A Comprehensive Empirical and Theoretical Analysis of Batching Algorithms

for Efficient, Safe, Parallel Mutation Analysis in Rust

ZALAN LEVAI, University of Sheffield, UK
DONGHWAN SHIN, University of Sheffield, UK
PHIL MCMINN, University of Sheffield, UK

There is a lack of serious tooling for mutation analysis for Rust, a safety-focused systems programming language seeing increased
adoption across the industry. As such, the testing technique has not been widely used on programs written in the language as of yet.
Without robust mutation analysis, Rust developers cannot determine test thoroughness. In response to this challenge, we designed
a mutation analysis pipeline for Rust, which overcomes the challenges of generating valid mutants caused by the strictness of the
language. Our approach accounts for Rust’s distinction between safe and unsafe operations, ensuring that safe mutations of valid Rust
programs — those with only valid unsafe code sections — can be safely evaluated within the same process, without the potential for
crashes or other undefined behavior invalidating the mutation analysis. We introduce mutation batching, our novel technique for
efficiently evaluating multiple mutations simultaneously, while guaranteeing they do not interact. Batching maximizes thread usage,
by executing significantly more test cases in parallel. As batching is NP-hard, we present multiple fast approximation algorithms
for grouping mutations. We implemented our techniques into a mutation analysis tool, mutest-rs, which we used in our empirical
evaluation on a diverse set of 22 Rust libraries and programs. We found that mutation batching reduces the overall runtime of mutation
analysis by up to 52.3% and also saving 73.8 seconds in one case, and that unsafe mutations are detected at a lower rate, of up to 53.4%.

Our mutation analysis tool is available at https://mutest.rs.

CCS Concepts: « Software and its engineering — Software testing and debugging; - Theory of computation — Packing and

covering problems; Graph algorithms analysis; - Mathematics of computing — Probabilistic algorithms.
Additional Key Words and Phrases: mutation analysis, mutation testing, cost reduction, mutation batching, rust, static analysis

ACM Reference Format:
Zalan Lévai, Donghwan Shin, and Phil McMinn. 2026. A Comprehensive Empirical and Theoretical Analysis of Batching Algorithms
for Efficient, Safe, Parallel Mutation Analysis in Rust. ACM Trans. Softw. Eng. Methodol. 1, 1 (January 2026), 53 pages. https://doi.org/10.

1145/nnnnnnn.nnnnnnn

1 Introduction

Rust is a systems programming language that guarantees memory and thread safety statically, and places a large
emphasis on automated testing. These qualities make it ideal for programs that require both performance and safety.
However, while the language provides built-in support for writing and running automated test suites, it lacks mature
mutation analysis techniques, which leaves Rust developers without a way of ensuring thorough testing of programs

written in the language.

Authors’ Contact Information: Zalan Lévai, University of Sheffield, Sheffield, UK, zblevail@sheffield.ac.uk; Donghwan Shin, University of Sheffield,
Sheffield, UK, d.shin@sheffield.ac.uk; Phil McMinn, University of Sheffield, Sheffield, UK, p.mcminn@sheffield.ac.uk.

This work is licensed under a Creative Commons Attribution 4.0 International License.
© 2026 Copyright held by the owner/author(s).
Manuscript submitted to ACM

Manuscript submitted to ACM 1

https://mutest.rs
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0

2 Zalan Lévai, Donghwan Shin, and Phil McMinn

Being a compiled language used primarily for writing low-level, often safety-critical systems software (e.g. operating
systems, kernels, device drivers, networking tools, compilers), Rust faces a multitude of unique, additional challenges
when it comes to applying techniques based on code generation, such as mutation analysis. Rust programs are compiled
into native binaries and are not executed by a high-level virtual machine. This makes dynamic approaches to mutation
analysis impractical, and as such, static optimization approaches become necessary. In addition, the strict static analysis
of the language — both in terms of type safety, and memory restrictions — means that reliably generating valid Rust
programs that compile comes with particular challenges. This is highlighted by the two existing research works on test
case generation [48, 51], both of which place significant constraints on their code generation related to object lifetimes,
which Rust has strict rules around. For mutation analysis, this means that mutation operators have to be constrained
using tailored type checking and data flow analysis, which is not required for less strict languages such as Java, C, or
C++. For example, mutations must ensure that types remain exactly identical to the original program’s (e.g., the various
range types a. .b, a. .=b, etc. are all different, incompatible types), and that the resolution of complex type-relative
names (e.g., in method calls) remains unchanged, often requiring the addition of explicit type annotations. Because of
tracked memory lifetimes unique to Rust, mutation operators must also be careful of creating short-lived values that
might escape their scope. Furthermore, the presence of explicitly-annotated unsafe code sections means that special
care has to be taken to avoid any possibility of introducing undefined behavior into the program through mutations.
This is an important consideration for any in-process mutation evaluation technique, including sequential evaluation of
mutations, as undefined behavior from one mutation can influence the correctness of the rest of the mutation evaluation,
either by introducing subtle errors (e.g., memory corruption), or by crashing it entirely. Our distinction between safe
and unsafe mutations alleviates the need for evaluating every single mutation’s respective test cases in individual
processes each to protect from such occurrences. We discuss this fundamental safety property — defined by the Rust
project developers [56] as the guarantee that code cannot cause undefined behavior — throughout this paper. Finally,
mutation analysis approaches also have to be efficient in terms of their total runtime, both to make their use possible
on very large projects, and to make the widespread application of the approach more practical in general. Mutation
analysis approaches must scale well to large numbers of tests, mutations, and input source code. This is especially
important, as mutation analysis is widely considered to be a computationally expensive technique.

The research in this paper, along with its original conference paper version [36], is the first to consider mutation
analysis for the Rust programming language. To tackle the unique challenges facing mutation analysis and Rust, we
devise a robust, efficient mutation analysis pipeline for the language. We define five new, additional operators to cover
some of the most often used language features that are unique to Rust. We also define a set of rules to identify mutations
which could introduce undefined behavior, which we call “unsafe” mutations (corresponding to the definition of safety
in Rust). To tackle the high costs of performing mutation analysis, specifically the time required to evaluate mutations,

we devise a novel mutation evaluation cost reduction technique that we refer to as mutation “batching”.

Mutation Batching. Mutation batching addresses the inefficiency of evaluating mutations sequentially on modern,
parallel processors. While test cases may be run in parallel, if the mutations are evaluated one after another, then the
amount of parallelism that can be introduced will be bounded by the number of independent test cases corresponding
to each mutation. For example, if on a computer capable of running 10 concurrent threads, a mutation m; with only 3
corresponding test cases is evaluated, then only a maximum of 3 out of the 10 concurrent threads can be utilized to
evaluate the mutation, one for each of the test cases. This means that we effectively only utilize 30% of the compute
resources available to us. However, if we could also evaluate a mutation m; with 7 corresponding test cases alongside

Manuscript submitted to ACM

A Comprehensive Analysis of Batching Algorithms for Efficient, Safe, Parallel Mutation Analysis in Rust 3

my’s 3 test cases, then we could utilize all 10 of the concurrent threads to evaluate the two mutations. This means that
we can effectively utilize 100% of the processors’ resources, and most importantly, we could reduce the overall runtime.
It is easy to see that mutations with few test cases, like m;, are the common case, and that mutations reached by a large
number of test cases are significantly less common, especially as the number of available concurrent threads increases.
As such, it stands to reason that such an optimization can have a large impact on the runtime of mutation analysis. For
such an evaluation to be correct however, we must ensure that mutations m; and m, have no way of interacting with
each other, or altering each other’s behavior.

Thus, mutation batching is our novel process of grouping individual, “non-conflicting” mutations together into
optimal batches, while ensuring the correctness of the resulting mutation analysis. Non-conflicting mutations are sets
of mutations that cannot influence whether the other mutations in the set are killed or not, due to them appearing in
different, distinct parts of a program. Our technique determines which pairs of mutations are non-conflicting based
on an extensive, conservative static analysis of the functions potentially reachable from each of the test suite’s test
cases, based on their call graph. Mutations are then “classified” based on which function they mutate, and the set of
test cases their respective function is reachable from. If two mutations m; and m;, appear in two different functions
exclusively reached by two different sets of test cases — {t1, tz, t3} and {t4, ts, . . ., t10 }, respectively — then m; and m;
are candidates for being placed in the same batch, and thus being evaluated together. By ensuring that mutations in a
batch are each exclusively reached by two different sets of test cases, we can also uniquely determine which mutation
in a batch was killed based on which test case failed. For example, if during the evaluation of the batch {mq, mz}, 1,
t; or t5 fails, then we know that only m; could have caused the failure, and as such, m; is known to have been killed.
Consequently, if t4, ts, ..., or tyo fails, then m;, is known to have been killed.

During evaluation, the test cases relevant to each individual mutation batch can be executed in parallel, evaluating
more concurrent test cases in fewer iterations, resulting in the increase in the utilization of the available parallel
processors previously described. This is in contrast to existing approaches for parallelizing mutation analysis [18, 32,
50, 57], which all use multiple, forked processes for individual mutations. Our approach is fundamentally different, and
instead focuses on increasing the amount of parallelizable work. Compared to running mutations in parallel processes,
mutation batching, with its in-process parallelism, has the advantage of introducing significantly less overhead, and
having much more control over the entire evaluation.

The conflicts between mutations that form the basis of mutation batching can be described in terms of graph theory
(Section 3.4.1). Since mutation batching is an NP-hard problem, we present fast, greedy approximation algorithms for
producing batches of mutations based on the compatibilities between them: a fully-deterministic greedy algorithm, and
a partially-deterministic algorithm that we call epsilon-greedy (e-greedy) batching (Section 3.4.2).

At the end of the process, our pipeline creates a single meta-mutant program [60] to represent the generated
mutations, alongside the mutation batches created up front. This meta-mutant program statically embeds all mutations,
building on the idea of conditional mutation [30]. Our injected test harness is then able to dynamically enable sets of

mutations while evaluating individual batches.

Original Conference Paper and the mutest-rs Project. To accompany this paper and our future research work, we also
develop the first mature mutation analysis tool for Rust, called mutest-rs [34], our ongoing tool and mutation analysis
project which implements our pipeline and techniques. This paper’s description and evaluation of mutest-rs is an
extension of the original conference paper [36] that was presented at the 16th IEEE International Conference on Software
Testing, Verification and Validation (ICST) 2023. We used an early version of mutest-rs to evaluate our approach on 10

Manuscript submitted to ACM

4 Zalan Lévai, Donghwan Shin, and Phil McMinn

critical and commonly-used Rust programs and libraries (referred to in Rust as “crates”). Our empirical results showed
that mutest-rs is applicable to a range of Rust subjects, and can reliably generate mutants, while also demonstrating
that batching is effective for reducing mutation analysis runtimes. The contributions of the original ICST conference

paper are as follows:

(1) A set of mutation operators suitable for Rust programs, including adaptations of thirteen existing operators, and
five new, additional operators specifically designed for the language (Section 3.2).

(2) An algorithm for batching mutations for simultaneous, parallel, and efficient mutation evaluation (Section 3.4).

(3) A definition of mutation safety based on Rust’s distinct safe and unsafe scopes, allowing for the mutation of
system programs without the fear of introducing undefined behavior (Section 3.5).

(4) The results of an empirical evaluation of the reduction in testing time possible with mutation batching in practice,
revealing a reduction in the overall mutation analysis runtime for a diverse set of commonly-used Rust subject

programs [36].

While the empirical evaluation of that early version of mutest-rs and mutation batching had positive results —
warranting further research and development of the tool and our technique — we only presented and evaluated a single
approximation algorithm for mutation batching, with many of the choices in this algorithm unevaluated, and further

experimentation left as an item of future work.

Changes to mutest-rs and Additional Contributions. Since our original evaluation of mutest-rs, we have made changes
to the tool, and its pipeline, to improve it further. First, unsafe mutations (Section 3.5) — which mutest-rs was not able
to safely evaluate before, can now be evaluated in isolated child processes (alongside safe mutations running in the
main process), ensuring that they do not affect the main mutation analysis process (RQ2 in Section 5). Second, we have
made changes to how mutations are activated in mutest-rs during mutation evaluation®, which results in significantly
improved runtimes across all subjects both with and without mutation batching applied (Section 3.1). It is important to
note that this means that reported runtimes are not directly comparable to those present in the original conference
paper, as runtimes for both batched, and unbatched runs have improved significantly. Third, and most notable for this
paper, we have implemented a number of additional mutation batching algorithms into mutest-rs, including randomized
batching, and a new, partially probabilistic algorithm called epsilon-greedy batching (Section 3.4). In this paper, we
evaluate mutest-rs on a much larger variety of Rust programs than previously, using over double the amount of subject
programs going from 10 to 22, further strengthening our results. The additional contributions that this paper makes

over the original ICST 2023 conference paper, therefore, are as follows:

(5) A theoretical analysis of mutation batching and its complexity in terms of graph theory (Section 3.4.1).
(6) A set of additional mutation batching algorithms, including alternative ordering heuristics for the original greedy
algorithm, and a new, partially probabilistic algorithm that we call epsilon-greedy batching. (Section 3.4.2).
(7) The results of an empirical evaluation (Section 4) evaluating:
(a) the validity of our five new, additional mutation operators, showing that their mutations are detected at a

similar or lower rate to those of traditional mutation operators, by up to 24.3% (RQ1 in Section 5);

ISpecifically, we have removed all lock-based synchronization around the central, generated data structure that is used to enable and disable mutations in
the meta-mutant program, referred to as the active mutant handle (Section 3.1). This structure is accessed very frequently during mutation evaluation,
especially with mutations in “hot” code paths. As the locking ultimately did not add to or change the safety guarantees of the meta-mutant execution, we
removed it from mutest-rs.

Manuscript submitted to ACM

A Comprehensive Analysis of Batching Algorithms for Efficient, Safe, Parallel Mutation Analysis in Rust 5

(b) the prevalence of unsafe mutations, and their adverse effects which our approach mitigates, showing that 5
out of the 22 subjects resulted in unsafe mutations, and that they were detected at a lower rate, by up to 74.6%
less (RQ2 in Section 5);

(c) the reduction in testing time possible with mutation batching on an updated, much wider set of commonly-used
Rust subject programs, showing an overall reduction in the mutation analysis runtime of up to 52.3%, and 73.8
seconds saved in the case of one subject (RQ3 in Section 5);

(d) the original greedy mutation batching algorithm against randomized mutation batching, and the new epsilon-

greedy mutation batching algorithm, using a variety of greedy ordering heuristics (RQ3 in Section 5).

Our tool, empirical data, and our full replication package including scripts to reproduce our experiments are
available online [34, 35]. The latest version of our tool, mutest-rs, alongside documentation and examples, is available

at https://mutest.rs.

2 Background
2.1 Mutation Analysis

Mutation analysis is a software testing technique that aims to measure the quality of a program’s test suite through
its ability to recognize faults automatically injected into the program [1, 11, 21, 27, 37]. In mutation analysis, these
faults are based on common faults competent programmers might mistakenly introduce, according to the “Compe-
tent Programmer Hypothesis” [1, 11]. Such faults are generated automatically based on the original program by adding
small syntactical changes. The resulting faulty programs are referred to as mutants. To perform mutation analysis, the
original test suite is evaluated against these mutant programs. If any test case in the test suite fails in the presence
of mutations, then that mutation is considered to have been “killed” by the test suite. One of the results of mutation
analysis is the mutation score, which is the percentage of mutations that have been killed by the test suite.

Mutation analysis is considered to be a computationally expensive technique, as it requires multiple evaluations of

the test suite proportional to the number of mutants that are being evaluated.

2.2 The Rust Programming Language — Testing, and Mutation Analysis

Rust is a relatively new, emerging programming language that aims to bring compiler-proven memory safety to low-level
systems programming, making it a performant, safer alternative to C, and C++. Because of its safety characteristics
and low-level control, the language has seen increased adoption throughout many parts of the industry, especially
in safety- and performance-critical applications [53]. However, despite its success in the industry, to date, Rust has
received little attention from software testing research, and research on applying testing techniques to the language is
sparse, with only two notable papers attempting test case generation [48, 51]. Specifically, the practice of mutation
analysis — the use of automatically generated code defects to measure the quality of a program’s test suite in recognizing
faults [1, 11, 21, 27, 37] — has not been attempted by any research dedicated to the language to the authors’ knowledge,
to date.

Rust is a safety-focused programming language with both static analysis and testing at its core. It has built-in
automated testing facilities: functions can be marked with the #[test] attribute and are then evaluated by the included
test harness provided by the rustc reference Rust compiler. Each unit of code, referred to in Rust as a “crate”, can
be tested individually through its unit tests — test functions defined “next to” program code, and integration tests —

Manuscript submitted to ACM

https://mutest.rs

6 Zalan Lévai, Donghwan Shin, and Phil McMinn

test modules defined outside of program code. These built-in testing tools are used by the majority of Rust’s thriving
ecosystem of library crates, which become common dependencies of most projects.

Despite the testability advantages of Rust, a full-featured mutation analysis technique does not exist, hitherto, for the
language, although two relatively limited solutions exist — mutagen [7], and cargo-mutants [46]. Bogus’s mutagen is
able to apply simple AST transformations to Rust programs to produce mutants. These mutants are not guaranteed to be
valid programs, and are all compiled separately. Pool’s cargo-mutants only implements a form of extreme mutation [5, 6]
— a simplified form of mutation analysis that involves replacing entire function bodies, and more recently, a limited
form of binary operator mutation. However, it shares the same limitations as mutagen around the validity of mutants,
and separate compilation of mutated programs. Both of these existing approaches generate a large number of invalid
mutants because they do not consider the semantics of the program (e.g. types, lifetimes, control flow). They both
operate purely on program syntax, rather than semantics, and as a result are also highly limited in the kinds of mutations
they can produce, are generally inefficient at both mutation generation and evaluation, and are difficult to apply in
practice. In our research of open-source Rust subject programs, we have not found evidence of the usage of either
mutagen or cargo-mutants in the forms of either relevant configuration files or code annotations, which are required
for the usage of both of these tools. This can be seen as an indicator for the lack of widespread application of mutation
testing in the Rust ecosystem.

Meanwhile, although not explicitly built for Rust programs, the research of Denisov and Pankevich [12] into the
mutation analysis of LLVM bytecode — the instruction language Rust compiles to by default — mentions its potential
applicability to Rust. However, a number of problems arise from bytecode-based mutation analysis over source-based
approaches. First, mutations may be easily introduced in external library code less relevant to the tested program,
such as the standard library, which the programmer has no control over. Mutation analysis should ideally only test
the program’s own code, and stop at external API boundaries. Many of these cases can be avoided by augmenting
the bytecode with source location information, which is widely available, as shown by Chekam et al.’s [9] work on
Mart. However, issues such as inlining of the code of external functions can still result in, for example, the loss of
mutable locations in the program, such as the site of the inlined call to the external library itself. This issue remains
an inherent limitation of bytecode-based approaches, due to the lossy nature of source code to bytecode conversion.
Second, many bytecode mutations, while representable in bytecode, do not have source code counterparts, and thus
could not have been written by a programmer. These mutations are thus not relevant to the programmer. The results
seen with generic LLVM bytecode mutation [9, 12, 22, 23] reinforce the need for research based on language-specific,

source-based analysis.

2.3 Considerations Towards Implementing Mutation Analysis for Rust

Multiple considerations have to be made when implementing mutation analysis for Rust towards the specific features
of the language. As highlighted by the two existing mutation analysis tools above, efficient, and reliable mutation
analysis has its challenges. Due to the extensive static analysis performed by the language, it is important for mutation
analysis tools to reliably generate valid programs. This is for efficiency, to avoid unnecessary compilation, and analysis
of mutant programs.

Most notable is Rust’s safety paradigm, which requires special attention when applying mutation analysis. Rust
statically proves the memory safety of programs, although this requires developers to abide by its safety rules, which is
defined as the guarantee that code cannot cause undefined behavior [56]. Unlike languages such as C, C++, or Java,

Rust restricts unsafe operations to blocks specifically annotated as unsafe. As such, when more flexibility is required,
Manuscript submitted to ACM

A Comprehensive Analysis of Batching Algorithms for Efficient, Safe, Parallel Mutation Analysis in Rust 7

dedicated unsafe code sections may be introduced to perform these unsafe operations, like dereferencing a raw pointer,
or calling an external C function through a foreign function interface (FFI) to interact with existing code. These unsafe
code sections have to be manually audited to ensure that they uphold safety contracts; i.e., guarantee that the code
cannot cause undefined behavior. The use of unsafe operations is discouraged, but is sometimes necessary, for example,
for interfacing with foreign code. Evans et al. [15] analyzed common Rust libraries, and found that around 30% of libraries
contained unsafe code, mostly through the use of unsafe function calls from library dependencies. Astrauskas et al. [3]
conducted a survey of Rust libraries, and found that unsafe code was used to achieve three main goals: “overcoming
aliasing restrictions” such as in data structures with complex sharing, or to overcome certain incompleteness issues,
“emphasizing contracts, and invariants”, for example annotating functions which require an invariant the compiler
cannot prove as unsafe; and “accessing a lower abstraction layer”, like foreign functions, or compiler intrinsics. This
clear divide between safe and unsafe operations as a language feature is, in systems programming, unique to Rust.
The complex interactions between safe and unsafe code have to be considered for mutation analysis to retain these
guarantees [56]. This is especially important for mutation analysis, where we are trying to introduce generated program
mutations while retaining the existing safety of the code.

Rust has an expressive expression-based syntax, which lends itself well to Untch et al.’s meta-mutant [58-60], and
Just et al.’s conditional mutation [30] approaches. These approaches minimize compilation time needed for mutants by
embedding mutations into a single program, called a meta-mutant, which results in only a single program needing to
be compiled. This meta-mutant program can then act as any of the constituent mutants based on an argument upon
invocation.

Among the safety goals of Rust is increased testability. As test cases are free functions, i.e., standalone functions
that are not methods associated to a type, Rust’s testing paradigm has no explicit support for setup and teardown
functions commonly found in testing frameworks for other languages. This simple approach to test cases may give
way for opportunities to optimize test running strategies further. In addition, the built-in test runner does not make
any guarantees about the execution order of test cases. These help avoid the introduction of flaky, order-dependent

tests [14, 44], and are, again, helpful when optimizing alternative testing approaches.

3 Approach

This section details our process of mutation analysis for Rust by first providing an overview of our mutation analysis
pipeline (Section 3.1), followed by sections explaining each aspect of our mutation analysis approach: our representation
of mutations in Rust and our additional mutation operators (Section 3.2); our construction of call graphs suitable to
represent complex Rust programs (Section 3.3); our technique for finding compatible mutations and batching them
together (Section 3.4); our mutation safety technique for avoiding undefined behavior (Section 3.5); and finally our
parallelized test evaluation method (Section 3.6). We implemented our pipeline and techniques into our mutation

analysis tool, mutest-rs.

3.1 Overview

At a high-level, our mutation analysis pipeline performs mutation analysis on a given Rust crate in two stages. The first
stage takes the input Rust source code, and produces the source code for the meta-mutant program, which represents
every generated mutation. The second stage takes this mutated source code, and produces the results of mutation
analysis. Figure 1 shows an overview of our mutation analysis pipeline, which we implemented in mutest-rs.

Manuscript submitted to ACM

8 Zalan Lévai, Donghwan Shin, and Phil McMinn

IR

L Y
Construct M?llt)eftli}(l)n Batch M]flrtl?il:ieo(ils Evaluate
src |||~ — Call Graph —>»i —>| Mutations —>>| H —> | src |||~ - Mutations { —> 7
A Operators N and Harness X o
(Section 3.3) X (Section 3.4) . (Section 3.6)
(Section 3.2) . (Section 3.2 and 3.6) Mutation
Source Code ‘ o A Mutated Mutation Evaluation Results
: I I Source Code
[|
‘ ! Mutation | |
| 3 - - = [—
) > Batches
N J

Code Analysis and Mutation Generation

Fig. 1. A high-level overview of our mutation analysis pipeline with mutation batching, which we implemented in our mutation
analysis tool, mutest-rs. The gray boxes and black arrows represent the linear pipeline of steps taken by mutest-rs to perform mutation
analysis, while the white boxes and gray, dashed arrows represent the data produced and used by each of the steps.

