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Effectively Incorporating Expert Knowledge in
Automated Software Remodularisation

Mathew Hall, Neil Walkinshaw, Phil McMinn

Abstract—Remodularising the components of a software system is challenging: sound design principles (e.g., coupling and cohesion)
need to be balanced against developer intuition of which entities conceptually belong together. Despite this, automated approaches to
remodularisation tend to ignore domain knowledge, leading to results that can be nonsensical to developers. Nevertheless, suppling
such knowledge is a potentially burdensome task to perform manually. A lot information may need to be specified, particularly for large
systems. Addressing these concerns, we propose the SUMO (SUpervised reMOdularisation) approach. SUMO is a technique that
aims to leverage a small subset of domain knowledge about a system to produce a remodularisation that will be acceptable to a
developer. With SUMO, developers refine a modularisation by iteratively supplying corrections. These corrections constrain the type of
remodularisation eventually required, enabling SUMO to dramatically reduce the solution space. This in turn reduces the amount of
feedback the developer needs to supply. We perform a comprehensive systematic evaluation using 100 real world subject systems.
Our results show that SUMO guarantees convergence on a target remodularisation with a tractable amount of user interaction.

Index Terms—software remodularisation, domain knowledge, set partitioning
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1 INTRODUCTION

R EMODULARISATION remains a difficult and unsolved
problem in software maintenance. As software evolves

to meet new requirements, its design invariably deteriorates,
making it harder to maintain. To moderate this deteriora-
tion, systems can be remodularised so that their components
are configured in a way that enables, for example, compre-
hension [1] or performance [2]. The task of restructuring a
system by hand tends to be prohibitively time consuming
and resource intensive [3].

Existing remodularisation algorithms have sought to
produce improved designs automatically, but have been
unable to do so satisfactorily [3], [4]. Automated algorithms
have focused on using techniques such as clustering or
formal concept analysis [5], [6], [7], [8], [9], [10], [11] to pro-
duce groupings for software components. However, these
techniques formulate modules by focussing on the source
code alone, and consequently tend to produce solutions that
do not make sense from a conceptual point of view [3], [4],
[12]. For example, an industrial study [3] of the popular
Bunch remodularisation tool [11] found that Bunch’s results
were “non-acceptable for the domain experts” for the task
of reorganising software components for a large medical
system, consisting of several million lines of code.

These limitations have led to the realisation that software
remodularisation techniques must necessarily involve a de-
gree of input from an expert. Accordingly, several variants
of existing modularisation algorithms have been developed,
which seek to accommodate this need [11], [13]. However,
they tend to be limited in practical terms as they either (a)
interrogate the user for feedback in a way that renders them

• M. Hall and P. McMinn are with the Department of Computer Sci-
ence, University of Sheffield, UK. N. Walkinshaw is with the De-
partment of Computer Science, University of Leicester, UK. E-mail:
mathew.hall@sheffield.ac.uk. This research was funded by the EPSRC
Grant EP/F065825/1.

prohibitively expensive, or (b) fail to provide guidance to
the user, leaving them with no indication of how much input
is necessary or of value to the underlying algorithm.

In order to address these problems, we introduce
the SUMO (SUpervised reMOdularisation) technique [14].
SUMO is based on the observation that existing general pur-
pose clustering algorithms can be improved with relatively
little domain knowledge [15]. Remodularisation algorithms
often produce partial solutions [3], [4], but given a set of
corrections, these partial solutions may be transformed into
desired modularisations. For example, given a proposed
clustering for a data processing framework, a developer
might make an observation that contradicts the current
proposed solution, such as “Classes XMLParser and Abstract-
Parser belong together, but neither should be in the same module
as DataVisualizer.” SUMO provides a mechanism by which to
enable the developer to feed-in this corrective information in
the form of specific relationships, for example “XMLParser
does not belong with DataVisualizer”.

SUMO treats the problem of software remodularisation
as a set partitioning problem, where the elements of the
set are the entities of the system, and the partitions are the
modules. SUMO then converts corrective feedback from the
user into constraints on the possible set partitions, which
can be solved using a constraint solver (a tool that searches
for assignments for a set of variables subject to constraints
on their values). This not only guarantees that the user’s
preferences are respected, but also significantly limits the
amount of input required on the part of the user. Unlike
other approaches [16], SUMO does not require some notion-
ally “complete” set of inputs to produce a result, but will
continuously maintain a “hypothesis” that can be shown
to the user, and which is adapted as new corrections are
provided.

