecting separate compilations of individual mutants.

With regard to unsafe mutations, and the specific challenges of applying mutation analysis to Rust programs, we

intend on investigating other potential side effects of unsafe mutations in more detail, and providing a more detailed,

dedicated analysis of our separation of safe and unsafe mutations. One possible route for more thoroughly evaluating

the safety properties of our distinction between safe and unsafe mutations would be to evaluate unsafe mutations using

an undefined behavior detection tool, such as Rust’s Miri [55], evaluating mutest-rs meta-mutants of existing verified

Rust programs. This analysis could be used to more thoroughly reveal the lack undefined behavior during the tested

executions.
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