In the first stage (Code Analysis and Mutation Generation in Figure 1), our tool uses an augmented version of the
Rust compiler, rustc, to analyze the original source code and generate mutations from it. First, our tool generates a call
graph (Section 3.3) starting from the crate’s test functions (which we treat as entry points in the context of testing).
This ensures that our tool only mutates functions that are reachable by the test suite, and allows our tool to build a
mapping between mutations, and the tests that may reach them. This mapping is then used during the batching, and
later during the evaluation of the generated mutations. Second, our tool applies a set of mutation operators (Section 3.2)
to every possible location in the body of the previously selected functions. Third, the generated mutations are tested
for compatibility, and are batched by one of our mutation batching algorithms (Section 3.4). Finally, the tool inserts
the conditionally mutated code fragments which make up the mutations into a copy of the source code of the original
program, alongside the mutation and mutant metadata; and an injected global variable, ACTIVE_MUTANT_HANDLE, used
to control the currently active mutant. The tool replaces the entry point of the program (i.e., the main function) with a
call to the generic mutation test harness, which drives the evaluation of the mutation analysis. The output of the first
pass is the generated source code of the mutated program with injected code to drive the mutation analysis.

In the second stage (Mutation Evaluation in Figure 1), our tool compiles the generated source code of the mutated
program into a binary. This custom test binary is then executed to perform the evaluation of the mutations, and to

produce the results of mutation analysis.

3.2 Mutation Operators for Rust

We model mutation operators as a mapping from a source code location, a node in the original program’s abstract
syntax tree (AST), to a set of substitutions required to reproduce the mutation, if the mutation operator is applicable.
Every substitution is a pair of an existing syntax node, and a new, replacement syntax node. Substitutions may
replace existing expression nodes, or insert statements before or after an existing statement. The operators may make
substitutions at any node in the body of the function, not just the input location. (This means that we can use mutest-rs
to generate both first-, and higher-order mutations [25, 26] using our approach, although we only consider first-order
mutations in this paper.) First-order mutations can be represented as a singleton set of a single substitution.

Our implementation embeds the generated substitutions that make up the mutations using in-place conditional
expressions over an injected global state. This state represents the active mutations at runtime, and is managed by the

test harness. Figure 2 shows an example of such a conditional expression. First, substitutions of the various mutations are
Manuscript submitted to ACM

A Comprehensive Analysis of Batching Algorithms for Efficient, Safe, Parallel Mutation Analysis in Rust 9

mem: :size_of::<f32>() as u32 x 8
l

match subst!(ACTIVE_MUTANT_HANDLE @ rep_13466) {
Some(subst) if subst.mutation.id == 1116 =>

mem: :size_of::<f32>() as u32 + 8,
Some(subst) if subst.mutation.id == 1117 =>

mem: :size_of::<f32>() as u32 / 8,

=> mem: :size_of::<f32>() as u32 * 8,

Fig. 2. Example of a match-based conditional expression used to embed substituted expression nodes alongside the original. Taken
from code generated for hashbrown (a subject used in our empirical study in Section 4.1), illustrating the mutations applied to a
memory offset calculation.

grouped by the location in the original source code they apply to. Then, for each substituted location, our tool replaces
the original node with a match-based conditional expression, with a branch for each substituted node, and a default
branch for the original expression. For inserted statements, this default branch is an empty block. This representation
of the substitutions supports nesting. By replacing subexpressions first, their corresponding substitution expression
gets placed into the default branch of any outer substitution expression.

We designed a set of fundamental mutation operators for programs written in Rust. These mutation operators filter
equivalent mutants directly, using a rule-based approach, which we describe in further detail for each mutation operator.
Thirteen of these mutation operators are adaptations of common operators used in almost all languages (e.g., by Major,
and PIT for Java), that are applicable to Rust. We refer to them as traditional mutation operators. Five are additional
operators that are tailored specifically to language features commonly used in Rust programs that are not covered
by the more common traditional operators. While most of these are not entirely new, they are all highly adapted (in
some cases restricted due to the strict rules of the language, while in other cases more generalized) to the commonly
found, unique code patterns in Rust programs. They are primarily intended to produce mutations with similar behavior
to mutations generated by other common mutation operators for other programming languages. Table 1 lists these
eighteen mutation operators, with the traditional and additional mutation operators introduced in this paper as follows:

The eight OpAddMulSwap, OpAddSubSwap, OpDivRemSwap, OpMulDivSwap, and the bitwise BitOpO-
rAndSwap, BitOpOrXorSwap, BitOpShiftDirSwap, and BitOpXorAndSwap traditional mutation operators target
binary operation expressions. These mutation operators, that replace existing operators with related counterparts, all
have to determine whether the trait required for the new operator is implemented by the operand types. For example,
the Instant timestamp type implements the Sub trait for subtraction but not the Add trait for addition, which limits
the applicable valid mutations. These mutation operators filter out such non-applicable mutations. For these mutations,
minimal equivalent mutant filtering is required, as either of the operands would have to be the identity of both the
original and the substituted binary operation for equivalence (e.g., i + @ with OpAddSubSwap, where 0 is the identity
of both the addition and subtraction operations). The resulting mutation would be equivalent if the resulting value
was unused, but the Rust compiler already warns against such cases of dead code. This caveat applies to most of our
mutation operators more generally. It is worth noting that these mutation operators are more generic than most of
their original counterparts, as they apply to all types that implement the corresponding binary operator traits (i.e., they
implement the operation).

Manuscript submitted to ACM

10 Zalan Lévai, Donghwan Shin, and Phil McMinn

Table 1. Mutation operators for Rust implemented in mutest-rs. The five mutation operators in bold are highly-adapted versions of
existing mutation operators, newly introduced in this paper. We refer to them as additional mutation operators.

Mutation Operator Description

ArgDefaultShadow Replace function argument with default value!
BitOpOrAndSwap [32] Replace bitwise OR with bitwise AND, and vice versa
BitOpOrXorSwap [32] Replace bitwise OR with bitwise XOR, and vice versa
BitOpShiftDirSwap [32] Replace bitwise LSH with bitwise RSH, and vice versa
BitOpXorAndSwap [32] Replace bitwise XOR with bitwise AND, and vice versa
BoolExprNegate [32] Negate Boolean expression

CallDelete Delete function call, replace with default value!
CallValueDefaultShadow Replace function call result with default value!
ContinueBreakSwap Replace continue with break, and vice versa
EqOplnvert [32] Invert equality operator

LogicalOpAndOrSwap [32] Replace logical && with logical | |, and vice versa
OpAddMulSwap [32] Replace addition with multiplication, and vice versa
OpAddSubSwap [32] Replace addition with subtraction, and vice versa
OpDivRemSwap [32] Replace division with modulo, and vice versa
OpMulDivSwap [32] Replace multiplication with division, and vice versa
RangeLimitSwap Change inclusivity of range’s upper bound
RelationalOpEqSwap [1] Change relation operator’s bound with regard to equality
RelationalOplInvert [1] Invert relational operator

The default value for the type as defined by the implementation of the Default trait in Rust; i.e., the value of Default: :default().

The remaining five BoolExprNegate, EqOpInvert, LogicalOpAndOrSwap, Relational OpEqSwap, and Rela-
tionalOpInvert traditional mutation operators target various Boolean expressions. These mutation operators are more
similar to their original counterparts, as they are only applicable to Boolean-typed expressions. These mutations are
applicable in all cases, and are unlikely to produce truly equivalent mutants by themselves.

The ArgDefaultShadow additional mutation operator targets function arguments, replacing any argument passed to
a function parameter with the default value of the type — defined by the author of the type through the implementation
of the Default trait. By inserting a variable binding statement at the beginning of the function, mutest-rs can ensure
that the original function body does not have access to the passed argument. This is possible since Rust allows for
rebinding variable names, and has a common way of representing the intended default value of each type, by means of
the Default trait. The mutation operator only applies to types with this trait implemented. The mutations generated
by this operator cannot be equivalent mutants, unless the argument value is unused. In the case when the test suite
only ever invokes the function with the default argument value, the mutation will not be detected. However, this is an
indicator of either a lack of testing — if the test directly or indirectly influences the value of the function argument, or
dead program code (i.e., code that is never exercised within the program through any accessible means) rather than an
equivalent mutant. In the case of the default values originating from test cases, the mutation could be detected by a
sufficiently extensive test suite. In the case of the default values originating from fixed points in program code with
no other accessible code paths, it might be advisable for such non-exercised, untested code paths to be removed. This
mutation operator can be seen as a generalization of the existing AOC (Argument Order Change) and AND (Argument
Number Decrease) mutation operators, which are not directly applicable to Rust as these mutation operators target
method overloading not supported by the language.

Manuscript submitted to ACM

A Comprehensive Analysis of Batching Algorithms for Efficient, Safe, Parallel Mutation Analysis in Rust 11

The CallDelete additional mutation operator targets function calls by deleting them, replacing the call with the
default value of the type — as defined by the type’s author through the Default trait. This mutation operator can be seen
as a restricted, Rust-specific version of statement deletion, as Rust’s strict rules make ad-hoc statement deletion difficult.
CallValueDefaultShadow additional mutation operator targets function calls in a more subtle way, by retaining the
function call and replacing the return value at the call site with the default value of the type, similarly to CallDelete.
This mutation operator is analogous to existing mutation operators targeting the return-sites of functions, but this
mutation operator achieves a similar effect by mutating the call-site instead. The difference between these mutation
operators is whether the side effects of the called function are retained with the mutation. These two mutation operators
filter out equivalent mutants; only applying to function calls which do not resemble a default constructor (i.e., take at
least one argument), and whose return type implements the Default trait and is not the () unit type. In addition, these
mutation operators filter out any mutations, which would cause infinite recursion through the insertion of the call to
the Default: :default trait function implementation. When the function call is retained, the return type position is
explicitly annotated with the semantic type information from the original function call to ensure that the resolution of
the call remains unchanged after mutation.

The ContinueBreakSwap additional mutation operator targets loop control flow statements by replacing continue
expressions associated with loops with break expressions, and vice versa. This mutation operator only applies to loop
control flow statements in loops with no return values. Since continue and break statements represent jumps to
different parts of the code, they are unlikely to produce equivalent mutants. When considering the added complexity of
labels and optional loop return values, the implementation of this rule quickly requires extensive scope analysis.

Finally, the RangeLimitSwap additional mutation operator targets Rust’s range expression syntax by changing
whether the range is inclusive of its upper bound. This mutation operator is primarily intended to replicate traditional
mutations of for loop conditions (for (int i = @; i <= 10; i++)), adapted to the range-based syntax of Rust
(for i in ©@..=10). Since this mutation operator only targets bounded ranges, which are likely to be fully consumed
(by iterating over them), it is unlikely that these mutations would be equivalent mutants. While not a unique language
feature, ranges, along with iterators, make up the majority of loop and array interactions in Rust programs (with manual
indexing discouraged), making this an important operator addition for the language.

As mentioned previously, mutest-rs builds rule-based equivalent mutant filtering directly into the mutation operators,
which can catch the large majority of equivalent mutants. In addition, the mutation operators used are designed to
produce only a relatively small amount of overlapping behavior, and thus are intended to not be equivalent to each
other. Most of the mutation operators match distinct code patterns, and those that match similar patterns produce

mutations that exhibit slight differences in behavior that might otherwise be hard to notice.

3.3 Analyzing Function Calls as a Pre-Step to Batching

To be able to safely combine mutations, we must first analyze the functions — in which our mutations will be placed —
reachable by individual test cases, and build a call graph for the program. This call graph will be used to conservatively
determine dependencies between parts of the program, and ultimately give us the ability to check mutations for
compatibility with regards to mutation batching.

The nodes of a call graph represent unique functions defined in the program. The presence of a directed edge
between two functions indicates that that function represented by the source node contains a direct call to the function
represented by the destination node. To help us with resolving intricate generic function calls that can be commonly

found in Rust programs, we extend the construction of call graphs with the propagation of generic type arguments. This
Manuscript submitted to ACM

12 Zalan Lévai, Donghwan Shin, and Phil McMinn

Require: Set of Test Functions T
Ensure: Mapping L : Function F — (Test Function T, Distance N)
Mappings: Function Definition — Test Function Cy,Cy, ... < {}, {},. .-
for all Function Definition t € T do
Set of Function Calls C; « functions called in body of ¢
for all (Function Definition f, Generic Type Arguments S) € C; do
(Function Definition f”, Generic Type Arguments S”) « resolve call to f with types S
) 9y gy
end for
end for
L {}
for all Distance d € (1,2,...) do
Set of Function Definitions Fy « {f | V((f,_),_) € C4}
Set of Function Definitions Fy, «— {f | V(f,_) € L}
break if F; C F5 > all functions have already been visited
for all ((f°,5°),T’) € C; do
Lo < LpoU{(t,d) |Vt €T}

Set of Function Calls Cyo «— functions called in body of f°

for all (f,S) € Cpo do
> combine generic type arguments from the call to the containing function with those of the local function call
Generic Type Arguments S* « fold type substitutions S° into S

(Function Definition f’, Generic Type Arguments S”) < resolve call to f with types S*
(f".8") (f'.8") ’
Cd+1 - Cd+1 uT
end for
end for
end for

Fig. 3. Algorithm for constructing the walks of a fully-resolved call graph. Function calls are represented as tuples (f, S), where f is
the function being called, and S is the set of local generic type arguments of the call. The output of the algorithmis L : F — (T,N), a
mapping between called functions and the tests they are reachability from, with a distance associated with each mapping. First,
function calls in the bodies of each of the test function entry points in set T is used to populate C;. Then, for each consecutive depth d,
Cq is first used to populate the output mapping L from the previous depth, and then function calls in the bodies of the functions in
Cgq is used to populate Cg.1, with the added step of first combining the generic type arguments from the previous depth, Sy, with
those of the local function call, S, thus propagating generic type arguments. The analogous code sections between the iteration of the
entry point functions, and consecutive iterations of called functions is highlighted.

helps us find the exact function definitions called by generic calls. We refer to the resulting call graph as a fully-resolved

call graph:

DEFINITION 1 (FULLY-RESOLVED CALL GRAPH). A fully-resolved call graph is a directed graph G¢ = (F,C) over a set of

root functions R, where:

o F (function nodes) is a set of (f,S) tuples, where f is a function definition, and S is a set of type substitutions
applicable to f; and

o C (call edges) is a set of directed edges between two function nodes, C C F X F.

o The set of root functions R may be any fully-resolved, non-generic functions. (These include entry points, like a

binary crate’smain function or test functions.)

Manuscript submitted to ACM

A Comprehensive Analysis of Batching Algorithms for Efficient, Safe, Parallel Mutation Analysis in Rust 13

fn fI<T: T1>0) > T ¢
T::do_t1::<u8>(1)

let _ = f1::<51>();

Fig. 4. A generic function call with a single level of indirection, which cannot be resolved without propagating type substitutions in
the call graph.

Based on the idea of fully-resolved call graphs, the algorithm in Figure 3 shows the process of building walks of the
call graph between test functions T, and functions of the program. Function calls are represented as (f, S) tuples, where
f is the function definition, and S is the set of call-site type substitutions passed to the function. The output of the
algorithm, L : F — (T, N), is a mapping between functions and tests, with a distance associated with each mapping. For
each mapping, distance is the length of the shortest call path between the two functions. Cy, Cy, . .., Cy represent the
callees at their respective levels d of the call tree. These get populated as the depth-wise iteration of the tree progresses.

The difference from the construction of a partially-resolved call graph is that the concrete types each generic
function is called with are taken into account. Instead of looking at just a function’s definition, each individual, uniquely
type-parameterized invocation of the function is resolved independently. This is analogous to the monomorphization of
generic functions performed during code generation in compiled languages [54].

Figure 4 is an example of a function call which cannot be resolved using the local context of the function definition
alone, but can be when using our approach for building a fully-resolved call graph. Inside the generic f1 function,
a call is made to the T1::do_t1::<V> generic trait function, with the known type parameter <V = u8>. Since the T
type parameter of the function is not known, the call can only be partially resolved to <T as T1>::do_t1::<u8>,
which does not identify the actual function body, as the type on which the do_t1 function is defined, is unknown.
Our technique instead looks at the function invocation f1::<S1> (and other invocations of the function f1 with
differing type arguments). By combining the types function f1 was invoked with (<T = S1>), with the call’s types
(<T = ?, V = u8>), it becomes possible to correctly resolve the same function call to S1: :do_t1::<u8>.

When constructing a Rust program’s call graph, it is important to consider every language feature with semantics
that can result in the introduction of a function call, not just explicit function calls. Most notably, this includes almost all
unary (* for dereferencing, - for negation, ! for logical negation), binary (+, -, *, /, %, |, *, & <<, >>, ==, I=, <, <=, >, >=,
and [] for indexing), and corresponding binary assignment operators, which have corresponding traits (i.e., interfaces)
that can be used to implement the operators for user-defined types. It also includes implicit calls to types’ Drop: :drop
user-defined cleanup functions at the end of scopes, and implicit calls to iterators’ Iterator: :next implementations
when the iterator itself is the “subject” of a for loop. It is also important to consider not just the function calls that are
made to definitions strictly within the program, but function calls to library code as well, as these library definitions
can then make further function calls back to program code. For example, a library function might be generic over a trait
(i.e., interface) and the library function is defined in such a way that it calls a user-defined trait function. If a type with
a program-defined trait implementation is passed into such a library function, then the library function will end up
calling back to program code via the trait implementation. It is worth noting however that even in such cases, only calls
to program code will ultimately be considered for mutation analysis, and the library call paths between program code
sections are only needed to establish full reachability analysis of all of the program code sections.

Manuscript submitted to ACM

14 Zalan Lévai, Donghwan Shin, and Phil McMinn

In the case of dynamic polymorphism, the fully-resolved call graph must branch off into all possible implementations
of the function being called to cover any possible runtime function call. For Rust programs, we can distinguish between
three different kinds of runtime dynamic polymorphism, which we refer to as virtual calls, dynamic calls, and foreign
calls. Virtual calls refer to trait (i.e., interface) methods that can only be resolved dynamically, at runtime. Virtual calls
are represented as multiple call edges to all of the possible implementations of the trait in the program. For example,
when calling a trait function on a set of trait objects (e.g., iterating over a collection of orderable elements), the virtual
call is represented as a call edge to all type’s implementation of the function which implement the trait. Dynamic calls
refer to calls through opaque function pointer types, which do not represent any exact function definition. Dynamic
calls are represented as multiple call edges to all of the possible function definitions in the program with matching
function signatures. Foreign calls refer to calls made to foreign definitions (e.g. C library interfaces), and are the only
function call kind that cannot be represented fully, as it would require additional call graph analysis of the external
code in question. This is not an inherent limitation of our call graph technique however, and it is possible, as an item of
future work, to expand our graph analysis to extend to external code as well.

By employing a fully-resolved call graph, our approach is able to discover the exact functions reached by individual
test functions. However, compile-time call graph analysis has its limitations. Dynamic invocation through function
pointers cannot be covered exactly with a lightweight approach, and would require either extensive data flow analysis
to track what functions each function pointer may refer to, or the significantly more conservative approach of marking
such function invocations as being able to call any function with the same signature as the pointer’s type, which is
what our approach utilizes. In our approach, our tool simply uses information available from the compiler about the
function definition each function call refers to, and we acknowledge, that programs making heavy use of dynamic
function pointers may produce slightly overly conservative call graphs, which may, as a result, have an impact on the
effectiveness of mutation batching. However, the impact of dynamic function pointers on the accuracy of our call graph
and resulting mutation batching is drastically limited by the prevalence of these function calls. As Astrauskas et al. [3]
found in their extensive empirical evaluation covering 31,867 Rust crates, only 0.7% of all function calls were made to
either closures or raw function pointers. We discuss the prevalence of such function calls in our subjects in Section 4.3,
as part of our threats to validity. It is also important to note, that the limitations of static call graph construction are not
inherent limitations of mutation batching, and approaches based on runtime instrumentation are left as an item for

future work.

3.4 Mutation Batching

The evaluation of mutations takes up the majority of time spent on mutation testing. For larger projects, this limitation
may disqualify the use of automated mutation testing entirely, since it takes a prohibitively long time to perform.
Therefore, it is important to look for optimized evaluation techniques to reduce the time needed to get results. In
Rust, developers commonly make their test suites parallelizable, since the built-in test runner, by default, executes test
cases in parallel, through the use of multiple in-process threads. This presents an opportunity to further engineer safe
ways of improving the runtime of mutation analysis by parallelizing the evaluation of not just test cases, but multiple,
independent mutations, making even better use of available resources. The ability to evaluate multiple mutations
simultaneously makes significantly more efficient mutation analysis possible, but it cannot be performed without
caution.

Simultaneously enabling multiple mutations requires that changes in behavior remain uniquely identifiable through

test results, and that the mutations do not influence each others’ changes in behavior (i.e., they do not combine into a
Manuscript submitted to ACM

A Comprehensive Analysis of Batching Algorithms for Efficient, Safe, Parallel Mutation Analysis in Rust 15

tests | program tests program

7 fi h——f—3
ms m ms m
L Nk
my

t3 4>ﬁ; t3 =

ty

?ﬁ
£ [—

b — | > f, & 4
/ s / ms ///////
[— ts ——— fs
my my
te <*> f[; te ——+—> fé
me me
t7 ———> ﬁo t7 7>’ flO

Fig. 5. Example of mutations in a call graph, separated by reachability-exclusivity. The two graphs represent two separate sets of
mutations which are each internally reachability-exclusive, but where no mutation from one set could be added to the other. Functions
(fi) are annotated with the mutations placed into them (m;). Highlighted edges represent the call paths that reach mutations from
their corresponding test cases. Inactive call paths and mutations are dimmed. Mutations my, my, and mg are reachability-exclusive
with regards to each other, and thus are compatible with each other. Mutation ms is not reachability-exclusive with m; because they
are both reachable from test ¢,. Mutation my is not reachability-exclusive with m; and m;, because they are both reachable from
tests 3 and #4 respectively. Mutation ms is not reachability-exclusive with m; because they are both reachable from test #5. Mutation
my is not reachability-exclusive with m; and ms, because they are both reachable from tests t; and t; respectively.

higher-order mutant). The first invariant can be upheld by ensuring that no two mutations are reachable from any of
the same test functions. This results in a one-to-one mapping between test case results, and mutation detection. The
second invariant then is automatically met by the above constraint: as the code executed by each test case only ever has
one mutation applied to it, no other mutation can influence its behavior. This constraint effectively produces disjunct
subprograms within the original program. We introduce the notion of reachability-exclusivity to formally represent

this constraint:

DEFINITION 2 (MUTATION REACHABILITY-EXCLUSIVITY). Two mutations my and my, reachable from the sets of tests Ty

and Ty, respectively, are said to be mutation reachability-exclusive iff T N T, = 0.

The property of reachability-exclusivity is the precondition for mutation batching, our novel method for grouping
mutations together, while ensuring that no change in behavior occurs compared to the mutations being applied
individually. Mutation batching is a combination of this grouping strategy, and the corresponding test-mutation
mapping, that can be used to recover causality between test case failures and mutation detection. Figure 5 shows an
example of reachability-exclusivity, and mutation batching in action, on a call graph with various mutations applied.
When looking at the call subtree of any given test function, we can only ever reach a single enabled mutation from all

possible call paths combined.

DEFINITION 3 (COMPATIBLE MUTATIONS). Two mutations my and my are compatible with regards to mutation batching,

and thus can be batched together, iff they are reachability-exclusive.