We conduct an analysis of the theoretical limits on cor-
rective feedback that SUMO may require, and examine its
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performance compared to these bounds on a benchmark of
100 subject systems. We find that in all applicable cases (92),
SUMO is guaranteed to converge on a target modularisation
using a tractable amount of domain knowledge.

This work builds upon some preliminary research [14]
that investigated the feasibility of the approach. The early
version of the approach did however suffer from the signifi-
cant limitation that it was very difficult to use in an iterative
way; every time a user supplied some feedback, they could
potentially be faced with a completely new proposed set of
modules. This lack of continuity rendered the approach very
difficult to use in practice. There was also no proposition of
how the proposed modularisations should be presented to
a user, and only a limited empirical study.

In this paper we present a revised version of SUMO
that explicitly supports continuity between iterations by
incorporating previous solutions where possible. We have
implemented a graphical interface to shows how inputs can
be solicited from an end-user. We have also substantially
extended our empirical analysis to account for a much larger
range of subject systems.

The contributions of this paper are therefore as follows:
1) The SUpervised reMOdularisation (SUMO) algorithm,

which views the remodularisation problem as one of set
partitioning (Section 3). SUMO refines a modularisation
by soliciting feedback iteratively from a domain expert.
This feedback is formulated as a series of constraints
over a set partition, which are solved by a constraint
solver (Sections 4.1–4.2).

2) A theoretical analysis of the SUMO algorithm, detailing
best and worst case limits on the quantity of informa-
tion required to guarantee convergence (Section 4.3).

3) An empirical evaluation of SUMO with respect to a di-
verse set of software systems, indicating that in practice
the approach tends to require a reasonably low amount
of input to converge to a suitable remodularisation.
(Section 5).

The rest of the paper begins with further background
to the problem of automatic software remodularisation, and
the need to incorporate domain knowledge. In Section 3 we
characterise software remodularisation as a set partitioning
problem, showing how the difficulty of the problem can be
reduced given the availability of additional constraints. Sec-
tion 4 then introduces the SUMO algorithm, which leverages
set partitioning and additional user-specified constraints to
converge on desirable modularisations. We give theoretical
bounds on SUMO’s performance, and describe its imple-
mentation into a tool. In Section 5 we describe an empirical
evaluation of SUMO on 100 real world software systems,
drawn from SourceForge. We then discuss the SUMO ap-
proach in terms of existing work in Section 6. Following
this we conclude the paper in Section 7 with possibilities for
further avenues of research.

2 BACKGROUND

In this section, we briefly discuss the rationale for soft-
ware remodularisation. We then present an overview of the
existing research into automating the approach, covering
techniques that are partially or fully automated. For both

families of approaches we provide some of the key barriers
that have prevented them from being adopted in practice.

2.1 Software Remodularisation

Software systems are conventionally modular [1]; core ele-
ments (classes or other components) tend to be grouped to-
gether according to their common functionality or purpose
within the system. As software evolves, elements within the
system are repurposed to address changes in requirements
and the core purpose of different modules can become di-
luted, making the system harder to understand as a whole.

Remodularisation is the challenge of reversing this dete-
rioration by reorganising the software to improve its modu-
lar structure. The number of possible re-organisations for
a system is huge, and developing a solution can require
an intractable amount of effort and knowledge from the
developer.

2.2 Automated and Semi-Automated Solutions

Numerous automated techniques have been developed that
seek to minimize the manual effort involved in remodulari-
sation. These can be broadly categorised into techniques that
are fully automated and require no user intervention (i.e.,
unsupervised techniques), and techniques that incorporate
a degree of input from a user.

2.2.1 Automated Approaches
Unsupervised techniques operate by expressing the remod-
ularisation task as a generic clustering problem. Functions
are produced that can measure the relative “distance” be-
tween two classes, for example in terms of the number
of interdependencies, or the similarities of their identifiers.
Once these are in place, clustering algorithms can be applied
to propose new clusters (i.e., modules).