DEFINITION 4 (CONFLICTING MUTATIONS). Two mutations my and my are conflicting with regards to mutation batching,

and thus cannot be batched together, iff they are not reachability-exclusive.
Manuscript submitted to ACM

16 Zalan Lévai, Donghwan Shin, and Phil McMinn

{t1,t2, 13} {t1,t2, 13}
my my
{t4, 15} / {t4, 15} /
{t1,t6} my {t1,t6}
my mz
ms - ms
{t2} mg {t2} meg
\ / {t6, 17} \ / {t6, 17}
my m my my —
5 ms ms
{ts, ta} {ts) {t3,ta} {ts} {ts, ts} (ts}

(a) Mutation conflict graph, where (b) Mutation compatibility graph, where (c) Graph of batched mutations, con-
crossed-out edges (in red) are drawn edges (in blue) are drawn between compat- structed by partitioning the mutation com-
between conflicting pairs of mutations. ible pairs of mutations. patibility graph into cliques.

Fig. 6. The steps taken to batch mutations based on conflicting test cases. In all the above graphs, nodes represent mutations, red
edges represent conflicts between mutations, and blue edges represent that two mutations are compatible. Mutations may be labeled
with the set of test cases it is reachable from. The crossed-out conflict edges (in red) are labeled with the set of test cases that cause
the conflict, those which are common between the two mutations.

Since our mutation operators are guaranteed to not add new call edges to the call graph of the program, the
fully-resolved call graph we constructed earlier is (bar dynamic function calls through function pointers discussed in
Section 3.3) sound for determining reachability-exclusivity for the final meta-mutant program as well. The implementa-
tion of our approach, mutest-rs, generates such non-conflicting sets of mutations upfront, at compile time, and encodes
the necessary metadata to discern the test results corresponding to each mutation. The resulting static mutation batches

are then each evaluated by the test harness.
DEFINITION 5 (MUTATION BATcH). A set of mutations B, where Vmy,m; € B : [m; and my are compatible].

3.4.1 Theory behind Mutation Compatibility and Batching. When analyzed through the lens of graph theory, it can be
shown that mutation batching is equivalent to the problem of clique cover, i.e., partitioning a graph into cliques, over
the mutation compatibility graph.

Garey and Johnson [17] give the following definition to the clique cover problem: “Given graph G = (V,E), and
positive integer K < |V|, can the vertices of G be partitioned into k < K disjoint sets V3, Va,. .., Vi such that, for
1 <i < k, the subgraph induced by V; is a complete graph?”. Following from this definition, mutation batching can be
defined as the following instance of clique cover: G = (V, E), where V is the set of mutations, and E is the set of edges
between compatible mutations. This works, because every batch, i.e., subgraphs of G, needs to have mutations in it that
are compatible with every other mutation in the same batch, meaning every subgraph of G is a complete graph, i.e., a
clique. Importantly, every mutation is in exactly one batch, making batches disjoint sets of vertices, i.e., partitions.

Since mutation batching is equivalent to clique cover on the mutation compatibility graph, it follows that it is also
equivalent to graph coloring on the mutation conflict graph, given that the two problems can be transformed into each
other [31].

DEFINITION 6 (MUTATION CONFLICT GRAPH). An undirected graph G = (M, C) over a set of mutations M, where
undirected conflict edges C C M X M are placed between every pair of conflicting mutations in M:
C = {(my, my) | Ymy, my € M, [my and m, are conflicting]}.
Manuscript submitted to ACM

A Comprehensive Analysis of Batching Algorithms for Efficient, Safe, Parallel Mutation Analysis in Rust 17

DEFINITION 7 (MUTATION COMPATIBILITY GRAPH). An undirected graph G = (M, C) over a set of mutations M, where
undirected conflict edges C C M X M are placed between every pair of compatible mutations in M:

C = {(my, my) | Ymy, my € M, [m1 and my are compatible] }.

Figure 6 shows the steps taken to perfectly batch mutations based on conflicting test cases, explained through graphs.
First, a mutation conflict graph (Figure 6a) is constructed by placing edges between every pair of conflicting mutations.
Then, a mutation compatibility graph (Figure 6b) is constructed as the complement graph of the mutation conflict graph.
Finally, compatible mutations are batched (Figure 6c) by partitioning the mutation compatibility graph into cliques,
each clique representing a mutation batch. This ensures that for each batch, every mutation is compatible with every
other mutation in the batch.

Garey and Johnson [17] write that clique cover is solvable in polynomial time in the following cases:

e for K <2,

o for graphs containing no complete subgraphs on 3 vertices,
o for circular arc graphs,

e for chordal graphs, and

o for comparability graphs.

From these, comparability graphs stand out as potentially applicable. However, this requires that the edges of the
graph be defined by a strict partial order.

Mutation Compatibility Relation. Let M be the set of all possible mutations. Let E;(m), Vm € ZM be the set of test case
entry points that mutation m is reachable from based on the call subgraph of the test case entry points. Let ¢,, be the

mutation compatibility relation on set XM of all mutations, where
Vmy, my € M : my # my = [my ¢y my = E;(myp) NE;(my) = 0]

The mutation compatibility relation c,, holds the following properties:

(1) Reflexivity: The relation c,, is reflexive: Vm € M : m c,, m, because every mutation may be batched with
itself, producing an equivalent batch with the same mutations.

(2) Symmetry: The relation ¢, is trivially symmetric: Vm;,m; € IM : my ¢, my = my ¢,y my, and can be
represented for any set of mutations M using an undirected graph.

(3) Intransitivity: Let E;(m;) = {t1, 2, t3}, E;(m2) = {ts,t5}, E;(m3) = {t2}. Then, ms ¢, my A my ¢y, my, but

ms3 ¢ my. Therefore, the relation ¢y, is not transitive.

From this, it follows that mutation compatibility is not a partial order and as such does not form a poset. Mutation
batching remains an NP-hard instance of clique cover (i.e., partition graph into cliques). Most importantly, the lack
of transitivity of mutation compatibility makes any exact search method unfeasible in general. As Gramm et al. [19]
wrote, “Sensible inputs for clustering problems are expected to exhibit transitivity in the sense that if {a, b} and {b, ¢}
are edges, then probably also {a, c} is an edge (that is, its clustering coefficient is high)”. Search methods benefit greatly
if they can rely on the relation being (mostly) transitive as it can greatly reduce the effective search depth.

Through experimentation with existing implementations of established algorithms [8, 19, 24], we were able to
confirm that perfectly batching mutations through graph algorithms is indeed not computationally feasible, even on
our smallest subject, given the number of graph edges (i.e., conflicts and compatibilities) and the resulting enormous
search space.

Manuscript submitted to ACM

18 Zalan Lévai, Donghwan Shin, and Phil McMinn

Require: Set of Mutations M
Sorting Heuristic Function fio,r : M — R
Probability € € [0, 1] > only in e-greedy algorithm

Ensure: Set of Mutation Batches B

Set of Mutation Batches B « {}

sort M by the element-wise value of fio

for all Mutation m € M do
if m is unsafe then > (see Section 3.5 for the definition of mutation unsafety)
| Mutation Batch B’ « None
else if Ranpom(0, 1) < € then > only in e-greedy algorithm
‘ Mutation Batch B’ «~ RANDOMCOMPATIBLEBATCH (B, m)
else
~ Mutation Batch B’ « FIRSTCOMPATIBLEBATCH (B, m)
end if
if M’ # None then
‘ B’ «— B U{m}
else
- BeBuU{{m}}
end if
end for

Fig. 7. Greedy, and e-greedy algorithm for creating a static batching B of non-conflicting mutations M, based on the mutation sorting
heuristic function f;,, which determines the order in which mutations are considered for batching. The additions in the e-greedy
algorithm compared to the original greedy algorithm are highlighted. See Figure 8 for the selection functions FIRSTCOMPATIBLEBATCH
and RANDOMCOMPATIBLEBATCH.

With all of these issues in mind, we need to look at how we can approximate these solutions instead.

3.4.2 Algorithms for Approximating Mutation Batching. We developed two fast approximation algorithms for mutation
batching: a fully-deterministic greedy algorithm (originally published in our ICST conference paper [36]), and a
new, partially-deterministic algorithm that we call epsilon-greedy (e-greedy) batching. Figure 7 shows both of these
algorithms, with the additions of the new epsilon-greedy algorithm highlighted. Both the greedy and epsilon-greedy
algorithms create non-conflicting batches B of mutations M by first sorting mutations based on the mutation sorting
heuristic function f;,r : M — R, and then working through that list, in that order, adding mutations to the first mutation
batch they do not conflict with (see Figure 8a), and creating new mutation batches as necessary. For each mutation m,
the choice of a compatible batch is stored in B’, and if a compatible mutation batch is found, then mutation m is added
to mutation batch B, and if a compatible batch is not found, then a new mutation batch is created with only mutation
m as its initial member. This means that the first mutation is always stored in a new, “first” mutation batch, and future
iterations either add mutations to the mutation batches created up to that point, or create a new mutation batch which
may get extended by later iterations.

The epsilon-greedy algorithm is an extension of the greedy algorithm that takes an additional € parameter, where
each mutation has an € probability of being placed into a random compatible mutation batch (see Figure 8b), rather
than the first compatible mutation batch. These occasional probabilistic choices help the epsilon-greedy algorithm
escape local minima that the greedy algorithm would be “stuck in”, which happens if mutations in the existing set of
mutation batches prevent further mutations from being batched due to conflicts between them. It is worth noting that
the epsilon-greedy algorithm is equivalent to the greedy algorithm when € = 0.

Manuscript submitted to ACM

A Comprehensive Analysis of Batching Algorithms for Efficient, Safe, Parallel Mutation Analysis in Rust 19

function FIRSTCOMPATIBLEBATCH(Set of Mutation Batches B, Mutation m)
for all Mutation Batch B” € B do
if Vm’ € B’ : [m and m’ are reachability-exclusive] then
‘ return B’
end if
end for
return None
end function

(a) Selection function FIRSTCOMPATIBLEBATCH chooses the first compatible mutation batch — which only consists of mutations
compatible with the input mutation m — from the current working set of mutation batches B.

function RANDOMCOMPATIBLEBATCH(Set of Mutation Batches B, Mutation m) > only in e-greedy algorithm
Set of Mutation Batches Beompatiple <= {B" € B | Ym’ € B’ : [m and m’ are reachability-exclusive] }
return choose random element from B c,mparible, if any

end function

(b) Selection function RANDOMCOMPATIBLEBATCH chooses a compatible mutation batch — which only consists of mutations compatible
with the input mutation m — through random sampling from the current working set of mutation batches B.

Fig. 8. Methods of selecting compatible mutation batches used in each iteration of the greedy, and e-greedy algorithms. The
RANDOMCOMPATIBLEBATCH method in (b) is only used by the e-greedy algorithm. Both selection functions return the empty value
None if there are no mutation batches compatible with the input mutation m in the current working set.

To support multiple mutation sorting heuristics, the greedy, and epsilon-greedy algorithms take an forr : M — R
comparison function, which is used to sort the list of mutations before they are considered for batching, in that order.
This ordering greatly influences the outcome of these algorithms. The following ordering heuristics were considered

for the greedy, and epsilon-greedy algorithms:

(1) Ascending ordering by number of conflicts: m — |{m’ € M | m and m’ are not reachability-exclusive}|.
This ordering ensures that the least “conflicting” mutations are batched first, with the goal of creating as large
mutation batches as possible, by first combining mutations that are less conflicting to make batches that are less
conflicting overall, which can later incorporate more mutations.

(2) Descending ordering by number of conflicts: m +— — |{m’ € M | m and m’ are not reachability-exclusive}|.
This ordering ensures that the most “conflicting” mutations are batched first, with the goal of creating fewer
really large, and more, evenly sized mutation batches.

(3) Random ordering, i.e., shuffling (baseline).

This ordering, which shuffles the mutations, is used as a baseline with which to compare the effects of heuristic

orderings in our evaluation (Section 4).

Originally, we ordered the list of mutations by the number of conflicts each individual mutation had, in descending
order. This was done with the goal of creating fewer very large batches and more, evenly sized ones from the set of
mutations, as the algorithm had to batch the most “conflicting” mutations first. This choice was based on findings from
anecdotal initial experimentation that we did not explore further in the original ICST conference paper [36].

In addition to the greedy, and epsilon-greedy algorithms outlined above, we also implemented a baseline random
batching algorithm, which for every mutation m in mutations M, places the mutation into a random compatible mutation
batch according to RANDOMCOMPATIBLEBATCH in Figure 7, if any. If no compatible mutation batch exists for the given
mutation, the mutation is placed into a new mutation batch instead. This effectively mimics the behavior of the original

Manuscript submitted to ACM

20 Zalan Lévai, Donghwan Shin, and Phil McMinn

fn size() -> usize {

100
}
let xs = [0; 31;
let i = 100; let xs = [0; 3];
let el = unsafe { xs.get_unchecked(i) }; let el = unsafe {
let i = size() - 1;
xs.get_unchecked(i)
3
(a) Example of unsafe code depending on its safe, but (b) Example of unsafe code depending on a call to a safe,
incorrect enclosing scope. but incorrect function. The issue becomes clear if the

body of the called function is inlined.

Fig. 9. Unsafe code has hidden dependencies on the correctness of both its enclosing scope, and its called scopes.

greedy algorithm, but each choice of mutation placement is entirely random, rather than the greedy algorithm’s method
of placing mutations into the first compatible mutation batch. The random algorithm also performs no sorting or
shuffling before iterating over all mutations.

It is trivial that the epsilon-greedy algorithm is equivalent to the greedy algorithm when e = 0. However, similarly, it
is also equivalent to the random algorithm when e = 1. This means that the epsilon-greedy algorithm behaves very
differently depending on the value of €. In our approach, with low values of € (i.e., € 0.1), we use the epsilon-greedy
algorithm as a way of augmenting the greedy algorithm with a small number of random choices.

It is important to note that only safe mutations — mutations defined in safe subtrees of the program — may be safely
evaluated in parallel, without any undefined behavior. Mutations that are inside unsafe blocks of code or are invoked
by unsafe code are not guaranteed to uphold the necessary guarantees. As such, unsafe mutations are put into their
own singleton mutation batch, i.e., a mutation batch which is a singleton set containing one and only one mutation. We

discuss these safety characteristics, and mutation safety next.

3.5 Mutation Safety — Avoiding the Spread of Unsafety

In Rust, safety is defined by the Rust project developers [56] as the guarantee that code cannot cause undefined behavior:
no dangling pointers, no use-after-frees, no out-of-bounds memory accesses, etc. Because of this, Safe Rust code, by
itself, cannot cause undefined behavior. Unsafe Rust code has no such guarantees, and allows for operations that may
introduce undefined behavior. These operations however are required to be annotated explicitly, by wrapping the code
in an unsafe block. This strict separation of safe and unsafe code allows for new considerations to be made when
applying mutation testing to Rust.

There is an intricate, asymmetric trust relationship between the way safe and unsafe Rust code interacts. Safe Rust
has to trust that any Unsafe Rust it interacts with was written correctly, and that the safety invariants assumed by the
compiler have been upheld. Unsafe Rust on the other hand cannot trust any Safe Rust it interacts with, without care,
and must be resilient to incorrect (but not undefined) behavior exhibited by Safe Rust code, as stated by the Rust project
developers [56]. In practice, however, due to the difficulty of writing resilient unsafe code, embeddings of Unsafe Rust
often depend on the correctness of the enclosing safe code section — its context (Figure 9a), and the correctness of the
safe code it calls (Figure 9b) for their own correctness [15]. Therefore, the relationship between safe and unsafe code
must be carefully considered, when introducing code changes into the program through generated mutations.
Manuscript submitted to ACM

A Comprehensive Analysis of Batching Algorithms for Efficient, Safe, Parallel Mutation Analysis in Rust 21

fn x { [-]
fn y { [context-tainting]
unsafe { [unsafety]
fn z { [call-tainting] }
}
fn w { [extended call-tainting] }
unsafe fn u { [unsafety]
fn v { [call-tainting] }
fn r { [call-tainting, context-tainting]
unsafe { }

Fig. 10. Illustration of the mutation safety rules on a scope-level. Each scope is either an inlined call to a function or an unsafe block
of Rust code. Mutations have the safety of their containing scope. Within each scope, an annotation is placed in [] brackets to signify
applications of the safety rules, where [-] means no rule, i.e., safety. The body of function y is tainted because it contains unsafe
blocks. Function z is tainted because it is called from an unsafe block in function y. Function w is tainted because it is defined in a
body that contains unsafe blocks. Function u is defined as unsafe. Function v is tainted because it is called from unsafe function u.
Function r is tainted because it is called from unsafe function u, and it also contains an unsafe block.

In entirely Safe Rust, according to the safety rules mentioned above, mutations may cause undesired behavior but
they will never introduce undefined behavior. Mutations introduced into unsafe code however — including otherwise
safe code that unsafe code might (incorrectly) rely on — are likely to lead to the introduction of undefined behavior
which was not present in the original code. While this may be desirable to test for, such undefined behavior-inducing
mutations still have to be differentiated. For example, they have to be tested in a separate process to guard against the
newly-introduced undefined behavior causing the mutation test evaluation to crash or otherwise behave incorrectly.
We introduce the notion of safe and unsafe mutations to differentiate between mutations that may or may not cause

undefined behavior to be introduced, based on their location in safe and unsafe scopes respectively.

DEFINITION 8 (UNSAFE MUTATION). We consider mutation m unsafe if it fulfills at least one of the following conditions:

(1) m has a direct or indirect unsafe block parent in the function body it is located in.

(2) m is in a function body with an unsafe block but is not a direct or indirect child of an unsafe block. We refer to this
rule as context-tainting.

(3) m is in the body of a function which is called directly or indirectly from an unsafe block. We refer to this rule as
call-tainting.

(4) m is in the body of a function which is called directly or indirectly from a function body with an unsafe block, but

the call is not a direct or indirect child of an unsafe block. We refer to this rule as extended call-tainting.
DEFINITION 9 (SAFE MUTATION). We consider mutation m safe if it is not unsafe according to the definition above.

A safe mutation is guaranteed to not introduce undefined behavior into the program when applied. Figure 10 shows
an outline of how safe code becomes tainted by unsafe code as the call tree is traversed from an entry point, according
to the rules defined above. Tainted scopes — scopes which are matched by one of the tainting rules — are part of the
program’s extended unsafe scope. Mutations in the same scope have the same safety, and mutations in tainted or unsafe

scopes (i.e., the extended unsafe scope) become unsafe.
Manuscript submitted to ACM

22 Zalan Lévai, Donghwan Shin, and Phil McMinn

Mutation safety extends and complements the program safety rules of the Rust language, reflecting on the asymmetric
trust relationship between safe and unsafe Rust code. This similarity also extends to the expectations the Rust language
— and by extension our mutation safety rules — have towards program code, specifically unsafe code sections. The
Rust language makes no guarantees about any program behavior if the program contains incorrectly implemented
unsafe code sections that might lead to undefined behavior. Because of this, our mutation safety rules also cannot make
any guarantees about such incorrectly implemented unsafe code in the existing program code. For example, if a safe
function is declared with some “interior” unsafe code inside, then it is the responsibility of its authors to ensure that the
unsafe code follows the rules required from it by the Rust language. If those requirements are not met, then it can no
longer be considered a valid Rust program, according to the Rust language rules, and as such the rules of mutation
safety will also not apply correctly. However, the rules of mutation safety ensure that, given valid Rust code, which
must by definition have implemented all of its unsafe code correctly according to the language contract, we will not
introduce any undefined behavior using safe mutations, and only unsafe mutations may do so.

The rules of mutation safety must also be considered when designing mutation operators. Because mutation safety
is based on the call graph analysis of the original, unmutated program, any mutation introducing new function
calls must carefully consider mutation safety rules. In unsafe and tainted contexts, all mutations introduced will
be considered unsafe by default. In safe contexts, mutations which introduce calls to only safe functions can be
considered safe mutations according to the rules of mutation safety. However, any mutation which introduces a call to
an unsafe function will not just result in an unsafe mutation, but will also affect the safety of its containing function
scope. Of our eighteen mutation operators, only three of them can introduce new function calls into the program:
ArgDefaultShadow, CallDelete, and CallValueDefaultShadow. All three of these mutation operators introduce
a call to the type-dependent Default: :default trait (i.e., interface) method, which is declared safe. Thus, they will

generate safe mutations in safe contexts.

3.6 Parallelized Test Evaluation

Our approach generates an instrumented program, which can be executed to perform mutation analysis. This program
includes conditionally branching code for all mutations, metadata representing the mutations and mutation batches,
and a generic mutation test harness. The harness acts as the main control loop of the program, iterating over mutation
batches, enabling and disabling mutations in the program, and evaluating the tests corresponding to mutations.

First, all tests are evaluated without any mutations applied. The information from this profiling test run is used to
sort tests by execution time. This ordering is later used for further test runs, in anticipation that the majority of the
time, mutations will not change the execution time of any test significantly. The results of the profiling test run is also
used to establish the timeout duration for tests, based on their execution time. This is important, since mutations may
change the code paths of the program in ways that can cause infinite loops, or just increase execution time significantly.
Compared to the overall test timeout we used in the original ICST conference paper [36], which was based on the
longest running test’s duration, we now determine test timeouts Tyimeour fOr each test case i individually, as follows:

Ttiimeom =t; + max(0.1 - t;, 1s)

After the profiling test run, our technique finally performs the mutation analysis by applying each mutation batch
one-by-one, and evaluating it. A mutation batch is applied by changing the reference stored in the injected global
variable ACTIVE_MUTANT_HANDLE, which is referenced in all of the conditionally branching code generated by mutest-rs

Manuscript submitted to ACM

A Comprehensive Analysis of Batching Algorithms for Efficient, Safe, Parallel Mutation Analysis in Rust 23

Time Remaining Test Cases Running Test Cases Completed Test Cases
Thread 1 Thread 2 Thread 3

i=0 | (m) (omy) (tmy) (tmg) (55,mz) | | | |

i=1 (t3,m1) (t5,my) (t,m1) (ts,mz) (t2,m1)

i=2 (t3,m1) Userm] (om) [J(tm) (lm)

i=3 Usermz] () (tm) (omy) (temy)”

i=4V U] | I | | o)t my) (11, my) (83, ma)”

(a) Test evaluation of a single batch of mutations, timestep-by-timestep. At i = 1, the test runner starts running (1, my), the fastest
test case for mutation my; (t4, my), the fastest test case for mutation my; and (#;, m), the second fastest test case for mutation m;.
At i = 2, test case (24, my) fails, which means that mutation m; is detected. Thus, the test runner can remove all remaining tests for
mutation my from the queue: {(#s, mz) }. At i = 3, the test runner schedules the last remaining test case (#3,m1) in place of the now
completed test case (t3, my).

Time Remaining Test Cases Running Test Cases Completed Test Cases
Thread 1 Thread 2 Thread 3
i=0| (mi) (fzmi) (3,m1) \ I | |

i=1 (t1,m1) (t2,m1) (t3,mq)

i=2 ‘ H H ‘ (t2m1)” (t1,m1)" (t3,my)”

i=3 (tg, my) (t5,my) ‘ H H ‘

i=4 (t4,my) (ts,my) D

i=5 ‘ ‘ (5, m3) ‘ ‘ (4, mp)*

i=6 \ I | |t me) (t5,ma)”
Y

(b) Test evaluation of mutations without batching, timestep-by-timestep. At i = 3, evaluation of the second mutation starts,
independent from the first mutation. At i =5, test case (t, mz) fails, which means that mutation m, is detected, however, the test
runner cannot stop execution there, as (s, my) is already running, despite its result not influencing the already known final outcome.

Fig. 11. Test evaluation of a single batch of mutations (showing the first batch of Figure 6c), and the same mutations without
batching, timestep-by-timestep. The empty box represents an empty thread with no running test case. Passed test cases are shown in
blue, failed test cases are shown in red.

(Figure 2). Once the mutation batch is applied, the harness evaluates the test cases corresponding to the mutations
in the batch, determining the detection of each mutation separately based on the results of the corresponding test
completions.

If a test runs for longer than the automatically determined test timeout T

timeour» then its corresponding thread is

abandoned. The thread is kept running, but may terminate later, avoiding the potential for undesired state that would
be caused by forcibly terminating the thread. The parallel test runner used by the harness works using a fixed number
of threads. By modifying the queue of unscheduled tests during the test run, removing tests corresponding to mutations
which have already been detected, the number of evaluated test cases can be reduced. However, it is worth noting
that mutation batching can be used to evaluate the full test-mutation detection matrix, if desired, by disabling this
test culling behavior. This is useful for performing additional testing techniques, for example, mutation subsumption

Manuscript submitted to ACM

24 Zalan Lévai, Donghwan Shin, and Phil McMinn

analysis [33], test generation [16, 20], test suite prioritization [13, 38, 49], and fault localization [40, 43]. In mutest-rs,
an exhaustive mutation evaluation can be performed, with or without the use of mutation batching, by adding the
--exhaustive flag.

In addition, before each mutation batch evaluation, the tests are reordered again using a stable sort, which bubbles
up a single test for each mutation in cycles, keeping the relative order — based on execution time — the same. This
ensures that the evaluation of all mutations starts as soon as possible, increasing the overall likelihood of a shorter
overall test run.

Figure 11 shows an example of how test cases 1, t, ..., t5 corresponding to two compatible mutations my, m; —
E;(mq) ={t1, t2, t3}, E;(m2) = {t4, ts} — are evaluated with and without mutation batching. (These mutations, and their
corresponding test cases can be batched, since they are only reachable from a non-overlapping set of tests, see the first
batch of Figure 6¢.) With batching (Figure 11a), the test runner can start the evaluation of test cases for both mutation
my, and mutation m;, at the same time, with the help of the cyclic test ordering method described above. Due to multiple
mutations being evaluated at the same time, if a mutation’s test case is found to be failing, indicating that the mutation
was detected, then there is a higher likelihood of fewer unscheduled test cases remaining for the mutation which can
all be unqueued, leading to more effective pruning of unnecessary test case evaluations. Most importantly, the available
threads are fully utilized throughout the evaluation of the mutation batch. In comparison, without batching (Figure 11b),
the test runner has to evaluate mutation m;, and mutation m, separately, one after another. In this scenario, overall
thread utilization is much lower; mutations which have few corresponding test cases never fill the available threads, and
there is more time spent overall on switching between mutations, when nothing is being evaluated. This also makes it
less likely that remaining test cases can be unqueued, as more test cases for the same mutation will already have been
started on a thread by the time a failing test case is reached, leading to less effective pruning of unnecessary test case

evaluations.

4 Evaluation

We used our tool implementing our technique, mutest-rs, to evaluate a series of research questions. Since Rust is a new
language in the field of mutation testing research, we need to evaluate the effectiveness of applying mutation analysis in
the first instance, by applying it to commonly-used and critical Rust code. We must also evaluate the effectiveness of our
five additional Rust mutation operators. Additionally, regarding mutations, we need to evaluate the potential impact of
undefined behavior causing mutations, and our technique for distinguishing them based on Rust’s safety. Furthermore,
since we have made improvements to the classic mutation analysis workflow in our approach — in particular, our
method of batching mutations — we also evaluate our mutation pipeline’s improved efficiency. Finally, we must address
the potential impact of non-deterministic, flaky tests [44], and evaluate the extent to which they may affect mutation

scores. Our research questions, therefore, are as follows:

RQ1: Mutations. How many mutations do traditional and our additional mutation operators produce, and how
effective are Rust test suites at detecting them? At what rate are our additional mutations subsumed at, compared to
traditional mutations?

We use this RQ to show that our new, additional mutation operators (Section 3.2) — tailored to the unique characteristics
of Rust code — are valid, and are comparable to traditional mutation operators in terms of the number of mutations they

produce, their detection rate, and the rate at which they are subsumed by traditional mutations.

Manuscript submitted to ACM

A Comprehensive Analysis of Batching Algorithms for Efficient, Safe, Parallel Mutation Analysis in Rust 25

Table 2. Subjects used in our empirical study in descending order of criticality score. The subjects used are a combination of some of
the most downloaded Rust libraries and GitHub projects selected to represent a wide variety of use cases, project sizes, and testing
disciplines. Subjects are ordered according to their OpenSSF criticality score, shown in the last column.

Unsafe Unit Crit.

Subject Description SLoC SLoCl Tests Score
clap/clap_builder Command line argument parser 27941 0 (0.0%) 83 0.79
rand/rand_distr Library for sampling random distributions 6433 0 (0.0%) 128 0.76
rand/rand Library for random number generation 9178 30 (0.3%) 79 0.76
rand/rand_core Interfaces for random number generation 1651 0(0.0%) 6 0.76
json/serde_json JSON serialization/deserialization library 22360 10 (0.0%) 135 0.73
regex/regex-syntax Regular expression parser 56934 0(0.0%) 147 0.72
regex/regex-automata Regular expression automatas 64283 540 (0.8%) 129 0.72
regex/regex Regular expression library 11737 0 (0.0%) 51 0.72
chrono/chrono Date and time library 27741 1(0.0%) 214 0.69
ripgrep/ripgrep Line-oriented search tool, similar to grep 12947 1 (0.0%) 114 0.69
ripgrep/grep-printer Printer for grep search results 8949 0(0.0%) 105 0.69
ripgrep/grep-searcher Regular expression searcher 6361 4(0.1%) 77 0.69
alacritty/alacritty OpenGL terminal emulator 19948 2609 (13.1%) 78 0.68
hashbrown/hashbrown Port of Google’s SwissTable hash map 23516 1803 (7.7%) 103 0.67
itertools/itertools Library to extend iterators 17680 15 (0.1%) 327 0.66
gleam/gleam-core Programming language for the Erlang VM 69970 0(0.0%) 1719 0.66
image/image Image encoding/decoding/manipulation 35121 17 (0.0%) 212 0.66
bytes/bytes Library for working with bytes 9840 792 (8.0%) 125 0.65
rustls/rustls Modern TLS implementation 30737 0(0.0%) 202 0.64
parking_lot/parking_lot Synchronization primitives 5136 367 (7.1%) 87 0.62
exa/exa Directory listing tool, similar to 1s 10986 27 (0.2%) 406 0.61
bat/bat File printing tool, similar to cat 8850 0 (0.0%) 74 0.54

INumber of SLoC that are considered to be in an unsafe safety context, according to the Rust language rules, including unsafe
definitions and blocks (counting signature lines and unsafe block delimiter lines), and excluding unsafe declarations without bodies.

RQ2: Safety. How many generated mutations are unsafe? At what rate are unsafe mutations detected? What is the
impact of evaluating these unsafe mutations?

We use this RQ to show that our approach distinguishes unsafe mutations (Section 3.5), and thus mitigates their impact:
the adverse effects of crashing mutations and mutations introducing undefined behavior.

RQ3: Reduced runtimes. What are the performance gains produced by reachability-exclusive mutation batching
with our old and new algorithms? How does the approach scale with project size and the number of mutations?
We use this RQ to show that our initial findings in our original conference paper [36] hold for a much wider set of
commonly-used Rust subject programs.

RQ4: Variance. What is the variance in mutation scores with our subjects?

We use this RQ to show that certain test behaviors, such as flaky tests and test timeouts, may affect mutation scores with

and without mutation batching.

4.1 Subjects

We started by listing the top 500 most downloaded Rust library crates — crates are Rust’s notion of packages, i.e., a
library or a binary — by “Recent Downloads” according to crates.io (Rust’s primary crate registry). In addition, we also

Manuscript submitted to ACM

26 Zalan Lévai, Donghwan Shin, and Phil McMinn

collected the top 500 most starred Rust repositories — repositories which contain majority Rust code — on GitHub. From
the two datasets, we manually excluded crates that were thin wrappers around external libraries, primarily comprised
of unsafe code, contained at most an insignificant amount of executable code, used non-standard tests or a custom test
runner, or had an insignificant amount of unit tests. We combined the two datasets, resolved overlaps manually, and
grouped crates by project, i.e., GitHub repository. From this combined dataset, we selected projects with at least 100
test cases in any constituent crate. Within each selected project, we selected constituent crates with at least 75 test
cases. The final list of subjects were considered in descending order of the criticality score of the overall project given
by the 2022-06-07 OpenSSF criticality score dataset [2, 52]. The full dataset is available in our replication package [35].
In addition to this list of subjects, we included four crates that do not meet the above criteria from the original ICST
paper’s [36] subjects, namely: bat/bat, parking_lot/parking_lot, rand/rand_core, and regex/regex. We included
these four, smaller subjects to present comparative findings, and for the the sake of consistency with our original paper.

Table 2 lists the 22 subject crates involved in our experiments. These subjects vary widely in terms of intended purpose,
code size, testing methodology, and the resulting number of test cases. The largest subject, in terms of source lines of
code, is gleam/gleam-core with 69,956 lines, and the smallest is rand/rand with 1,651 lines. gleam/gleam-core has
the most test cases at 1,719, while rand/rand has the fewest test cases at 6. Compared to the 10 subjects we used in the
original ICST paper [36], these 22 subjects are significantly larger, with the largest subject in terms of the number of test
cases going from 406, in the case of exa/exa, to 1,719, in the case of gleam/gleam-core. The new set of subjects are also
a lot more varied in terms of their intended purpose and include, for example, parsers, automatas, interpreters, date and
time libraries, data encodings, data structures, synchronization primitives, graphical applications, and command-line
tools.

Table 2 also lists the number and percentage of unsafe source lines of code; lines of source code that correspond to
unsafe safety contexts, according to the Rust language rules, for each subject. This total includes unsafe definitions
and blocks (counting signature lines and unsafe block delimiter lines), and excludes unsafe declarations without
executable bodies (e.g., declarations of external C library interfaces). It is worth noting that the exclusion of unsafe
declarations without executable bodies is not a concern, since calls to these declared functions will still have to be
made from unsafe calling contexts, which mutest-rs counted. From this, we can see that 9 out of the 22 subjects
contain no unsafe lines of code, with an additional two subjects containing only 1 unsafe line of code. 18 out of
the 22 subjects had at most 0.8% of their source code be unsafe contexts. The subject with the most unsafe source
lines of code, alacritty/alacritty, had 13.1% of its source lines of code be unsafe contexts, with the majority
of these being calls to OpenGL functions. The other three subjects with significant unsafe source lines of code,
bytes/bytes, hashbrown/hashbrown, and parking_lot/parking_lot, all make use of unsafe operations to optimize

memory accesses in their low-level primitives.

4.2 Methodology

In preparation for the experiments, we forked each subject’s source code repository. This was done to pin down the
versions of the projects we were testing against, creating a stable test environment.

Rust projects primarily distinguish between two kinds of tests: unit tests, which are written as part of the program,
and integration tests, which are individual Rust files placed in a separate tests/ directory. Additional test kinds include
so-called “doctests” that evaluate Rust code blocks in documentation comments for validity, and experimental facilities
for writing benchmarks. However these were not considered in our work due to their specialized and experimental

natures respectively. This distinction extends to how these tests are compiled; with unit tests being compiled as part
Manuscript submitted to ACM

A Comprehensive Analysis of Batching Algorithms for Efficient, Safe, Parallel Mutation Analysis in Rust 27

of the main program, when testing is performed (test code is omitted otherwise), and with integration test files each
analyzed and compiled as individual test programs, separately from the main program or library they correspond to.
Because of this, and because Rust compilation works by analyzing each compilation unit separately, mutest-rs cannot
currently analyze integration tests by default. While the primary focus of our research is unit tests, some of our subjects’
authors made the stylistic choice to write their unit tests in the form of integration tests. Because of this, we converted
these standalone “integration” tests into unit tests by moving them into the crate’s src/ directory. This made it possible
for mutest-rs to analyze these test cases as well, allowing for a more extensive evaluation of the subject’s test suite. All
necessary modifications to the subjects required for this evaluation are available in our replication package [35].

We wrote an experiment runner script to automatically perform the analysis on all selected subject crates. The
experiment runner invokes mutest-rs multiple times, with different sets of configuration options set each time. All
information is parsed automatically by the experiment runner from the verbose output of mutest-rs. In all of our
experiments, we configured mutest-rs to discard all unsafe mutations, since unsafe mutations are not guaranteed to be
free from undefined behavior and thus cannot be safely parallelized, as we explained in Section 3.4.2 and Section 3.5.

The experiment runner first runs mutest-rs to gather information about the generated mutant batches — including
the total number of mutations generated, and the distribution of mutations across batches — with the following

configurations presented in the original ICST conference paper [36]:

B batching disabled; sequential evaluation of mutations with parallelized evaluation of reachable test cases
(baseline, corresponds to the example in Figure 11b);
gl greedy batching with reverse conflicts ordering, limited to 5 mutations in a batch;

G, greedy batching with reverse conflicts ordering, unlimited;
and the following additional configurations new to this paper:

R random batching (baseline);

Gy greedy batching with conflicts ordering;

G. greedy batching with random ordering;

G¢t epsilon-greedy batching with € = 0.1, and conflicts ordering;

G¢, epsilon-greedy batching with € = 0.1, and reverse conflicts ordering;

Gc. epsilon-greedy batching with € = 0.1, and random ordering.

After the initial runs, the experiment runner runs mutest-rs to completion for each previously listed configuration
to perform the mutation analysis. In all configurations, the same test ordering, filtering, and multi-threaded scheduling
is applied, regardless of the presence of batching. The experiment runner script performed ten evaluations for each
configuration to reduce the error in our timing measurements caused by background processes, and non-determinism.
The experiment runner script evaluated all configurations with some level of probabilistic behavior — i.e., random
batching, greedy batching with random ordering, and epsilon-greedy batching — with 30 different seeds each, with one
run performed for each seed. For each evaluation, the experiment runner collects the mutation score, the number of
mutations that the test suite detected and did not detect, the number of mutations that timed out, the number of tests
that mutest-rs evaluated to determine the detection of mutations in each mutant, and the time each stage of mutest-rs
took:

o function discovery, which consists of building the call graph of the test suite, determining which functions to
mutate, and the mutation safety of each scope (Section 3.3 and Section 3.5);

Manuscript submitted to ACM

28 Zalan Lévai, Donghwan Shin, and Phil McMinn

e mutation operator application, the process of applying each mutation operator to every possible location in
the mutable functions, producing mutations (Section 3.2);

e mutation batching (Section 3.4);

e code generation, the process of applying the necessary modifications to the program’s AST, and printing the
resulting code (Section 3.2);

e compilation of the generated program;

o test profiling, the evaluation of the unmodified test suite to gather execution time metrics used for test ordering,
and determining test timeouts (Section 3.6);

¢ mutation evaluation, the evaluation of every mutant against the test suite (Section 3.6).

The experiment runner also recorded the total runtime of mutest-rs, which is effectively the sum of the runtime of
each of the relevant stages. This is the end-to-end time that it takes for a user of mutest-rs to get the results of mutation
analysis from first invoking the tool. In configurations with mutation batching enabled, it includes both the overheads
of the mutation batching process, and the possible time gains in the compilation and mutation evaluation stages. We
refer to this as the total mutation analysis runtime, and this is the primary subject of RQ3.

Not all stages of mutest-rs are run, depending on whether batching is enabled or not, and while most stages are
identical across batching configurations, some perform more or less work depending on the presence of mutation
batching. While mutation batching requires that all stages of mutest-rs are run, the batching disabled (B) configuration
omits the mutation batching step entirely. However, all configurations require that the call graph is built, as it is always
used for determining which test cases can reach which mutations. While the runtime of almost all stages should be
identical with or without batching, both the main mutation evaluation stage and the compilation stage are expected
to take a different amount of time depending on whether batching is used. As batching allows for a more compact
representation of the mutant metadata, this can speed up compilation significantly.

To provide more insight into the mutations produced by our five additional mutation operators, we perform a
dynamic mutation subsumption analysis on our subject programs. Mutation subsumption analysis is used to identify
redundancy in sets of mutations [33], which we use as a metric to compare our five additional mutation operators’
mutations to traditional mutations in RQ1. Specifically, we use dynamic mutation subsumption analysis, based on the
test case—mutation detection pairs resulting from exhaustive mutation analysis. We run these experiments separately
from the timed mutation analysis runs, as dynamic mutation subsumption analysis requires an exhaustive evaluation of
mutations, running every relevant test case for each mutation regardless of any previous detections.

In addition to these experiments, the experiment runner ran a separate, unique configuration of mutest-rs, which
performed no mutation batching, but instead generated unsafe mutations in addition to the safe mutations used in
every other experiment outlined above. This dataset including both safe and unsafe mutations was used to answer RQ2.

We ran the experiments concurrently on 10 core (20 thread) “slices” of a 64 core AMD Ryzen Threadripper 7980X
with 32 GiB of RAM each, running Fedora Server 39. We isolated each 10 core “slice” of the host computer using
Linux cgroups with each job getting exclusive access to its respective CPU cores. This effectively emulates multiple,
identical 10 core computers — representative of common developer systems — at the same time. We used the Slurm
workload manager to manage these concurrent “slices” as individual jobs, each running the experiments for a particular
subject. We built mutest-rs against the night1ly-2024-05-16 version of rustc, and ran it with a thread pool of size 16

for executing the tests. Effectively, each concurrent computer “slice” allocated threads as follows:

o 16 exclusive threads to test execution (part of mutest-rs),

Manuscript submitted to ACM

A Comprehensive Analysis of Batching Algorithms for Efficient, Safe, Parallel Mutation Analysis in Rust 29

Table 3. Number of function calls in each subject crate not directly resolvable to a singular function definition within Rust program
code. Total Calls refers to the total number of function calls encountered during call graph construction. Virtual Calls refers to the
number function calls that refer to trait (i.e., interface) methods that can only be precisely resolved dynamically, at runtime. Dynamic
Calls refers to the number of function calls through opaque function pointer types, which do not represent any exact function
definition. Foreign Calls refers to the number of function calls made to foreign definitions (e.g. C library interfaces), whose call graph
is not analyzed by mutest-rs.

Subject Total Calls Virtual Calls Dynamic Calls Foreign Calls
alacritty/alacritty 25848 9 (0.0%) 57 (0.2%) 0(0.0%)
bat/bat 9871 42 (0.4%) 9 (0.1%) 0 (0.0%)
bytes/bytes 4697 20 (0.4%) 12 (0.3%) 0 (0.0%)
chrono/chrono 15710 5 (0.0%) 16 (0.1%) 0(0.0%)
clap/clap_builder 148752 296 (0.2%) 106 (0.1%) 0(0.0%)
exa/exa 10847 8 (0.1%) 0(0.0%) 0(0.0%)
gleam/gleam-core 725319 283 (0.0%) 674 (0.1%) 0(0.0%)
hashbrown/hashbrown 17985 40 (0.2%) 25 (0.1%) 0(0.0%)
image/image 130113 347 (0.3%) 200 (0.2%) 0 (0.0%)
itertools/itertools 66948 705 (1.1%) 9 (0.0%) 0(0.0%)
json/serde_json 45297 2 (0.0%) 0(0.0%) 0(0.0%)
parking_lot/parking_lot 7772 1 (0.0%) 23 (0.3%) 24 (0.3%)
rand/rand 10841 18 (0.2%) 6(0.1%) 1 (0.0%)
rand/rand_core 221 0 (0.0%) 0(0.0%) 0(0.0%)
rand/rand_distr 6542 0 (0.0%) 0 (0.0%) 3 (0.0%)
regex/regex 3962 20 (0.5%) 9 (0.2%) 0(0.0%)
regex/regex-automata 73166 193 (0.3%) 37 (0.1%) 0 (0.0%)
regex/regex-syntax 65202 4 (0.0%) 38 (0.1%) 0(0.0%)
ripgrep/grep-printer 6468 1(0.0%) 0(0.0%) 0(0.0%)
ripgrep/grep-searcher 12065 16 (0.1%) 22 (0.2%) 0 (0.0%)
ripgrep/ripgrep 3662 43 (1.2%) 3 (0.1%) 0(0.0%)
rustls/rustls 18232 84 (0.5%) 25 (0.1%) 0 (0.0%)

o 1 exclusive thread to test orchestration (part of mutest-rs),

o 1 exclusive thread to invoking experiments, and writing and processing mutest-rs logs (part of the experiment
runner), and

o 2 threads not used explicitly by any of our processes (however individual test cases of subjects may spawn

additional threads besides the test cases’ main thread).

4.3 Threats to Validity

It is important to consider the threats to the validity, and representativeness of the empirical results of this study.

The choice of the mutation operators applied are a threat to internal validity. Using a different set of mutation
operators may affect the number of mutations, the resulting batching of mutations, and the runtime of mutation analysis
and mutation testing. However, since the majority of the chosen mutation operators are frequently used in mutation
testing literature, we consider the reported results to be meaningful.

The potential presence of equivalent mutants is a threat to internal validity, as they can skew observed mutation
scores. To control this threat, our mutation operators implement extensive rule-based filtering of equivalent mutants,
which we describe in detail in Section 3.2. We also ensured that we used the exact same set of mutants for each tested

Manuscript submitted to ACM

30 Zalan Lévai, Donghwan Shin, and Phil McMinn

mutant evaluation configuration, including the baseline non-batched evaluation, inclusive of any potentially remaining
equivalent mutants. While we acknowledge that Trivial Compiler Equivalence [42] — a technique for detecting some
cases of mutation equivalence based on whether the mutant code gets optimized to the same operations as the original
program — is a valid technique for estimating mutation equivalence of individual mutant programs, it is not directly
applicable to our meta-mutant based approach. Trivial Compiler Equivalence requires individual mutant programs for
the compiler-based optimization, while our approach generates a singular meta-mutant program containing all mutated
code branches. We consider the application of a meta-mutant compatible Trivial Compiler Equivalence approach, which
considers the equivalence of optimized meta-mutant code branches instead, an item of future work.

The choice of subjects are a threat to external validity. The reported results may be different for other crates.
Nevertheless, the analyzed crates vary in terms of program size, number of test cases, complexity and implemented
functionality, and cover many of the most common and critical projects currently available [52]. Therefore, we consider
the results to be valid, and representative.

Our mutation analysis approach is based on an extensive, conservative static call graph analysis technique. This
is used both for test-mutation reachability discovery, as well as for our mutation batching technique. As described
in detail in Section 3.3, the implementation of our call graph construction technique handles calls requiring runtime
dynamic dispatch — such as virtual calls to trait (i.e., interface) methods and dynamic calls through opaque function
pointers — by representing them as multiple call edges to all of the function definitions in the program that could
be called from that function call. This conservative approach ensures correctness, at the expense of capturing more
than the necessary amount of call relations. However, foreign calls to foreign definitions (e.g. C library interfaces) are
not represented fully in our current implementation. The presence of such foreign function calls is a potential threat
to internal validity. Table 3 lists the number of total function calls, and the number and percentage of virtual calls,
dynamic calls, and foreign calls for each of our subject crates. From this, we can see that virtual calls do not exceed 0.5%
of all calls in the large majority of cases and never exceed 1.2% of all calls; dynamic calls never exceed 0.3% of all calls;
and foreign calls are only present in 3 of the 22 subjects, with rand/rand only having 1 foreign call (0.0% of all calls),
rand/rand_distr only having 3 foreign calls (0.0% of all calls), and parking_lot/parking_lot only having 0.3% of
all of its calls being foreign calls. This shows that our call graphs — through our representation of virtual and dynamic
calls — are only marginally more expansive than necessary, and that only a small number of unresolved foreign calls
are present in 3 out of our 22 subjects.

The dynamic mutation subsumption analysis we perform for RQ1 is an approximation of “true” mutation subsump-
tion. Since it is based on the test case-mutation detection pairs resulting from mutation evaluation, the results are
dependent on the “granularity” of the test suite’s ability in distinguishing distinct program behaviors [33]. The use of
dynamic mutation subsumption analysis may be a threat to construct validity, however “true” mutation subsumption is
“undecidable to compute” [33], and not feasible to compute for our subject programs and their corresponding mutations.

When observing the effects of unsafe mutations in RQ2, we only consider those that crash any of their corresponding
test cases’ respective processes. While we focus on this effect of evaluating unsafe mutations as the most influential in
our discussion, we must note that crashes are only one possible side effect of undefined behavior, and many others
— like some memory corruption or aliasing violations — may not have obvious, observable side effects. The lack of
observing these alternative side effects is a potential threat to construct validity. We consider the analysis of other
potential side effects of unsafe mutations as an item of future work.

Defects in our compiler-integrated mutation testing tool, mutest-rs, are a threat to construct validity. We controlled

the threat in mutest-rs by maintaining and running an automated test suite based on several small example programs,
Manuscript submitted to ACM

A Comprehensive Analysis of Batching Algorithms for Efficient, Safe, Parallel Mutation Analysis in Rust 31

Table 4. Numbers of mutations generated by traditional and additional mutation operators (Table 1), and the number of mutations
detected by each subject’s test suite with no mutation batching applied, and unsafe mutations excluded. The percentage of detected
mutations relative to the total number of mutations in the corresponding category is denoted in parentheses. Amongst traditional
and additional mutations, highlighted cells of total mutation counts (in blue) correspond to a higher number of mutations, and
highlighted cells of mutation detection rates (in blue) correspond to a lower detection rate in the corresponding subject.

Safe Mutations Traditional Mutations Additional Mutations
Subject Total Detected Total Detected Total Detected
alacritty/alacritty 1809 469 (25.9%) 844 212 (25.1%) 965 257 (26.6%)
bat/bat 506 345 (68.2%) 88 53 (60.2%) 418 292 (69.9%)
bytes/bytes 422 340 (80.6%) 121 102 (84.3%) 301 238 (79.1%)
chrono/chrono 2882 2532 (87.9%) 1338 1142 (85.4%) 1544 1390 (90.0%)
clap/clap_builder 1447 537 (37.1%) 468 169 (36.1%) 979 368 (37.6%)
exa/exa 888 758 (85.4%) 293 257 (87.7%) 595 501 (84.2%)
gleam/gleam-core 4173 4083 (97.8%) 522 512 (98.1%) 3651 3571 (97.8%)
hashbrown/hashbrown 273 214 (78.4%) 43 31 (72.1%) 230 183 (79.6%)
image/image 4885 3345 (68.5%) 2087 1434 (68.7%) 2798 1911 (68.3%)
itertools/itertools 1246 1107 (88.8%) 335 293 (87.5%) 911 814 (89.4%)
json/serde_json 1133 955 (84.3%) 489 421 (86.1%) 644 534 (82.9%)
parking_lot/parking_lot 163 161 (98.8%) 98 97 (99.0%) 65 64 (98.5%)
rand/rand 747 568 (76.0%) 329 257 (78.1%) 418 311 (74.4%)
rand/rand_core 179 139 (77.7%) 70 58 (82.9%) 109 81 (74.3%)
rand/rand_distr 2126 1442 (67.8%) 1679 1073 (63.9%) 447 369 (82.6%)
regex/regex 209 133 (63.6%) 28 23 (82.1%) 181 110 (60.8%)
regex/regex-automata 2698 2050 (76.0%) 1029 821 (79.8%) 1669 1229 (73.6%)
regex/regex-syntax 2709 2244 (82.8%) 1113 935 (84.0%) 1596 1309 (82.0%)
ripgrep/grep-printer 376 318 (84.6%) 165 141 (85.5%) 211 177 (83.9%)
ripgrep/grep-searcher 669 557 (83.3%) 301 246 (81.7%) 368 311 (84.5%)
ripgrep/ripgrep 97 78 (80.4%) 14 13 (92.9%) 83 65 (78.3%)
rustls/rustls 1127 713 (63.3%) 353 229 (64.9%) 774 484 (62.5%)

as well as manually analyzing the generated mutations, mutants, code, and mutation testing results. Moreover, over
the course of this study, mutest-rs has generated multiple millions of lines of valid Rust code (disregarding the
potential unchecked misuses of Unsafe Rust by explicitly generated unsafe mutations). We therefore conclude that the
implementations of the tools used in our experiments worked correctly.

Finally, we make our tool, scripts, data, detailed execution logs, and the repository forks of our subjects available in

our replication package [34, 35]. All versions of our tool, mutest-rs, are available at https://mutest.rs.

5 Results

RQ1: Mutations. How many mutations do traditional and our additional mutation operators produce, and
how effective are Rust test suites at detecting them? At what rate are our additional mutations subsumed at,

compared to traditional mutations?

In this paper and the original conference paper [36], we introduce five new, additional mutation operators in addition
to a selection of thirteen traditional mutation operators widely applied in mutation analysis literature (Table 1). To
evaluate these additional mutation operators, we look at the number of mutations they produce, and the number of

these mutations which are then detected by the respective program’s test suite, and compare them to those of our
Manuscript submitted to ACM

https://mutest.rs

32 Zalan Lévai, Donghwan Shin, and Phil McMinn

comprehensive set of traditional mutation operators. Table 4 lists the number of mutations produced by all mutation
operators, and additionally lists the number of these mutations grouped by whether they were produced by a traditional
mutation operator, or an additional mutation operator. In addition, the number of mutations detected by the respective
program’s test suite — with no mutation batching applied (B) — is listed for each category of mutations, with a percentage
of detected mutations relative to the total number of mutations in the corresponding category.

From this, we can determine that for 20 out of 22 subjects, the additional mutation operators collectively generated
significantly more mutations than the traditional mutation operators, with only one subject, rand/rand_distr, having
significantly fewer mutations produced by additional mutation operators than by traditional mutation operators. The
largest difference was in the case of gleam/gleam-core, where the additional mutation operators produced 3,129 more
mutations than the traditional mutation operators. This can be attributed to the subject program making heavy use of
function calls, while having fewer instances of complex mathematical or Boolean expressions.

When it comes to the detectability of these additional mutations, less than half of the subjects had a similar rate of
detection (within 3%) to the mutations produced by traditional mutation operators. On average, across all subjects, our
additional mutations were detected at a very similar rate to the traditional mutations, with a mean rate of 75.5% of
additional mutations (median of 79.3%) and 76.6% of traditional mutations (median of 82.5%) being detected by our
subjects’ test suites. The largest deviation in detection rate was in the case of regex/regex, whose additional mutations
were detected at a 21.4% lower rate than traditional mutations. In the case of regex/regex, traditional mutation
operators only produced 28 mutations, of which 82.1% were detected, while the additional mutation operators produced
four times more mutations at 110, of which only 60.8% were detected. Similarly, in the case of ripgrep/ripgrep,
traditional mutation operators only produced 14 mutations, of which 92.9% were detected, while the additional mutation
operators produced almost six times more mutations at 81, of which only 78.3% were detected; a difference of 14.5%.
The largest difference in detection rate where traditional mutations were detected at a lower rate than our additional
mutations was in the case of rand/rand_distr, where additional mutation operators produced 73.4% fewer mutations
than traditional mutation operators, and the mutation detection rate increased by 18.6%, meaning that more of the
additional mutations were detected.

In addition to the mutation detection-based analysis above, we also performed dynamic mutation subsumption
analysis on our generated mutations, grouped by their mutation operators. It is worth noting that, as opposed to static
mutation subsumption — which gives concrete subsumption relations between either pairs of mutations or all potential
mutations that can be generated by pairs of mutation operators applied to the same locations — dynamic mutation
subsumption is derived only from test case-mutation detection pairs, and is thus limited by the “granularity” of the test
suite in distinguishing distinct program behaviors. Therefore, these numbers can only be seen as an approximation of
static mutation subsumption rates. Table 5 lists the rate mutations generated by our additional mutation operators
are subsumed by mutations generated by traditional mutation operators, as well as the rate mutations generated by
traditional mutation operators are subsumed by other mutations generated by traditional mutation operators, with
the latter acting as a baseline for our additional mutation operators. In addition, the table again lists the number of
mutations produced by all mutation operators.

From this, we see that the rates of mutation subsumptions between mutations generated by our additional mutation
operators and mutations generated by traditional mutation operators are largely comparable, and in some cases even
significantly lower. 18 out of the 22 subjects show high rates (> 60%) of mutation subsumption amongst traditional
mutations. The baseline corresponding mutation subsumption rate of traditional mutations is matched or lower

for 19 out of the 22 subjects with CallDelete and CallValueDefaultShadow mutations, 12 out of the 22 subjects by
Manuscript submitted to ACM

A Comprehensive Analysis of Batching Algorithms for Efficient, Safe, Parallel Mutation Analysis in Rust 33

Table 5. Rate mutations are dynamically subsumed by mutations generated by traditional mutation operators, for each subject crate,
based on test-mutation detections. Each value refers to the percentage of mutations of the corresponding kind that are dynamically
subsumed by (other) traditional mutations. A crossed-out cell (—) means that the corresponding mutation operator did not generate
any mutations for the subject. Highlighted cells, in blue, correspond to mutation subsumption rates of additional mutation operators
that match or are lower than the mutation subsumption rate of traditional mutations of the same subject.

...mutations subsumed by other traditional mutations

Arg- CallValue- Continue- Range-

Subject Saf(,e Traditional Default- Call- Default- Break- Limit-
Mut’s Delete
Shadow Shadow Swap Swap

alacritty/alacritty 1809 24.9% 28.0% 22.1% 21.8% 41.7% 23.1%
bat/bat 506 53.4% 55.5% 55.4% 53.8% 50.0% 75.0%
bytes/bytes 422 81.2% 40.5% 44.5% 44.5% — 62.5%
chrono/chrono 2882 84.2% 74.9% 77.7% 77.7% 100.0% 52.9%
clap/clap_builder 1447 35.7% 42.9% 32.5% 32.0% 0.0% 50.0%
exa/exa 888 84.3% 53.9% 56.7% 56.7% 100.0% —
gleam/gleam-core 4173 93.5% 69.6% 89.9% 90.9% 81.3% 40.0%
hashbrown/hashbrown 273 62.8% 42.1% 43.8% 46.7% — 0.0%
image/image 4885 68.3% 71.6% 60.0% 60.0% 71.4% 77.1%
itertools/itertools 1246 86.3% 78.7% 64.4% 63.7% 42.9% 76.5%
json/serde_json 1133 84.1% 74.2% 72.1% 68.9% — 100.0%
parking_lot/parking_lot 163 41.8% 14.3% 17.2% 34.5% - -
rand/rand 747 77.2% 78.6% 66.5% 66.0% — 75.0%
rand/rand_core 179 82.9% 85.7% 73.3% 73.3% — 60.0%
rand/rand_distr 2126 63.4% 95.2% 73.5% 73.5% 66.7% 60.0%
regex/regex 209 71.4% 36.4% 34.2% 35.5% 100.0% 80.0%
regex/regex-automata 2698 74.7% 82.4% 63.3% 61.9% 41.7% 92.3%
regex/regex-syntax 2709 82.7% 75.3% 79.8% 75.9% 65.2% 78.1%
ripgrep/grep-printer 376 79.4% 89.7% 76.5% 76.5% 100.0% 100.0%
ripgrep/grep-searcher 669 81.4% 87.2% 81.5% 100.0% 83.3% 81.4%
ripgrep/ripgrep 97 85.7% 83.3% 77.8% 77.8% 80.0% -
rustls/rustls 1127 62.6% 43.3% 56.8% 55.2% 100.0% 47.8%

ArgDefaultShadow mutations, 12 out of the 19 applicable subjects by RangeLimitSwap mutations, and 7 out of the 16
applicable subjects by ContinueBreakSwap mutations. Overall, we see an improvement in mutation subsumption rates
in 68.3% of the subject-additional mutation pairs (where the corresponding mutation was applicable to the subject)
compared to the corresponding rate of traditional mutation subsumption.

For all 22 subjects, at least one of the additional mutation operators produced mutations which had lower mutation
subsumption rates than traditional mutations. For 17 out of the 22 subjects, at least three of the additional mutation
operators produced mutations which had lower mutation subsumption rates than traditional mutations. Across all
five additional mutation operators, the mean rate of mutation subsumption was matched or lower for 18 out of 22
subjects compared to traditional mutations, with the maximum increase of 10.4% in the case of rand/rand_distr, and
the maximum decrease of 33.2% in the case of bytes/bytes.

Across all 22 subjects, all five additional mutation operators had lower mean mutation subsumption rates than
traditional mutations, with CallDelete and CallValueDefaultShadow having 11.0% and 9.8% lower mean mutation
subsumption rates respectively, ArgDefaultShadow and RangeLimitSwap improving on traditional mutations overall

Manuscript submitted to ACM

34 Zalan Lévai, Donghwan Shin, and Phil McMinn

with their 7.2% and 6.2% respective lower mean mutation subsumption rates, and ContinueBreakSwap showing similar
rates with a 0.7% lower mean mutation subsumption rate compared to traditional mutations.

There is no correlation between the number of mutations generated and the prevalence of mutation subsumptions,
with higher numbers of mutations not correlating with higher rates of mutation subsumptions amongst traditional
mutations (p = 0.10), or otherwise. However, rates of mutation subsumptions of our additional mutations by traditional
mutations are correlated with rates of mutation subsumptions of traditional mutations by other traditional mutations,
with CallDelete and CallValueDefaultShadow being the two most correlated (p = 0.80 and p = 0.77 respectively),
followed by ArgDefaultShadow (p = 0.66), ContinueBreakSwap (p = 0.59) and RangeLimitSwap (p = 0.44). This is
expected, and is most likely to be caused by the respective subject test suites’ differing “ability” to distinguish distinct

program behaviors.

In conclusion for RQ1, the five additional mutation operators produce, in general, more mutations than
the thirteen traditional mutation operators widely applied in mutation analysis literature. These additional
mutations are, in the majority of cases, detected at a similar rate to traditional mutations, with a mean detection
rate of 75.5% for additional mutations and 76.6% for traditional mutations across our subjects. However, there
are big variances in detection rates across the individual subjects, with some subjects detecting additional
mutations at a significantly lower rate than traditional mutations, by up to 21.4%, and with other subjects
detecting traditional mutations at a significantly lower rate than additional mutations, by up to 18.6%. Our
additional mutations are dynamically subsumed, on average, at a lower rate by traditional mutations than
traditional mutations are subsumed by other traditional mutations, according to the subjects’ test suites,
with 68.3% of the subject-additional mutation pairs having matched or lower subsumption rates than the

corresponding traditional mutations.

RQ2: Safety. How many generated mutations are unsafe? At what rate are unsafe mutations detected? What

is the impact of evaluating these unsafe mutations?

We introduced the notion of mutation safety in Section 3.5 to be able to distinguish between mutations that may
introduce undefined behavior into a program, from those that will not. To quantify the impact that these potentially
unsafe mutations might have on mutation analysis, we compare the number of unsafe mutations generated, to the
number of safe mutations generated. Table 6 lists the number of safe mutations, the number of unsafe mutations,
and the number of unsafe mutations which caused a crash for each subject crate, alongside the percentage of unsafe
mutations compared to the total number of mutations generated, and the percentage of crashed mutations compared to
the number of unsafe mutations generated.

From this, we see that mutest-rs generates unsafe mutations for 6 out of the 13 subjects with any unsafe SLoC
(Table 2), as the majority of subjects do not contain enough unsafe code for mutest-rs to generate unsafe mutations. The
subjects mutest-rs was able to generate unsafe mutations for are the ones with the most significant amount of unsafe
SLoC (Table 2), with the exception of alacritty/alacritty, which has no unsafe mutations despite its significant
unsafe SLoC count. This can be attributed to the fact that the majority of unsafe SLoC in alacritty/alacritty’s
code are simple calls to the foreign OpenGL C API functions. However, out of the 6 subjects that mutest-rs was able to
generate unsafe mutations for, 2 of the subjects contained crashing mutations, which were all successfully distinguished
by our technique, thus avoiding all potentially crashing mutations. Evaluating these crashing unsafe mutations would

Manuscript submitted to ACM

A Comprehensive Analysis of Batching Algorithms for Efficient, Safe, Parallel Mutation Analysis in Rust 35

Table 6. Number of unsafe mutations compared to the number of safe mutations generated for each subject crate. The percentage of
crashed mutations relative to the number of unsafe mutations is denoted in parentheses.

Safe Mutations Unsafe Mutations Crashed Mutations'
Subject Total Detected Total Detected Total / Detected
alacritty/alacritty 1809 469 (25.9%) 0 — —
bat/bat 506 345 (68.2%) 0 - -
bytes/bytes 422 340 (80.6%) 303 227 (74.9%) 8 (2.6%)
chrono/chrono 2882 2532 (87.9%) 0 — —
clap/clap_builder 1447 537 (37.1%) 0 — —
exa/exa 888 758 (85.4%) 0 — —
gleam/gleam-core 4173 4083 (97.8%) 0 — —
hashbrown/hashbrown 273 214 (78.4%) 86 79 (91.9%) 1(1.2%)
image/image 4885 3343 (68.4%) 0 — —
itertools/itertools 1246 1107 (88.8%) 0 — —
json/serde_json 1133 955 (84.3%) 4 0(0.0%) 0(0.0%)
parking_lot/parking_lot 163 163 (100.0%) 171 156 (91.2%) 0(0.0%)
rand/rand 747 568 (76.0%) 14 12 (85.7%) 0 (0.0%)
rand/rand_core 179 139 (77.7%) 0 — —
rand/rand_distr 2126 1442 (67.8%) 0 — —
regex/regex 209 133 (63.6%) 0 — —
regex/regex-automata 2698 2050 (76.0%) 398 90 (22.6%) 0(0.0%)
regex/regex-syntax 2709 2243 (82.8%) 0 — —
ripgrep/grep-printer 376 318 (84.6%) 0 — -
ripgrep/grep-searcher 669 557 (83.3%) 0 — —
ripgrep/ripgrep 97 78 (80.4%) 0 — —
rustls/rustls 1127 713 (63.3%) 0 — —

LCrashes are only one possible side effect of undefined behavior, and many others - like some memory corruption or aliasing violations
— may not have obvious side effects.

have prohibited the efficient evaluation of mutations by crashing the analysis process either directly, or through subtle
uncontrollable corruptions introduced into the running process.

For 5 out of the 6 subjects, mutest-rs was able to generate fewer unsafe than safe mutations, with the only exception
being the case of parking_lot/parking_lot, where mutest-rs generated 163 safe mutations and 8 more unsafe
mutations at 171. This can be primarily attributed to parking_lot/parking_lot being the smallest subject, in terms of
SLoC, with one of the highest proportions of unsafe SLoC (Table 2). 2 subjects had a similar number of safe and unsafe
mutations (including parking_lot/parking_lot), and 4 subjects had considerably more safe than unsafe mutations.

Among the subjects that we were able to generate unsafe mutations for, the detection rate of unsafe mutations
is significantly different from safe mutations in all cases, with the most significant being regex/regex-automata,
where only 22.6% of unsafe mutations are detected compared to 76.0% of safe mutations, a difference of 53.4%. While
there was a larger difference in detection rate in the case of json/serde_json, this was only because none of its four
unsafe mutations are detected, while 84.3% of its safe mutations are detected. Overall, from the 6 subjects with unsafe
mutations available, we can see that the detection rate of unsafe mutations is generally lower than the detection rate of
safe mutations, which may suggest that unsafe code is less thoroughly tested.

While the data shows that in the majority of cases no unsafe mutations are generated due to the lack of unsafe code, it
also highlights that a portion of unsafe mutations are crashing mutations, which when not properly discerned, can result

Manuscript submitted to ACM

36 Zalan Lévai, Donghwan Shin, and Phil McMinn

Table 7. Mean mutation analysis runtimes in seconds of safe mutations across the various subject crates without mutation batching
(ﬂ), and with mutation batching using the various mutation batching configurations (R, G, G|, g|, G~, G¢t, Ge|, Ge-~, as defined in
Section 4.2). Highlighted cells, in blue, correspond to the lowest mean mutation analysis runtime for each subject.

Subject B R Gy G, g G. Ger G| G-
alacritty/alacritty 30.5 36.8 27.8 27.9 28.0 36.7 36.4 36.7 36.8
bat/bat 11.2 11.7 10.6 10.4 10.4 11.6 11.4 11.6 11.5
bytes/bytes 22.6 28.7 24.2 26.0 31.3 23.2 25.1 25.8 23.5
chrono/chrono 76.1 59.5 49.7 50.8 49.6 60.6 60.9 59.9 59.4
clap/clap_builder 14.5 23.4 14.2 13.3 12.1 23.2 21.4 22.7 23.0
exa/exa 7.6 9.4 6.8 6.8 6.9 9.6 9.6 9.6 9.6
gleam/gleam-core 461.0 403.4 397.8 401.2 387.2 406.4 402.2 402.7 401.5
hashbrown/hashbrown 20.0 19.5 18.8 18.8 18.6 19.7 19.4 19.4 19.6
image/image 545.1 517.1 483.2 535.1 538.6 516.1 494.5 521.4 482.5
itertools/itertools 21.5 17.9 13.8 14.8 13.8 17.5 17.5 18.3 18.1
json/serde_json 13.8 12.8 9.5 9.0 9.8 12.8 12.4 12.4 12.7
parking_lot/parking_lot 161.1 118.9 121.5 119.8 120.0 119.7 120.6 120.0 118.0
rand/rand 17.0 18.3 15.7 18.6 18.3 17.7 17.7 19.4 17.7
rand/rand_core 0.6 0.8 0.5 0.5 0.5 0.8 0.8 0.8 0.8
rand/rand_distr 119.7 125.4 104.7 519.9 482.6 124.4 115.4 307.2 125.6
regex/regex 2.8 3.3 2.7 2.8 2.8 3.3 3.2 3.1 3.3
regex/regex-automata 1385.6 12954 1600.0 1453.7 1454.5 1596.6 1628.2 1493.9 1593.7
regex/regex-syntax 117.1 151.2 126.8 134.7 134.1 157.8 161.1 171.7 157.8
ripgrep/grep-printer 4.1 4.6 4.0 3.9 3.9 4.6 4.6 4.5 4.6
ripgrep/grep-searcher 143.0 147.1 143.8 1423 1427 1414 1472 1459 1444
ripgrep/ripgrep 2.8 2.8 2.9 2.9 2.9 3.1 2.8 2.8 3.2
rustls/rustls 22.4 20.7 17.3 18.0 10.7 19.1 19.6 20.0 19.3

in the inability to run an efficient mutation analysis evaluation process to completion. Crashing is only one possibly
side effect of unsafe mutations, and the remaining unsafe mutations may have each caused silent memory corruption,
aliasing violations, or other silent undefined behavior that are difficult to detect, and can all non-deterministically

influence the results of mutation analysis if they are not isolated into separate processes.

In conclusion for RQ2, while only 6 out of the 22 subjects resulted in mutations which were unsafe, 2 out
of these 6 subjects contained crashing mutations. Our technique is able to successfully distinguish unsafe
mutations from safe mutations, and thus avoid all crashing mutations in all cases. From the 6 subjects with
unsafe mutations available, we can determine that unsafe mutations are generally detected at a lower rate than

safe mutations, by up to 53.4% less, which may suggest that unsafe code is less thoroughly tested.

RQ3: Reduced runtimes. What are the performance gains produced by reachability-exclusive mutation
batching with our old and new algorithms? How does the approach scale with project size and the number

of mutations?

The primary goal of mutation batching is to reduce mutation analysis runtimes. This is done by increasing the number
of test cases that can be evaluated in parallel at any given time, leading to a higher utilization of the available resources,

and thus reducing the overall time required for mutation analysis to complete.
Manuscript submitted to ACM

A Comprehensive Analysis of Batching Algorithms for Efficient, Safe, Parallel Mutation Analysis in Rust 37

450% =
B

= < || x o
© ® G gl
-% 400% =
e 7
E_, 150% =
«
) g w ® ;
€ - - - 4 + -+ 4 A 4 4 4 X 4 = e -
= 100% g & [{ s 3 8 2 - S ¥ = s @
5 e [
s 8 ¢ %
50% =
rr— T 1 1 1T T 1T T T 1T 1T T T T T T T T°/1
N S O R S T S N &L & & L@ R
> K,\ ‘Q\X Q N ’b\ Y ‘0(NQ xO) & \(9 2 (Q, 0@ ‘\(\ N (0 _Q‘:’o R
B AN O S ST TP SR QN RN S RS R A AN SR G L S AP
@ 0 RN R VA G ARV S S P > B A\
\? &R & AN E L TN @y KRR
3 SRS SRR SEANR GO SO A
Y \© NN > & O & $ AN RO RS
o R PR PSRN <@ & R Q\ &
@) N Y X < A % &< <
~d © @’ xS o o)
2 QN ~ NS @ {NQ R
< <
@

Fig. 12. Mean mutation analysis runtimes of safe mutations across the various subject crates with the various deterministic greedy
mutation batching configurations (G, G|, g), relative to mutation analysis runtimes without mutation batching (}f), in percentages.

Table 7 shows the mean total runtimes of mutation analysis in seconds of safe mutations across the subject crates of
various sizes without mutation batching (B), and with mutation batching using the various algorithms and configurations
(R, G1, G|, 81, G-, G, G|, Ge-~). These runtimes are the total time taken for mutest-rs to process the subject programs,
generate and batch mutations (where applicable), and perform mutation analysis by evaluating the test cases against

the mutants, referred to as the total mutation analysis runtime (Section 4.2).

Reduction of Mutation Analysis Runtimes with Deterministic Greedy Mutation Batching. When comparing total mutation
analysis runtimes between the non-batched (B), and the greedily, deterministically batched (Gt, Gy, g)) runs (Figure 12),
we see an improvement in 18 out of the 22 subjects in at least one of the batched configurations Among the four
non-improved subjects, ripgrep/ripgrep shows marginally longer runtimes, by 0.1 seconds, with greedy mutation
batching compared to the baseline non-batched runs. The other three non-improved subjects are all significantly
impacted by large variances in test case timeouts. In the case of bytes/bytes and regex/regex-syntax, we see an
increase of around 1% in the rate of mutation timeouts (i.e., the proportion of all mutations of the subject which timed
out) over the baseline non-batched runs, while in the case of regex/regex-automata, all mutation analysis runs are
significantly impacted by test case timeouts, with a baseline mean rate of mutation timeouts of 50.0%, rising to between
88.2% and 91.3% during the bathed runs. Among the subjects with improved runtimes, 6 subjects exhibit marginal
improvement of less than a second. These are primarily small subjects with unbatched (B) runtimes under fifteen
seconds. The other 12 subjects see much more significant improvements. The largest relative improvement in runtime
is in the case of rustls/rustls, where our approach reduced the original, unbatched (B) runtime by 52.3% using the
g| mutation batching configuration. The largest absolute improvement in runtime is in the case of gleam/gleam-core,
where our approach reduced the original, unbatched (B) runtime of 461.0 seconds (~ 7.7 minutes) down to 387.2 seconds
(~ 6.4 minutes), by 16.0%, using the g mutation batching configuration, an improvement of 73.8 seconds, or about 1.2
minutes.

Manuscript submitted to ACM

38 Zalan Lévai, Donghwan Shin, and Phil McMinn

425% =
[~ X - R x Gy
]
= 400% =
e ® G gl
£ 375% -
E /
g “ ®
< *
@ 100% - T ¥ T T - T ®& g & - - @& X - - - - - - o @ -
¢ e *
E 8 s P ° o é e $
= 1 L] ?)
i ®
50% =
rr— T 1 T T 1T T T T T T T T T T T 1 — T 1
L« T QY- S RN S - TR TR VR S R R S S TS SR 4 G
\/&0\ & %&z SAF (& S (0‘§,®’?>°” & ﬁeo A F T € é}QJQ 2
LSO RN CEIED R AR A O SR SRS P& o O A TR
RSN RN P S SIS SO S AR P SN S R G L N RSN
N @ o .S NS SV G ARV A N US> R I A\
> 2" O o NN IR > Y O AR A - 2 R &~ K ¥
\ SN NN DAY ARG AN SAAEN xR J XX
) & AR PN A N\ (\b < N AN NP SR
X \ > O o O X > O e \ \? & .Q? <
I s P MIROAINY “ @ & er R QY
9 X & &Y D R AN
2 9) @ & AT IS
2 NN ~ N @ M8
< <
P

Fig. 13. Mean mutation analysis runtimes of safe mutations across the various subject crates with the various deterministic greedy
mutation batching configurations (Gy, G|, g|), relative to mutation analysis runtimes with random batching (R), in percentages.

Comparing Deterministic Greedy Mutation Batching to Random Mutation Batching. Comparing non-batched () mutation
analysis runtimes to those of the random baseline batches (R), we see that 9 subjects have improved mean mutation
analysis runtimes with random batching (R), and 7 subjects have regressed mean mutation analysis runtimes with
random batching (R), with the remaining 6 subjects having similar mean mutation analysis runtimes to their unbatched
(B) runs. Among the 9 subjects with significantly improved mutation analysis runtimes, 4 of the subjects are large —
with mutation analysis runtimes over 150 seconds, and 5 of the subjects are medium-sized — with mutation analysis
runtimes around 10 to 80 seconds.

In comparison to the baseline random batching (R) runtimes, the deterministically batched (Gy, G|, g|) runs (Figure 13)
see further significant improvements with the subjects where random batching (R) already had a significant effect, and
an additional 9 subjects where the deterministically batched (G4, G|, g|) runs improve on runtimes, where random
batching (R) did not. For all but three subjects, at least one of the deterministically batched (G, G|, g|) runs have
significantly lower mutation analysis runtimes than with the baseline random batching (R), with the exception of
ripgrep/ripgrep, parking_lot/parking_lot, and regex/regex-automata. In the case of ripgrep/ripgrep and
parking_lot/parking_lot, the difference is marginal, with deterministically batched (Gt, G|, g|) runs taking 0.1 and
0.9 seconds longer respectively. In the case of regex/regex-automata, the deterministically batched (G, G|, g) runs

have longer runtimes by 10.9%, largely due to a difference in the rate of mutation timeouts.

Comparing The Various Ordering Heuristics Used with Deterministic Greedy Mutation Batching. To look at the effects of
the greedy mutation batching algorithm’s ordering heuristic, we compare total mutation analysis runtimes between the
various greedily, deterministically batched (Gy, G|, g|) runs, and the greedily batched runs using random ordering
(G.), which we use as a baseline (Figure 14).

Compared to the greedily batched runs using random ordering (G.), the greedily batched runs using the various
conflict orderings (G, G|, g|) have lower mutation analysis runtimes in the case of 20 subjects, while random ordering
Manuscript submitted to ACM

A Comprehensive Analysis of Batching Algorithms for Efficient, Safe, Parallel Mutation Analysis in Rust 39

1} 425% =
) X - G. X Gy
=
© 400% = ® G 8l
3 z
[}
c 7
2 X A
= A -~ X L L e X L L . ¢ 4 i@ - -
= 100% 1 » & 3 o 53
E » ® * e @
£ . ¥ S s .
3 7% ! g "
= b4
50% = T T 1T T T T T T T T T T T T T T T T T
S O L P @ & & O L& XD e F L < 2
& F & S F S S S ELE PR @ R
SO WA ANV R RSN MG R SRR LA MR N AR IR
ST NIV s o S P MO SR RN S A SR M AV
N) ; 2% @ S WX LT N D (S (e P AN N
\2 4)'” R é} W @7 Y & S W (P Y AN K X
3 ARG ANERS IR N PN S QY e (@ &R PR
X \\ &2 O O PR @2\ NP QY <
§ B F I SN PR
N 19 S <& & < @ p
> X ~ \l.-\’ @ (»Q R
< <
&

Fig. 14. Mean mutation analysis runtimes of safe mutations across the various subject crates with the various deterministic greedy
mutation batching configurations (G, G|, g}), relative to mutation analysis runtimes with deterministic greedy mutation batching
using random ordering (G-.), in percentages.

has lower mutation analysis runtimes in the case of only 2 subjects. The various conflict orderings thus show a consistent
improvement over the baseline random ordering.

Comparing the two conflict orderings with each other (G; vs. G|, g|), we see that ascending ordering by number
of conflicts (G1) produces lower mutation analysis runtimes in the case of 7 subjects, while descending ordering by
number of conflicts (G|, g|) produces lower mutation analysis runtimes in the case of 11 subjects. While the difference
is marginal in the case of most subjects, it is important to point out the case of rand/rand_distr, which has outlier
mutation analysis runtimes when applying greedy mutation batching with descending ordering by number of conflicts
(Gy, g|), as mutation analysis runtimes are increased well beyond the original, non-batched runtimes, which is not the
case when using ascending ordering by number of conflicts. This is because while only 2.7% of mutations time out
when using greedy mutation batching with ascending ordering by number of conflicts (G1), same rate as with baseline,
unbatched runs, using descending ordering by number of conflicts (G|, g;) results in 45.9% and 53.1% of mutations
timing out respectively.

Overall, we can determine that using either ascending ordering by number of conflicts (G1) or descending ordering
by number of conflicts (G|) results in lower mutation analysis runtimes at about the same rate, with the difference

between the two orderings being marginal in the majority of cases.

The Effects of Limiting the Maximum Size of Mutation Batches on Deterministic Greedy Mutation Batching. To look at the
effects of limiting the maximum size of mutation batches on the greedy mutation batching algorithm, we compare total
mutation analysis runtimes between two versions of the greedily batched mutation analysis runs, one with no limit
on the maximum size of mutation batches (G|), and one with a limit of 5 on the maximum size of mutation batches
(g)), referred to as “small batching” in the original conference paper [36] (Figure 15). We see that, in the case of 18
subjects, the two configurations have very similar total mutation analysis runtimes, within three seconds of each other,

Manuscript submitted to ACM

40 Zalan Lévai, Donghwan Shin, and Phil McMinn

- 120% = +
] = Gl
=}
T -
AR (R S S - S SR - NN SN SN NN S S-S S S SN T SN S S
Q
v
8 -
= 80%
£
=
! 60% = +
+ (]
T T T T T T T T T T T T T T T T T T T
S O L P @ & @A LD @ F e A LS G
,\/&d \~o7’ x% (o(\ \/be’ \®+ oo((o\§ be% Oo\’ R S S O S SR R VNS (Q’Q O
X, s E x§ ~ / \(% SN2 0® R (O < R
O TENO NG S A O PR R NN 2 K Y &S AR«
2> 9% o \Y ¥ " B o o @& NS TR A N T 2l O
4 AR S R R S A i VL PRI
X
D N SAPANENSCASRCIR SRR AR g B AR
& \© PN > & 0 S Qb AN SO
N Q 2% [SHEPCINS) < 2 C R QAP R
& o & ® &N < A A A
\Z 9 5 < & & (@0 o
? N N > & PR
& ¢

Fig. 15. Mean mutation analysis runtimes of safe mutations across the various subject crates with deterministic greedy mutation
batching with a limit of 5 on the maximum size of mutation batches (g), relative to mutation analysis runtimes with no limit on the
maximum size of mutation batches (G)), in percentages.

with the remaining 4 subjects showing more significant differences. Amongst the 4 subjects with more significant
differences, only one subject, bytes/bytes, had worse runtimes by limiting the size of the mutation batches, with the
“smaller batches” (g|) taking 31.3 seconds, 5.3 seconds longer than without limiting the maximum size of mutation
batches (G)), a 20.3% difference. The remaining 3 subjects benefitted from limiting the size of the mutation batches,
with gleam/gleam-core taking 14.0 seconds less using the “smaller batches” (g)), a 3.5% difference, rand/rand_distr
taking 37.2 seconds less, a 7.2% difference, and most significantly rustls/rustls, taking 7.4 seconds less with the
batch size limits enabled, a difference of 40.9%.

Overall, while limiting the maximum size of mutation batches (g) resulted in faster mutation analysis runtimes in
the case of 12 subjects, and not limiting the maximum size of mutation batches (G|) resulted in faster mutation analysis
runtimes in the case of 10 subjects, it is still difficult to determine which of them provide a higher reduction in runtimes
overall, as the two tested configurations (G|, g|) perform similarly across the majority subjects, with the differences

being largely marginal.

Comparing Epsilon-Greedy Mutation Batching to Deterministic Greedy Mutation Batching. To look at the effects of the
additional € parameter in our new epsilon-greedy mutation batching algorithm, we compare total mutation analysis
runtimes between the deterministic non-€ (G, G, G.), and the € (G¢t, G¢|, Ge-) variants of the corresponding greedily
batched runs (Figure 16).

First, we compare the baseline batching cases with random ordering (G~ vs. G¢.), where we see the two perform
very similarly, with runtimes within five percent of each other in all except one cases, and with the € variant of the
greedy mutation batching algorithm having lower mean runtimes in the case of 12 subjects, and the non-¢ variant
having lower mean runtimes in the case of 10 subjects.

Manuscript submitted to ACM

A Comprehensive Analysis of Batching Algorithms for Efficient, Safe, Parallel Mutation Analysis in Rust 41

g 250% - - e e ey
]
P 240% ; * G, G,
= e
s 120% —
c
()
= ? 4 2
T o100% - & g * @ y & @ oy f 6 g o = * » 2 8 o 2 @
= v [J ® X * L ,)] b ®
= ° 4
h
]
h 80% =
| RN S N R . S N S S ES SN N R S R R RN R R m—
X9 O L 4?2 & @& A0 XD e F L < 2
w“d W& S S & &'b% & L P S & S L & &
P \\<§ RN IO S N O SRS SR SR N
2 9% o \Y ¥ " B o o @& NS TR A N T 2l O
> L Q7 AN RN S P R AN S ANV S SV N NN
\ S &L R AN ARG M WP o i KR
3 © &0 Q7 & VA2 PR O et (@7 (& &
W [SRNUAY > O o” O > QO 22 \" \Y & Q¢ <
Q 2% O .9 <O 0 2 AR Ay
§ B s T S SRR
,\:b o ,06 xS 0%/ éon (Q/ N ¢0(
> N N &> & PR
& ¢

Fig. 16. Mean mutation analysis runtimes of safe mutations across the various subject crates with epsilon-greedy mutation batching
(Get, Ges Ge~), relative to mutation analysis runtimes with deterministic greedy mutation batching using random ordering (G.), in
percentages.

Comparing the resulting mean mutation analysis runtimes between € and non-e greedy mutation batching with
ascending ordering by number of conflicts (G; vs. G¢1), we see a much bigger difference, with the € variant (G¢1)
having lower runtimes in the case of only 2 subjects, and the non-e variant (Gt) having lower runtimes in the case
of the remaining 20 subjects, with significant differences across almost all subjects. Notably, the € variant (G¢t)
performs significantly worse in the cases of alacritty/alacritty, chrono/chrono, clap/clap_builder, exa/exa,
json/serde_json, itertools/itertools, and regex/regex-syntax.

Similarly, comparing the resulting mean mutation analysis runtimes between € and non-e greedy mutation batching
with descending ordering by number of conflicts (G| vs. G.|), we see the € variant (G) having lower runtimes in the
case of only 4 subjects, and the non-¢ variant (G|) having lower runtimes in the case of the remaining 18 subjects,
with similarly significant differences across almost all subjects. Notably, the € variant (G.|) performs significantly
worse in the cases of alacritty/alacritty, chrono/chrono, clap/clap_builder, exa/exa, itertools/itertools,
json/serde_json, and regex/regex-syntax. The e variant (G|) however performs significantly better, in comparison,
in the case of rand/rand_distr, with 26.7% fewer mutation timeouts.

Overall, we can determine that using epsilon-greedy mutation batching with e = 0.1 introduces a lot of noise into the
algorithm, resulting in generally worse mutation analysis runtimes across the majority of subjects. It is worth noting

that the results may differ with different values of €.

Improvements in Compilation Times. Because mutation batching — in addition to improving the time it takes to evaluate
mutations through increased parallelism — also reduces the amount of meta-mutant metadata required, it can have a
positive effect on compilation times, which is a significant part of the total mutation analysis runtime for compiled
languages like Rust. This is especially important for Rust, as it performs significant static analysis on the program
during each compilation. Table 8 shows the mean time it took, in seconds, to compile the meta-mutant of safe mutations

Manuscript submitted to ACM

42 Zalan Lévai, Donghwan Shin, and Phil McMinn

Table 8. Mean compilation times in seconds of safe mutations across the various subject crates without mutation batching (ﬁ),
and with mutation batching using the various mutation batching configurations (R, G, G|, g|, G~, Get, Ge|, Ge-, as defined in
Section 4.2). Highlighted cells, in blue, correspond to the lowest mean compilation times for each subject.

Subject B R Gy G g1 G. Gg Gy Ge
alacritty/alacritty 12.8 17.8 8.9 8.9 8.9 17.9 17.4 17.6 17.8
bat/bat 2.1 2.6 1.7 1.7 1.7 2.6 2.4 2.6 2.5
bytes/bytes 1.3 1.3 0.7 0.8 0.7 1.3 1.2 1.3 1.2
chrono/chrono 56.2 41.3 31.4 33.1 31.3 42.4 42.6 41.9 41.3
clap/clap_builder 11.2 20.0 10.8 9.9 8.9 19.9 18.1 19.4 19.7
exa/exa 4.9 6.8 4.2 4.2 4.2 6.9 7.0 6.9 6.9
gleam/gleam-core 208.7 192.8 168.2 167.4 167.7 1934 190.4 189.1 189.1
hashbrown/hashbrown 1.2 1.4 0.9 0.8 0.9 1.4 1.3 1.3 1.4
image/image 165.5 103.1 88.6 77.6 78.6 104.1 1149 97.8 98.0
itertools/itertools 11.5 8.0 4.6 4.5 4.6 8.0 8.1 8.0 8.1
json/serde_json 10.4 9.8 6.5 6.0 6.9 9.8 9.4 9.5 9.7
parking_lot/parking_lot 0.6 0.8 0.5 0.5 0.5 0.8 0.6 0.7 0.9
rand/rand 2.9 2.7 1.5 1.5 1.8 2.7 2.7 2.7 2.7
rand/rand_core 0.3 0.6 0.3 0.3 0.3 0.6 0.6 0.6 0.6
rand/rand_distr 27.2 125 9.0 8.5 7.7 12,6 127 127 125
regex/regex 1.2 1.7 1.1 1.2 1.2 1.7 1.6 1.6 1.7
regex/regex-automata 28.5 41.0 17.2 14.2 14.8 42.6 42.5 40.8 41.4
regex/regex-syntax 28.0 66.6 29.7 288 29.0 669 655 668 66.3
ripgrep/grep-printer 1.6 2.0 1.4 1.4 1.4 2.0 2.0 2.0 2.0
ripgrep/grep-searcher 2.9 5.5 3.2 2.9 3.2 6.2 3.6 4.6 6.3
ripgrep/ripgrep 1.4 1.4 1.4 1.4 1.4 1.7 1.4 1.4 1.7
rustls/rustls 8.5 6.4 4.2 4.2 3.5 6.4 6.5 6.3 6.4

generated by mutest-rs, across the subject crates of various sizes without mutation batching (), and with mutation
batching using the various algorithms and configurations (R, G, G|, g|, G~, Get, Ge|, Ge-).

From this, we see that greedy mutation batching (Gt, G|, g|) improves meta-mutant compilation times in all cases,
with the exception of regex/regex-syntax, where compilation times remain comparable. In some cases, such as when
non-batched meta-mutant compilation times are significant, mutation batching improves mutation analysis runtimes
significantly through a reduction in compile times. In other cases, such as parking_lot/parking_lot, the difference
in compilation times is minimal, however mutation analysis runtimes are significantly reduced through the improved
parallelism of test evaluation during mutation evaluation with mutation batching. We can also determine that mutation
batching with random ordering (G.), and epsilon-greedy mutation batching configurations (G¢t, Ge|, Ge~) improve

compile times in fewer cases, primarily amongst subjects with longer non-batched compilation times.

Overall Trends Across Mutation Batching Configurations. Overall, across all of the mutation batching configurations, the
subjects gleam/gleam-core, image/image, parking_lot/parking_lot, chrono/chrono, and rand/rand_distr have
the most improved mutation analysis runtimes, while rust1ls/rustls sees the most significant improvement in runtimes
proportionally, with an improvement of up to 52.3%. Only three subjects, bytes/bytes, regex/regex-automata and
regex/regex-syntax, have worse mean mutation analysis runtimes across all of the mutation batching configurations
compared to the original, non-batched (K) runs, primarily due to an increase in the number of timed out mutations.

Manuscript submitted to ACM

A Comprehensive Analysis of Batching Algorithms for Efficient, Safe, Parallel Mutation Analysis in Rust 43

Among the 22 subjects, only one, namely rand/rand_distr, has outlier mutation analysis runtimes with certain
mutation batching configurations applied, which is also caused by an increase in the number of timed out mutations.

Large subjects — those with high non-batched mutation analysis runtimes — reliably see improvement across the
board, while smaller subjects have more varied results, with the original greedy algorithms performing well. This
suggests that we can expect to see similarly large improvements with other large projects as well, and potentially
further improvements as project sizes, numbers of tests cases, and mutation analysis runtimes grow further. Looking at
the variance in the rate of improvement, we can determine that subjects with shorter non-batched mutation analysis
runtimes have more variance in the rate of improvement across the various mutation batching configurations.

Some of the reduction in runtime in general can be attributed to the reduction in the amount of embedded meta-
mutant metadata with mutation batching, as the same number of mutations can be represented with significantly fewer
mutant program descriptors. In a compiled language, like Rust, the amount of such metadata has a significant impact

on compilation times, and as such should be minimized.

In conclusion for RQ3, we see an improvement in 19 out of the 22 subjects in mean mutation analysis
runtimes using greedy mutation batching, with improvements of up to 52.3% in the case of rustls/rustls,
and 73.8 seconds in the case of gleam/gleam-core. We can determine that overall, using either ascending
ordering by number of conflicts or descending ordering by number of conflicts as an ordering heuristic for
greedy mutation batching results in lower mutation analysis runtimes at around the same rate, and that it is
difficult to determine whether limiting the maximum size of mutation batches improves mutation analysis
runtimes. We see that epsilon-greedy mutation batching with € = 0.1 results in marginally worse mutation

analysis runtimes across the majority of subjects.

RQ4: Variance. What is the variance in mutation scores with our subjects?

Mutation batching changes how mutations — and their corresponding test cases — are evaluated, without affecting
the detection of individual mutations, and thus the overall mutation score. However, this can only be guaranteed in
cases where the test suite shows no behavioral variance across repeated, and potentially slightly differing runs. For
example, the presence of flakiness and non-determinism in test suites, or the presence of test timeouts in the test
suite can cause the behavior of the test suite to change across repeated runs of identical or slightly different execution
environments and configurations. In such cases, certain mutations’ detection with mutation batching may be affected
by the variance in the test evaluation process, which might result in slightly altered mutation scores. The variance in
mutation scores with and without mutation batching — when present — can be primarily attributed to flaky test effects,
like order dependence or the presence of shared state, which is commonly regarded as undesirable for robust testing,
in part because it prohibits efficient, parallel test execution. It may also stem from other forms of test run variance,
like test case timeouts, which may cause a particular test case to either run to completion or time out, depending on
the exact timeout and the test environment. It is important to note that mutation batching does not introduce these
variances, as they are already present across multiple, repeated mutation analysis runs without mutation batching.
Mutation batching may only be affected by existing variance in test suite runs. Table 9 shows the mean mutation score
of the various subject crates from safe mutations without mutation batching (), and with mutation batching using the

various algorithms and configurations (R, Gy, G|, g|, G+, Get, G|, Ge-).

Manuscript submitted to ACM

44 Zalan Lévai, Donghwan Shin, and Phil McMinn

Table 9. Mean mutation scores from safe mutations across the various subject crates without mutation batching (ﬂ), and with
mutation batching using the various mutation batching configurations (R, Gt, G|, g|, G+, Get, Ge|, Ge~, as defined in Section 4.2).
Highlighted cells, in blue, correspond to mutation scores that equal the corresponding unbatched mutation score for each subject.

Subject B R G G g1 G. Ggq G Ge
alacritty/alacritty 25.9% 25.9% 259% 259% 259% 259% 259% 25.9% 25.9%
bat/bat 68.2% 68.2% 68.2% 68.2% 68.2% 68.2% 68.2% 68.2% 68.2%
bytes/bytes 80.6% 80.9% 80.6% 80.8% 81.1% 80.6% 80.6% 80.7% 80.6%
chrono/chrono 87.9% 87.9% 87.9% 88.1% 87.9% 88.0% 87.9% 88.0% 88.0%
clap/clap_builder 371% 37.1% 37.1% 37.1% 37.1% 371% 37.1% 37.1% 37.1%
exa/exa 85.4% 85.4% 85.4% 85.4% 85.4% 85.4% 85.4% 85.4% 85.4%
gleam/gleam-core 97.8% 98.0% 98.3% 98.1% 98.1% 98.1% 98.3% 98.1% 98.0%
hashbrown/hashbrown 78.4% 78.4% 78.4% 78.4% 78.4% 78.4% 78.4% 78.4% 78.4%
image/image 68.5% 68.4% 68.5% 68.5% 68.5% 68.4% 68.5% 68.5% 68.4%
itertools/itertools 88.8% 88.8% 88.8% 88.8% 88.8% 88.9% 88.8% 88.8% 88.9%
json/serde_json 84.3% 84.7% 84.2% 84.5% 84.6% 84.6% 84.2% 84.5% 84.6%
parking_lot/parking_lot 98.5% 97.3% 95.1% 99.5% 99.5% 96.9% 94.6% 98.9% 95.4%
rand/rand 76.0% 76.1% 76.0% 76.3% 76.0% 76.0% 76.0% 76.3% 76.0%
rand/rand_core 77.7% 77.6% 77.7% 77.7% 77.7% 77.6% 77.6% 77.6% 77.6%
rand/rand_distr 67.8% 67.8% 67.8% 81.7% 79.1% 67.8% 67.8% 76.5% 67.9%
regex/regex 63.6% 63.6% 63.6% 63.6% 63.6% 63.6% 63.6% 63.6% 63.6%
regex/regex-automata 76.0% 88.2% 94.2% 96.9% 96.8% 98.1% 94.6% 97.5% 98.1%
regex/regex-syntax 82.8% 82.8% 83.0% 82.9% 82.9% 82.8% 83.2% 82.9% 82.8%
ripgrep/grep-printer 84.6% 84.6% 84.6% 84.6% 84.6% 84.6% 84.6% 84.6% 84.6%
ripgrep/grep-searcher 83.3% 83.3% 83.3% 83.3% 83.3% 83.3% 83.3% 83.3% 83.3%
ripgrep/ripgrep 80.4% 80.4% 80.4% 80.4% 80.4% 80.4% 80.4% 80.4% 80.4%
rustls/rustls 63.3% 63.3% 63.7% 63.8% 63.3% 63.4% 63.6% 63.8% 63.5%

We can determine that, out of the 22 subjects, 13 subjects have the exact same mutation score with and without
mutation batching, and across all of the various mutation batching configurations. These subjects do not exhibit flaky test
and mutation outcomes on repeated invocations, and have either no mutation timeouts at all (7 subjects), or have a very
low rate of timed out mutations at less than 0.6% of all evaluated mutations. A further 6 subjects only show differences
in their mutation scores within 0.5% with mutation batching compared to their original, non-batched mutation scores,
with a median difference of less than 0.3% across all of the various batching configurations. Among the remaining 3
subjects, namely parking_lot/parking_lot, rand/rand_distr and regex/regex-automata, we can determine that
their mutation scores are partly determined (or at least largely impacted) by the number of timed out test cases in
individual runs, with both the rate of mutation timeouts and mutation scores varying across repeated invocations of
the same mutation analysis configuration. In the case of rand/rand_distr, only three batching configurations (G,
g1, G¢|) show a variance in mutation scores, inline with when the baseline, unbatched mean mutation timeout rate of
2.7% is exceeded, at 45.9%, 53.1%, and 26.4% respectively. In the case of parking_lot/parking_lot, mutation timeout
rates are consistently high across unbatched and all batched runs, between 85.1% and 97.1%, with variances in the
rate of mutation timeouts even across repeated runs. Mean mutation scores closely follow the trends in these mean
mutation timeout rates across unbatched and all batched runs, showing that mutation scores are largely dependent on
exactly which test cases time out during each mutation analysis run. In the case of regex/regex-automata, variances
in mutation scores again largely follow variances in the rates of mutation timeouts, with the baseline, unbatched
mutation timeout rate of 50.0% exceeded in all batched configurations, between 75.6% and 94.6%. Variances in the rates

Manuscript submitted to ACM

A Comprehensive Analysis of Batching Algorithms for Efficient, Safe, Parallel Mutation Analysis in Rust 45

of mutation timeouts during repeated invocations of the same configuration are also very high, which is also reflected
in the variance of mutation scores during these repeated invocations. The median mutation score variance compared to
the baseline, unbatched mean mutation score across all subjects is 0.0% in the case of all batched configurations.

The observed variances in mutation scores may be due to a number of reasons, including potential shared state, and
environmental factors (e.g., network or filesystem calls). In the case of our subjects, these factors contribute to the
variances in the number of test timeouts across unbatched and all batched configurations, which result in the observed
variances in mutation scores. However, we theorize that behavior arising from these factors is more likely to cause
additional test failures, and as such, additional, false positive mutation detections, explaining the occasional slight,
overall increase in mutation scores. It is worth noting that the observed variances in test timeouts occurred despite
generous timeouts calculated for each test by mutest-rs (Section 3.6). Amongst our subjects, without mutations applied,
the affected tests ran for up to around 1.5 milliseconds only, for which our automatically determined timeouts were just
over a second. As such, these non-deterministic test timeouts happened even though our mutation evaluation process

gave these test cases orders of magnitude more time to terminate.

In conclusion for RQ4, Mutation batching does not affect the mutation score of deterministic test suites,
but may be affected by existing variances in the test evaluation process, such as test timeouts. Out of the 22
subjects, 13 subjects have the exact same mutation score with and without mutation batching, and a further
6 subjects only show differences in their mutation scores within 0.5% of their non-batched mutation scores.
Amongst our subjects, the occasional variances in mutation scores can be attributed to variances in the number

of test case timeouts.

6 Discussion
6.1 Examining and Analyzing the Mutation Compatibility Graphs

As discussed in Section 3.4.1, mutation compatibility graphs provide the basis for mutation batching, as the problem
of mutation batching is equivalent to finding cliques in a mutation compatibility graph. We noted however that, in
practice, mutation compatibility graphs are large, complex, and not transitive by definition, making computation of a
perfect solution infeasible.

To quantify the complexity of mutation compatibility graphs, and to investigate its clustering properties, we analyze
the invariants of the mutation compatibility graph of mutations of each subject; instances of the abstract mutation
compatibility graph outlined above. Table 10 shows the number of safe mutations, which correspond with the nodes
of the mutation compatibility graph, the number of mutation conflicts (i.e., the number of edges in the mutation
conflict graph), the number of mutation compatibilities (i.e., the number of edges in the mutation compatibility graph),
the 3-cycle transitivity of the mutation compatibility graph, and the diameter of the mutation compatibility graph
corresponding to the safe mutations generated for each subject. Percentages are also noted for mutation conflicts and
compatibilities, which are the percentage of the respective edges compared to the complete graph of the corresponding
mutations. Since the two edge sets are inverses of each other and together they make a complete graph, these percentages
add up to one hundred percent.

Firstly, we see that the ratio of conflicts to compatibilities — i.e., which mutation relation edges correspond to a conflict
and to a compatibility respectively, varies highly across the subjects. In the case of 15 out of the 22 subjects, there are
more mutation compatibilities than conflicts, while 2 out of the 7 remaining subjects have remarkably low percentages of

Manuscript submitted to ACM

46 Zalan Lévai, Donghwan Shin, and Phil McMinn

Table 10. Properties of the safe mutations — and their corresponding mutation compatibility graphs — produced for each subject.
“Transitivity” and “Diameter” are properties of each subject’s mutations’ respective mutation compatibility graph. Diameter is not listed
for individual subjects separately in a standalone column, as the value is 2 in all cases. Amongst mutation conflicts and compatibilities,
highlighted cells, in blue, correspond to the higher of the two values for each subject. For the Transitivity column, highlighted cells, in
blue, correspond to values of 0.70 or higher for each subject.

Subject Safe Mutation Mutation Transitivity
Mutations Conflicts Compatibilities (3-cycles)
alacritty/alacritty 1809 562653 (34.4%) 1072683 (65.6%) 0.56
bat/bat 506 24780 (19.4%) 102985 (80.6%) 0.78
bytes/bytes 422 13352 (15.0%) 75479 (85.0%) 0.87
chrono/chrono 2882 1775029 (42.8%) 2376492 (57.2%) 0.63
clap/clap_builder 1447 923064 (88.2%) 123117 (11.8%) 0.16
exa/exa 888 119195 (30.3%) 274633 (69.7%) 0.70
gleam/gleam-core 4173 5968202 (68.6%) 2736676 (31.4%) 0.40
hashbrown/hashbrown 273 8577 (23.1%) 28551 (76.9%) 0.83
image/image 4885 3630168 (30.4%) 8299002 (69.6%) 0.75
itertools/itertools 1246 76653 (9.9%) 698982 (90.1%) 0.91
json/serde_json 1133 248981 (38.8%) 392297 (61.2%) 0.57
parking_lot/parking_lot 163 9278 (70.3%) 3925 (29.7%) 0.45
rand/rand 747 52713 (18.9%) 225918 (81.1%) 0.81
rand/rand_core 179 3679 (23.1%) 12252 (76.9%) 0.71
rand/rand_distr 2126 349079 (15.5%) 1909796 (84.5%) 0.84
regex/regex 209 10669 (49.1%) 11067 (50.9%) 0.55
regex/regex-automata 2698 2220787 (61.0%) 1417466 (39.0%) 0.47
regex/regex-syntax 2709 2955912 (80.6%) 712074 (19.4%) 0.21
ripgrep/grep-printer 376 17811 (25.3%) 52689 (74.7%) 0.71
ripgrep/grep-searcher 669 221538 (99.1%) 1908 (0.9%) 0.00
ripgrep/ripgrep 97 4494 (96.5%) 162 (3.5%) 0.33
rustls/rustls 1127 101244 (16.0%) 533257 (84.0%) 0.86

mutation compatibilities, with ripgrep/ripgrep’s 97 mutations at 3.5%, and ripgrep/grep-searcher’s 669 mutations
at only 0.9%. It is important to point out that the ratio of mutation compatibilities to mutation conflicts appears to
have no strong correlation with the improvements in runtimes measured in RQ3, and some of the subjects with the
most-improved runtimes have a low mutation compatibility to mutation conflict ratio, such as gleam/gleam-core, and
parking_lot/parking_lot. We do however see a strong correlation between the percentage of mutation compatibilities,
and the transitivity of the corresponding mutation compatibility graph.

Secondly, and as a result of the correlation noted earlier, we see that the transitivity of the mutation compat-
ibility graphs varies highly across subjects too, and ranges between 0.16 for clap/clap_builder, and 0.91 for
itertools/itertools, with 11 out of the 22 subjects having mutation compatibility graphs with transitivity at
least 0.70. The median transitivity of the mutation compatibility graphs is 0.66. These results indicate that improved,
search-based optimization algorithms for mutation batching might be feasible in some cases, and would be able to
make further improvements to runtimes with mutation batching; a potential topic of future research. We see that the
diameter — the maximum distance between any pair of mutations — of all subject’s mutation compatibility graphs is 2,
which shows that these graphs are highly connected. This is common for large, complex graphs in general. The one

Manuscript submitted to ACM

A Comprehensive Analysis of Batching Algorithms for Efficient, Safe, Parallel Mutation Analysis in Rust 47

outlier mutation compatibility graph is the one associated with ripgrep/grep-searcher with a transitivity of 0.00,
however this can be attributed to the subject’s remarkably low 0.9% rate of mutation compatibilities.

The ratio of mutation compatibilities to mutation conflicts is highly dependent on how the code is organized. Dividing
up the program into more, distinct, individually tested modules gives mutation batching a greater ability to batch

mutations further, giving rise to additional reduction in mutation analysis runtimes.

7 Related Work
7.1 Applying Mutation Analysis to Rust Programs

There are two notable pieces of research works on software testing for Rust, however both of these works are focused
on test case generation, rather than applying alternative software testing techniques. Takashima et al. [51] used
complex program synthesis techniques to generate test suites for libraries. They encoded type, ownership, and lifetime
constraints, and were able to generate valid Rust code that utilized complex patterns to interface with library APIs.
Their work does an excellent job of highlighting the difficulties of generating valid Rust programs, in particular, for test
case generation. In this work, we specifically focused on the challenges of generating Rust code based on existing, valid
Rust code through mutations, rather than test case generation. Sharma et al. [48] generated random Rust programs
that respected the ownership, borrowing, and lifetime rules of the language in order to test alternative Rust compiler
implementations. They did this by generating random, context-aware ASTs which conformed to the grammar of the
language. Due to their lack of data flow analysis, they had to place slightly stricter restrictions on their generated code
than the actual borrowing rules of Rust, and could not generate code which exercised the lifetime coercion rules of the
language. Their technique can be best thought of as an advanced, compiler-specific fuzzing technique, and showcases
the limitations of generating Rust programs based on syntactical approaches.

Research into applying testing techniques to Rust is currently sparse. While mutation analysis has been widely applied
to many languages [27], this work constitutes the first piece of research on the testing technique that specifically targets
the Rust programming language. While, as previously discussed in Section 2, we found two existing, relatively limited
hobbyist mutation tools for the language — Bogus’s mutagen [7] and Pool’s cargo-mutants [46], and noted that LLVM
bytecode mutations, like Denisov and Pankevich’s [12] work may be adaptable to Rust programs, these approaches
both have significant limitations associated with them. Both mutagen, and cargo-mutants only support a very basic set
of mutation operators, generate large numbers of invalid mutants due to their limited, syntax-based approaches, and do
not optimize mutation evaluation in any way; mutants are compiled, and run one-by-one, sequentially. While there are
multiple works discussing generic mutations on LLVM bytecode [9, 12, 22, 23], they all share the same fundamental
limitations; mutations are easily introduced in external library code that is not part of the written program code,
and many bytecode mutations do not have source code counterparts. This work specifically focuses on source code
mutations, which alleviates all of these problems, and performs efficient mutation analysis through a meta-mutant

model, rather than by editing bytecode directly.

7.2 Existing Approaches and Tools for Mutation Analysis

It is important to compare our approach to well-established mutation analysis tools targeting other languages. Two
mutation analysis tools stand out in terms of their recent research coverage and popularity: Just’s Major [28], and
Coles et al.’s PIT [10], both for Java. Major uses a set of syntax-based, compiler-assisted mutation operators, and
embeds the resulting mutations into a single meta-mutant. It implements test case prioritization based on a monitored

Manuscript submitted to ACM

48 Zalan Lévai, Donghwan Shin, and Phil McMinn

reference run, but is unable to evaluate test cases in parallel. This in many ways mirrors some of the fundamental
characteristics of our approach, however, we improve on Major using an extended set of mutation operators, along
with a highly parallel test scheduler which is able to parallelize execution of test cases pertaining to multiple mutants,
resulting in the simultaneous evaluation of multiple mutants. Meanwhile, PIT primarily uses bytecode mutations to
avoid compilation overhead. This has many of the same drawbacks as previously discussed with LLVM bytecode
mutation tools, primarily the ability to generate “junk” mutations unrepresentable by a developer in source code. In
addition, PIT also trades mutation operator expressivity with its bytecode approach compared to Major, as it cannot

analyze higher-level language constructs.

7.3 Reducing the Cost of Mutation Analysis through Test Case Prioritization

There has also been a lot of attention towards alternative techniques for reducing the cost of mutation analysis. These
techniques are given excellent coverage in the survey by Pizzoleto et al. [45], including works that, as with this work,
have sought to reduce the cost of evaluating mutations, that correspondingly fall into Offutt and Untch’s “do faster”,
and “do smarter” [41] categories. Among these existing cost reduction techniques, we must highlight the differences
between approach, and related work in test case prioritization and process-based parallelism approaches.

In order to prioritize test cases during mutant evaluation, Zhang et al. [62] used a family of techniques to prioritize,
and reduce the number of tests cases needed to determine the set of killed, and surviving mutants. The did so by
applying heuristics relating to code coverage, and execution history. Unlike our approach, which prioritizes fast test
cases based on their original, unmutated execution times, they prioritized test cases that executed more statements
before reaching the active mutation. Mateo and Usaola [39] applied statement coverage analysis to determine which
tests reach mutations, so as to remove other tests from consideration. This builds on a similar approach taken by
Schuler and Zeller [47] when developing the Javalanche mutation testing tool for Java. Just et al. [29] took these ideas
beyond mutation reachability to derive information about state infection. Compared to the analysis performed by these
techniques, our approach only relies on the possibility of functions being reachable by individual tests, which can be
determined statically, upfront, based on the construction of a call graph, without the need to perform any expensive,

instrumented runtime analysis.

7.4 Reducing the Cost of Mutation Analysis through Parallelism

The fundamental idea for modern process-based parallel mutation evaluation techniques was first proposed by
King and Offutt [32], as the “split-stream” execution method in their interpreter-based mutation analysis tool. They took
advantage of the unique property of program mutations; that mutant programs are identical in execution to the original
program up until the point of mutation. By tracking the state of the program at these diverging points, they suggested
that duplicate work could be reduced. However, they noted that the overhead of keeping track of the large numbers of
program states necessary for this approach was not feasible in most cases. More recently, this approach has been tested
through various process-based approaches. Tokumoto et al. [57] implemented split-stream execution of mutants for
C a bytecode interpreter to instrument program execution. However, their approach’s reliance on an instrumented
interpreter limited the performance of each mutant compared to an equivalent compiled program. Gopinath et al. [18]
combined mutations close to each other for split-stream execution by forking the meta-mutant process at each point of
divergence, and running the forked processes simultaneously. Sun et al. [50] performed a larger-scale study of a similar
approach, grouping mutations in the same block together, and forking the program execution for each individual mutant,

again, running the forked processes simultaneously. More recently, Vercammen et al. [61] implemented split-stream
Manuscript submitted to ACM

A Comprehensive Analysis of Batching Algorithms for Efficient, Safe, Parallel Mutation Analysis in Rust 49

execution of mutants for C and C++ programs using the Clang and LLVM compiler infrastructure, instrumenting the
mutant program and forking it for each individual mutant during execution. These approaches seek to optimize the
common code paths between the generated mutants, reducing repeated work across mutant evaluations. However, there
are various problems, and costs associated with split-stream, and process-based parallelization of mutant execution.
Methods that fork the running program at points of divergence are limited by the amount of shared code up to the point
of the first execution of a mutation. Keeping track of the large number of program states possible in most programs also
comes with a significant memory overhead, even when implemented though forking. Forked processes also generally
execute slower than regular processes, or threads in a process, due to their copy-on-write memory semantics, and
context switching overhead respectively. Our approach addresses these shortcomings by having a fundamentally
different approach to parallelism. Rather than processes, our approach uses lightweight threads to schedule test cases,
and to increase the amount of parallelizable work, schedules test cases for multiple non-conflicting mutations at the

same time.

7.5 Mathematical Theory behind Mutation Batching

Bampis et al.’s [4] theoretical work into bounded max-coloring of graphs, a theoretically more computationally feasible
approach to graph coloring (and clique cover) in cases where the maximum clique size can be bounded, may be applicable
to mutation batching. They wrote that bounded and unbounded max-coloring of graphs “are also equivalent with
scheduling problems where jobs correspond to the vertices of a graph, which describes incompatibilities between them”.
Unfortunately, hitherto, no exact algorithm, and implementation has been made available for the problem of bounded

max-coloring of graphs to the authors’ knowledge.

8 Conclusions and Future Work

Mutation analysis is a valuable testing technique that is often regarded as computationally expensive, preventing its
use on large programs and test suites. While solutions to better utilize parallel computation to evaluate mutations in
less time overall have been proposed and evaluated in existing research, they all make use of individual, expensive
processes, with significant overhead.

In this paper, and its ICST predecessor [36], we propose a novel technique for speeding up mutation analysis through
better utilization of parallel computers without the overhead cost of processes — mutation batching. We implement our
technique in a tool called mutest-rs, a novel, robust mutation analysis tool for the safety-focused Rust programming
language, alongside a set of mutation operators with Rust programs in mind. To accommodate mutation analysis
to systems-level Rust programs, we introduce the notion of mutation safety, which allows mutest-rs to distinguish
between mutations which may have the ability to introduce undefined behavior into the program, and those which do
not.

Mutation batching is a novel technique that increases the utilization of parallel processors for test evaluation during
mutation analysis by applying multiple, compatible mutations at the same time. This increases the number of test
cases that can be parallelized at any one point in the mutation evaluation process, leading to better use of available
resources, and a shorter overall mutation analysis runtime. To ensure that mutations do not influence each other’s
behavior, only mutations that are in distinct parts of the program are considered compatible with regards to mutation
batching. This is determined ahead of time, based on a fully-resolved call graph used to prove which test cases the
mutations are reachable from. This property ensures that we can determine individual mutation detection through the

test case that signaled the change in behavior. To complete mutation batching, mutations are partitioned into groups of
Manuscript submitted to ACM

50 Zalan Lévai, Donghwan Shin, and Phil McMinn

intercompatible mutations, forming mutation batches. For this, we use greedy, heuristics-based algorithms in mutest-rs
to approximate optimal mutation batching.

We use mutest-rs on 22 subject Rust programs of various sizes, testing methodologies, and test suite sizes to evaluate
mutation batching, and our mutation analysis approach. To ensure that our additional mutation operators are comparable
to existing, traditional mutation operators used throughout mutation analysis research, we compare them side-by-side,
and find that our additional mutations are detected at a similar or lower rate than traditional mutations. We find that
the prevalence of unsafe mutations across our subjects is low, but significant in the cases we encounter it. We use
versions of our greedy mutation batching algorithm to determine the effect of mutation batching as a whole, as well
as the effect of various variations of the greedy algorithm on mutation analysis runtimes. Our experiments show
that mutation batching translates into a significant decrease in the runtime of mutation testing evaluation, with an
improvement in mean mutation analysis runtimes in 18 out of 22 subjects, with improvements of up to 52.3% in the
case of rustls/rustls, and 73.8 seconds in the case of gleam/gleam-core. We also conclude that mutation batching
does not affect the mutation score of deterministic test suites, but may cause deviations in the case of flaky tests, with a
median deviation of 1.6%.

In addition, we discuss the thread utilization characteristics of test case evaluation with batched mutation analysis,
and find that mutation batching significantly reduces the amount of test case “waterfalls”, in which the test threads are
not utilized in parallel as a result of evaluating small mutations with few test cases. We also explore and discuss the
properties of the graphs of mutation compatibilities resulting from mutation batching to explore the feasibility of using
search-based optimization algorithms for mutation batching.

As part of our future work, we plan to explore the use of search-based optimization algorithms to find improved
approximations for mutation batching with a focus on reducing runtimes, and additional techniques for reducing
the unused parallel capacity of modern computers further and reducing “waterfalls” throughout test case execution.
While the reachability metrics derived from static call graphs are sufficient for the majority of programs, we intend to
investigate the use of additional runtime coverage information, and how it might improve mutation batching. Since
mutation batching is language-agnostic and may have wider applicability beyond Rust, we encourage future work to
implement the technique for use in other programming languages.

With regard to the threat of potentially remaining equivalent mutants, we intend on exploring novel techniques for
applying the fundamental ideas behind Trivial Compiler Equivalence to meta-mutant programs, such as those generated
by mutest-rs. Such a tailored Trivial Compiler Equivalence approach could be used to further reduce the number of
potentially remaining equivalent mutants through checking for equivalence in the already compiled program code,
while keeping the efficiency characteristics of meta-mutants. By inspecting only the branching parts of the compiled
meta-mutant specifically, we can avoid inspecting separate compilations of individual mutants.

With regard to unsafe mutations, and the specific challenges of applying mutation analysis to Rust programs, we
intend on investigating other potential side effects of unsafe mutations in more detail, and providing a more detailed,
dedicated analysis of our separation of safe and unsafe mutations. One possible route for more thoroughly evaluating
the safety properties of our distinction between safe and unsafe mutations would be to evaluate unsafe mutations using
an undefined behavior detection tool, such as Rust’s Miri [55], evaluating mutest-rs meta-mutants of existing verified
Rust programs. This analysis could be used to more thoroughly reveal the lack undefined behavior during the tested

executions.

Manuscript submitted to ACM

A Comprehensive Analysis of Batching Algorithms for Efficient, Safe, Parallel Mutation Analysis in Rust 51

Acknowledgements

Zalan Lévai is funded by UKRI EPSRC Grant No. EP/W524360/1.
Phil McMinn is supported, in part, by the UKRI EPSRC Grant “Test FLARE” (EP/X024539/1).

References

(1]

[10]

(1]
[12]
[13]

[14]

[15]

[16]

[17

[18

Allen T. Acree, Timothy A. Budd, Richard A. DeMillo, Richard J. Lipton, and Frederick G. Sayward. 1979. Mutation Analysis. Technical Report.
Defense Technical Information Center, Fort Belvoir, VA, USA. doi:10.21236/ADA076575

Abhishek Arya, Caleb Brown, Rob Pike, and The Open Source Security Foundation. 2023. Open Source Project Criticality Score. The Open Source
Security Foundation. https://github.com/ossf/criticality_score

Vytautas Astrauskas, Christoph Matheja, Federico Poli, Peter Miiller, and Alexander J. Summers. 2020. How Do Programmers Use Unsafe Rust?
Proceedings of the ACM on Programming Languages 4, OOPSLA (Nov. 2020), 136:1-136:27. doi:10.1145/3428204

E. Bampis, A. Kononov, G. Lucarelli, and I. Milis. 2014. Bounded Max-Colorings of Graphs. Journal of Discrete Algorithms 26 (May 2014), 56—68.
doi:10.1016/j.jda.2013.11.003

Maik Betka and Stefan Wagner. 2021. Extreme Mutation Testing in Practice: An Industrial Case Study. In 2021 IEEE/ACM International Conference on
Automation of Software Test (AST). IEEE, Madrid, Spain, 113-116. doi:10.1109/AST52587.2021.00021

Maik Betka and Stefan Wagner. 2022. Towards Practical Application of Mutation Testing in Industry — Traditional versus Extreme Mutation Testing.
Journal of Software: Evolution and Process 34, 11 (2022), €2450. doi:10.1002/smr.2450

Andre Bogus. 2022. mutagen. https://github.com/llogiq/mutagen

Coen Bron and Joep Kerbosch. 1973. Algorithm 457: Finding All Cliques of an Undirected Graph. Commun. ACM 16, 9 (Sept. 1973), 575-577.
doi:10.1145/362342.362367

Thierry Titcheu Chekam, Mike Papadakis, and Yves Le Traon. 2019. Mart: A Mutant Generation Tool for LLVM. In Proceedings of the 2019 27th ACM
Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering (ESEC/FSE 2019). Association
for Computing Machinery, New York, NY, USA, 1080-1084. doi:10.1145/3338906.3341180

Henry Coles, Thomas Laurent, Christopher Henard, Mike Papadakis, and Anthony Ventresque. 2016. PIT: A Practical Mutation Testing Tool for Java
(Demo). In Proceedings of the 25th International Symposium on Software Testing and Analysis (ISSTA 2016). Association for Computing Machinery,
New York, NY, USA, 449-452. doi:10.1145/2931037.2948707

R.A. DeMillo, RJ. Lipton, and F.G. Sayward. 1978. Hints on Test Data Selection: Help for the Practicing Programmer. Computer 11, 4 (April 1978),
34-41. doi:10.1109/C-M.1978.218136

Alex Denisov and Stanislav Pankevich. 2018. Mull It Over: Mutation Testing Based on LLVM. In 2018 IEEE International Conference on Software
Testing, Verification and Validation Workshops (ICSTW). IEEE, Visteras, Sweden, 25-31. doi:10.1109/ICSTW.2018.00024

Hyunsook Do and G. Rothermel. 2006. On the Use of Mutation Faults in Empirical Assessments of Test Case Prioritization Techniques. IEEE
Transactions on Software Engineering 32, 9 (Sept. 2006), 733-752. doi:10.1109/TSE.2006.92

Moritz Eck, Fabio Palomba, Marco Castelluccio, and Alberto Bacchelli. 2019. Understanding Flaky Tests: The Developer’s Perspective. In Proceedings
of the 2019 27th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering (ESEC/FSE
2019). Association for Computing Machinery, New York, NY, USA, 830-840. doi:10.1145/3338906.3338945

Ana Nora Evans, Bradford Campbell, and Mary Lou Soffa. 2020. Is Rust Used Safely by Software Developers?. In Proceedings of the ACM/IEEE 42nd
International Conference on Software Engineering (ICSE °20). Association for Computing Machinery, New York, NY, USA, 246-257. doi:10.1145/
3377811.3380413

Gordon Fraser and Andreas Zeller. 2010. Mutation-Driven Generation of Unit Tests and Oracles. In Proceedings of the 19th International Symposium
on Software Testing and Analysis (ISSTA ’10). Association for Computing Machinery, New York, NY, USA, 147-158. do0i:10.1145/1831708.1831728
Michael Garey and David Johnson. 1979. Computers and Intractibility: A Guide to the Theory of NP-Completeness. W. H. Freeman, New York, NY,
USA.

Rahul Gopinath, Carlos Jensen, and Alex Groce. 2016. Topsy-Turvy: A Smarter and Faster Parallelization of Mutation Analysis. In Proceedings of the
38th International Conference on Software Engineering Companion (ICSE ’16). Association for Computing Machinery, New York, NY, USA, 740-743.
doi:10.1145/2889160.2892655

[19] Jens Gramm, Jiong Guo, Falk Hiiffner, and Rolf Niedermeier. 2009. Data Reduction and Exact Algorithms for Clique Cover. ACM Journal of

[20]

[21]

[22]

Experimental Algorithmics 13 (Feb. 2009), 2:2.2-2:2.15. doi:10.1145/1412228.1412236

Hirohide Haga and Akihisa Suehiro. 2012. Automatic Test Case Generation Based on Genetic Algorithm and Mutation Analysis. In 2012 IEEE
International Conference on Control System, Computing and Engineering. IEEE, Penang, Malaysia, 119-123. doi:10.1109/ICCSCE.2012.6487127

R.G. Hamlet. 1977. Testing Programs with the Aid of a Compiler. IEEE Transactions on Software Engineering SE-3, 4 (July 1977), 279-290.
doi:10.1109/TSE.1977.231145

Farah Hariri and August Shi. 2018. SRCIROR: A Toolset for Mutation Testing of C Source Code and LLVM Intermediate Representation. In Proceedings
of the 33rd ACM/IEEE International Conference on Automated Software Engineering (ASE ’18). Association for Computing Machinery, New York, NY,
USA, 860-863. doi:10.1145/3238147.3240482

Manuscript submitted to ACM

https://doi.org/10.21236/ADA076575
https://github.com/ossf/criticality_score
https://doi.org/10.1145/3428204
https://doi.org/10.1016/j.jda.2013.11.003
https://doi.org/10.1109/AST52587.2021.00021
https://doi.org/10.1002/smr.2450
https://github.com/llogiq/mutagen
https://doi.org/10.1145/362342.362367
https://doi.org/10.1145/3338906.3341180
https://doi.org/10.1145/2931037.2948707
https://doi.org/10.1109/C-M.1978.218136
https://doi.org/10.1109/ICSTW.2018.00024
https://doi.org/10.1109/TSE.2006.92
https://doi.org/10.1145/3338906.3338945
https://doi.org/10.1145/3377811.3380413
https://doi.org/10.1145/3377811.3380413
https://doi.org/10.1145/1831708.1831728
https://doi.org/10.1145/2889160.2892655
https://doi.org/10.1145/1412228.1412236
https://doi.org/10.1109/ICCSCE.2012.6487127
https://doi.org/10.1109/TSE.1977.231145
https://doi.org/10.1145/3238147.3240482

52

[23]

[24
[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

@
&

[34]
[35]
[36]

[37
[38]

[39]

[40]

[41]

[42]

[43

[44

[45

[46
[47]

[48

Zalan Lévai, Donghwan Shin, and Phil McMinn

Farah Hariri, August Shi, Vimuth Fernando, Suleman Mahmood, and Darko Marinov. 2019. Comparing Mutation Testing at the Levels of Source
Code and Compiler Intermediate Representation. In 2019 12th IEEE Conference on Software Testing, Validation and Verification (ICST). IEEE, Xi’an,
China, 114-124. doi:10.1109/ICST.2019.00021

Falk Hiiffner. 2021. Falk-Hueffner/Clique-Cover. https://github.com/falk-hueffner/clique-cover

Yue Jia and Mark Harman. 2008. Constructing Subtle Faults Using Higher Order Mutation Testing. In 2008 Eighth IEEE International Working
Conference on Source Code Analysis and Manipulation. IEEE, Beijing, China, 249-258. doi:10.1109/SCAM.2008.36

Yue Jia and Mark Harman. 2009. Higher Order Mutation Testing. Information and Software Technology 51, 10 (Oct. 2009), 1379-1393. doi:10.1016/j.
infsof.2009.04.016

Yue Jia and Mark Harman. 2011. An Analysis and Survey of the Development of Mutation Testing. IEEE Transactions on Software Engineering 37, 5
(Sept. 2011), 649-678. doi:10.1109/TSE.2010.62

René Just. 2014. The Major Mutation Framework: Efficient and Scalable Mutation Analysis for Java. In Proceedings of the 2014 International Symposium
on Software Testing and Analysis (ISSTA 2014). Association for Computing Machinery, New York, NY, USA, 433-436. doi:10.1145/2610384.2628053

René Just, Michael D. Ernst, and Gordon Fraser. 2014. Efficient Mutation Analysis by Propagating and Partitioning Infected Execution States. In
Proceedings of the 2014 International Symposium on Software Testing and Analysis (ISSTA 2014). Association for Computing Machinery, New York, NY,
USA, 315-326. doi:10.1145/2610384.2610388

René Just, Gregory M. Kapfhammer, and Franz Schweiggert. 2011. Using Conditional Mutation to Increase the Efficiency of Mutation Analysis. In
Proceedings of the 6th International Workshop on Automation of Software Test (AST ’11). Association for Computing Machinery, New York, NY, USA,
50-56. d0i:10.1145/1982595.1982606

Richard M. Karp. 1972. Reducibility among Combinatorial Problems. In Complexity of Computer Computations: Proceedings of a Symposium on
the Complexity of Computer Computations, Held March 20-22, 1972, at the IBM Thomas J. Watson Research Center, Yorktown Heights, New York,
and Sponsored by the Office of Naval Research, Mathematics Program, IBM World Trade Corporation, and the IBM Research Mathematical Sciences
Department, Raymond E. Miller, James W. Thatcher, and Jean D. Bohlinger (Eds.). Springer US, Boston, MA, 85-103. doi:10.1007/978-1-4684-2001-2_9
K. N. King and A. Jefferson Offutt. 1991. A Fortran Language System for Mutation-based Software Testing. Software: Practice and Experience 21, 7
(1991), 685-718. doi:10.1002/spe. 4380210704

Bob Kurtz, Paul Ammann, Marcio E. Delamaro, Jeff Offutt, and Lin Deng. 2014. Mutant Subsumption Graphs. In 2014 IEEE Seventh International
Conference on Software Testing, Verification and Validation Workshops. IEEE, Cleveland, OH, USA, 176-185. doi:10.1109/ICSTW.2014.20

Zalan Lévai. 2025. mutest-rs. https://github.com/zalanlevai/mutest-rs

Zalan Lévai. 2025. Replication package. https://github.com/rust-mutation-testing/publications#mutation-batching-article-rep-pak

Zalan Lévai and Phil McMinn. 2023. Batching Non-Conflicting Mutations for Efficient, Safe, Parallel Mutation Analysis in Rust. In 2023 IEEE
Conference on Software Testing, Verification and Validation (ICST). IEEE, New York, NY, USA, 49-59. doi:10.1109/ICST57152.2023.00014

Richard J. Lipton. 1971. Fault Diagnosis of Computer Programs. Student. Carnegie Mellon Univ., Tech. Rep.

Yiling Lou, Dan Hao, and Lu Zhang. 2015. Mutation-Based Test-Case Prioritization in Software Evolution. In 2015 IEEE 26th International Symposium
on Software Reliability Engineering (ISSRE). IEEE, Gaithersbury, MD, USA, 46-57. doi:10.1109/ISSRE.2015.7381798

Pedro Reales Mateo and Macario Polo Usaola. 2015. Reducing Mutation Costs through Uncovered Mutants. Software Testing, Verification and
Reliability 25, 5-7 (2015), 464-489. do0i:10.1002/stvr.1534

Seokhyeon Moon, Yunho Kim, Moonzoo Kim, and Shin Yoo. 2014. Ask the Mutants: Mutating Faulty Programs for Fault Localization. In Verification
and Validation 2014 IEEE Seventh International Conference on Software Testing. IEEE, Cleveland, OH, USA, 153-162. doi:10.1109/ICST.2014.28

A. Jefferson Offutt and Roland H. Untch. 2001. Mutation 2000: Uniting the Orthogonal. In Mutation Testing for the New Century, W. Eric Wong (Ed.).
Springer US, Boston, MA, USA, 34-44. doi:10.1007/978-1-4757-5939-6_7

Mike Papadakis, Yue Jia, Mark Harman, and Yves Le Traon. 2015. Trivial Compiler Equivalence: A Large Scale Empirical Study of a Simple, Fast
and Effective Equivalent Mutant Detection Technique. In 2015 IEEE/ACM 37th IEEE International Conference on Software Engineering, Vol. 1. IEEE,
Florence, Italy, 936-946. doi:10.1109/ICSE.2015.103

Mike Papadakis and Yves Le Traon. 2015. Metallaxis-FL: Mutation-Based Fault Localization. Software Testing, Verification and Reliability 25, 5-7
(2015), 605-628. doi:10.1002/stvr.1509

Owain Parry, Gregory M. Kapfhammer, Michael Hilton, and Phil McMinn. 2021. A Survey of Flaky Tests. ACM Transactions on Software Engineering
and Methodology 31, 1 (Oct. 2021), 17:1-17:74. doi:10.1145/3476105

Alessandro Viola Pizzoleto, Fabiano Cutigi Ferrari, Jeff Offutt, Leo Fernandes, and Marcio Ribeiro. 2019. A Systematic Literature Review of Techniques
and Metrics to Reduce the Cost of Mutation Testing. Journal of Systems and Software 157 (Nov. 2019), 110388. do0i:10.1016/j.js5.2019.07.100

Martin Pool. 2025. cargo-mutants. https://github.com/sourcefrog/cargo-mutants

David Schuler and Andreas Zeller. 2009. Javalanche: Efficient Mutation Testing for Java. In Proceedings of the 7th Joint Meeting of the European
Software Engineering Conference and the ACM SIGSOFT Symposium on The Foundations of Software Engineering (ESEC/FSE ’09). Association for
Computing Machinery, New York, NY, USA, 297-298. d0i:10.1145/1595696.1595750

Mayank Sharma, Pingshi Yu, and Alastair F. Donaldson. 2023. RustSmith: Random Differential Compiler Testing for Rust. In Proceedings of the 32nd
ACM SIGSOFT International Symposium on Software Testing and Analysis (ISSTA 2023). Association for Computing Machinery, New York, NY, USA,
1483-1486. doi:10.1145/3597926.3604919

Manuscript submitted to ACM

https://doi.org/10.1109/ICST.2019.00021
https://github.com/falk-hueffner/clique-cover
https://doi.org/10.1109/SCAM.2008.36
https://doi.org/10.1016/j.infsof.2009.04.016
https://doi.org/10.1016/j.infsof.2009.04.016
https://doi.org/10.1109/TSE.2010.62
https://doi.org/10.1145/2610384.2628053
https://doi.org/10.1145/2610384.2610388
https://doi.org/10.1145/1982595.1982606
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1002/spe.4380210704
https://doi.org/10.1109/ICSTW.2014.20
https://github.com/zalanlevai/mutest-rs
https://github.com/rust-mutation-testing/publications#mutation-batching-article-rep-pak
https://doi.org/10.1109/ICST57152.2023.00014
https://doi.org/10.1109/ISSRE.2015.7381798
https://doi.org/10.1002/stvr.1534
https://doi.org/10.1109/ICST.2014.28
https://doi.org/10.1007/978-1-4757-5939-6_7
https://doi.org/10.1109/ICSE.2015.103
https://doi.org/10.1002/stvr.1509
https://doi.org/10.1145/3476105
https://doi.org/10.1016/j.jss.2019.07.100
https://github.com/sourcefrog/cargo-mutants
https://doi.org/10.1145/1595696.1595750
https://doi.org/10.1145/3597926.3604919

A Comprehensive Analysis of Batching Algorithms for Efficient, Safe, Parallel Mutation Analysis in Rust 53

[49]

[50]

(51

[52]
(53]
[54]
[55]
[56]
[57]
[58]

[59]

[60]

[61]

[62]

Donghwan Shin, Shin Yoo, Mike Papadakis, and Doo-Hwan Bae. 2019. Empirical Evaluation of Mutation-Based Test Case Prioritization Techniques.
Software Testing, Verification and Reliability 29, 1-2 (2019), e1695. doi:10.1002/stvr.1695

Chang-ai Sun, Jingting Jia, Huai Liu, and Xiangyu Zhang. 2018. A Lightweight Program Dependence Based Approach to Concurrent Mutation
Analysis. In 2018 IEEE 42nd Annual Computer Software and Applications Conference (COMPSAC), Vol. 01. IEEE, Tokyo, Japan, 116-125. doi:10.1109/
COMPSAC.2018.00023

Yoshiki Takashima, Ruben Martins, Limin Jia, and Corina S. Pasareanu. 2021. SyRust: Automatic Testing of Rust Libraries with Semantic-Aware
Program Synthesis. In Proceedings of the 42nd ACM SIGPLAN International Conference on Programming Language Design and Implementation (PLDI
2021). Association for Computing Machinery, New York, NY, USA, 899-913. doi:10.1145/3453483.3454084

The Open Source Security Foundation. 2022. Criticality Score. https://commondatastorage.googleapis.com/ossf-criticality-score/index.html

The Rust Project Developers. 2024. Rust: Production users. https://www.rust-lang.org/production/users

The Rust Project Developers. 2025. Guide to rustc Development: Monomorphization. https://rustc-dev-guide.rust-lang.org/backend/monomorph.
html

The Rust Project Developers. 2025. Miri. https://github.com/rust-lang/miri

The Rust Project Developers. 2025. The Rustonomicon: How Safe and Unsafe Interact. https://doc.rust-lang.org/nomicon/safe-unsafe-meaning.html
Susumu Tokumoto, Hiroaki Yoshida, Kazunori Sakamoto, and Shinichi Honiden. 2016. MuVM: Higher Order Mutation Analysis Virtual Machine for C.
In 2016 IEEE International Conference on Software Testing, Verification and Validation (ICST). IEEE, Chicago, IL, USA, 320-329. doi:10.1109/ICST.2016.18
Roland H. Untch. 1992. Mutation-Based Software Testing Using Program Schemata. In Proceedings of the 30th Annual Southeast Regional Conference
(ACM-SE 30). Association for Computing Machinery, New York, NY, USA, 285-291. doi:10.1145/503720.503749

Roland H. Untch. 1995. Schema-Based Mutation Analysis: A New Test Data Adequacy Assessment Method. Ph. D. Dissertation. Clemson University,
Clemson, SC, USA. https://www.proquest.com/docview/304173339/abstract/F975B52F62924781PQ/1

Roland H. Untch, A. Jefferson Offutt, and Mary Jean Harrold. 1993. Mutation Analysis Using Mutant Schemata. In Proceedings of the 1993 ACM
SIGSOFT International Symposium on Software Testing and Analysis (ISSTA *93). Association for Computing Machinery, New York, NY, USA, 139-148.
doi:10.1145/154183.154265

Sten Vercammen, Serge Demeyer, Markus Borg, Niklas Pettersson, and Gérel Hedin. 2024. Mutation Testing Optimisations Using the Clang
Front-End. Software Testing, Verification and Reliability 34, 1 (2024), e1865. doi:10.1002/stvr.1865

Lingming Zhang, Darko Marinov, and Sarfraz Khurshid. 2013. Faster Mutation Testing Inspired by Test Prioritization and Reduction. In Proceedings
of the 2013 International Symposium on Software Testing and Analysis (ISSTA 2013). Association for Computing Machinery, New York, NY, USA,
235-245. doi:10.1145/2483760.2483782

Manuscript submitted to ACM

https://doi.org/10.1002/stvr.1695
https://doi.org/10.1109/COMPSAC.2018.00023
https://doi.org/10.1109/COMPSAC.2018.00023
https://doi.org/10.1145/3453483.3454084
https://commondatastorage.googleapis.com/ossf-criticality-score/index.html
https://www.rust-lang.org/production/users
https://rustc-dev-guide.rust-lang.org/backend/monomorph.html
https://rustc-dev-guide.rust-lang.org/backend/monomorph.html
https://github.com/rust-lang/miri
https://doc.rust-lang.org/nomicon/safe-unsafe-meaning.html
https://doi.org/10.1109/ICST.2016.18
https://doi.org/10.1145/503720.503749
https://www.proquest.com/docview/304173339/abstract/F975B52F62924781PQ/1
https://doi.org/10.1145/154183.154265
https://doi.org/10.1002/stvr.1865
https://doi.org/10.1145/2483760.2483782

	Abstract
	1 Introduction
	2 Background
	2.1 Mutation Analysis
	2.2 The Rust Programming Language — Testing, and Mutation Analysis
	2.3 Considerations Towards Implementing Mutation Analysis for Rust

	3 Approach
	3.1 Overview
	3.2 Mutation Operators for Rust
	3.3 Analyzing Function Calls as a Pre-Step to Batching
	3.4 Mutation Batching
	3.5 Mutation Safety — Avoiding the Spread of Unsafety
	3.6 Parallelized Test Evaluation

	4 Evaluation
	4.1 Subjects
	4.2 Methodology
	4.3 Threats to Validity

	5 Results
	6 Discussion
	6.1 Examining and Analyzing the Mutation Compatibility Graphs

	7 Related Work
	7.1 Applying Mutation Analysis to Rust Programs
	7.2 Existing Approaches and Tools for Mutation Analysis
	7.3 Reducing the Cost of Mutation Analysis through Test Case Prioritization
	7.4 Reducing the Cost of Mutation Analysis through Parallelism
	7.5 Mathematical Theory behind Mutation Batching

	8 Conclusions and Future Work
	References