Over the past 30 years, numerous such clustering-based
approaches have been proposed [5], [6], [7], [9], [10], [11],
[17], [18]. One of the most prominent approaches is the
Bunch tool [11], which uses a genetic algorithm to derive
clusters that optimise the MQ measure [11] — a function
that measures the ratio of inter-module and intra-module
dependencies (i.e., coupling and cohesion).

Unfortunately, current automated approaches fail to pro-
duce satisfactory results [4]; although a grouping of ele-
ments might make sense from a design perspective (e.g.,
being heavily interdependent), it might not make any sense
from the perspective of the domain model [3], [19].

2.2.2 Semi-Automated Approaches
To attenuate the inaccuracy of fully automated approaches,
some techniques have been adapted to allow for a degree of
manual intervention. The amount of input required can vary
substantially from technique to technique. Some approaches
are intrinsically reliant upon the user; they compute a “do-
main” of possible modularisations, but rely on the user to
choose the final set of modules. Others are more lightweight;
they will start from a proposed set of modules, but rely on
the user to provide appropriate corrections.

As an example of the former (more heavyweight) fam-
ily of techniques, several approaches that are based upon
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Formal Concept Analysis (FCA) have been proposed [7],
[8]. Using this approach, the user identifies again a set of
features (e.g., identifiers or type-usages), and every file or
class to be modularised is categorised according to these
attributes. As a result, FCA computes a “concept lattice”,
where each node in the lattice represents a potential module.
The user is then required to select the nodes to yield the final
remodularisation.

There are numerous examples of approaches that per-
mit a more light-weight form of feedback from the user.
Users might be permitted to tune the parameters of the
algorithm [10], [11], [13], [20], [21], [22]. Other approaches
allow more fine-grained control over the algorithm’s deci-
sions [11], [13] — that is, by providing hints to constrain the
range of solutions that it can produce.

Rigi [20] provides an editor for a modularisation that
presents an example of the parameter-tuning approach. It
allows the user to manually reorganise the system, but also
provides component identification through the application
of graph-based heuristics. The user can select which ap-
proach to apply and the appropriate weights. Bunch [11]
also allows the user to identify components that may be
problematic for the optimisation algorithm such as libraries,
and commonly used components.

Bunch [11] and the more recent Interactive Genetic Al-
gorithm (IGA) [16] are examples of techniques that en-
ables more direct user interaction. Both enable the user to
interact directly with the underlying genetic algorithm as
it performs the clustering. Similarly, Arch [13] allows the
user to confirm or reject merges suggested by a hierarchical
clustering algorithm.

Glorie et al. studied the use of Bunch and FCA-based ap-
proaches in an industrial environment [3]. They found that
the approaches they studied were unable to appropriately
accommodate the feedback provided by users, and that the
approaches were too effort-consuming to be practical.

One of their key findings was that the tools they chose
were difficult to use because they were difficult to control.
The process of converging on a final modularisation was
not gradual and refinement-driven. Every iteration, the al-
gorithms would propose entirely new solutions that were
incorrect in unanticipated ways. They made two recom-
mendations for the combination of module clustering and
domain knowledge:

“When domain knowledge is available and you want to
use that domain knowledge to define a rough initial clus-
tering, make sure that your clustering tool (1) supports
a pre-defined starting solution and (2) does not tear this
initial clustering apart.”

The problems mentioned by Glorie et al. highlight a big-
ger issue that still besets semi-automated remodularisation
approaches. Approaches need to provide users with a fa-
miliar frame of reference against which to provide feedback
(i.e., an existing, recognised modularisation) [19]. Proposed
remodularisations need to accommodate user feedback, but
need to retain a degree of familiarity so as not to disorien-
tate the user. Perhaps most importantly, they need to offer
some form of guarantee that the technique will eventually
converge on a solution that suits the user.

Addressing these concerns, we present SUMO, which al-

lows users to iteratively refine a modularisation of a system.
SUMO recharacterises the problem of remodularistation as
a set partitioning problem, which we introduce in the next
section.

3 SOFTWARE REMODULARISATION AS A SET
PARTITION PROBLEM

The purpose of recasting the problem of software remod-
ularisation into one of set partitioning is twofold: Firstly it
illustrates the scale of the remodularisation challenge and
the difficulty faced by automated and semi-automated tech-
niques. Secondly, it presents a simple lattice-based repre-
sentation of the space of possible remodularisations, which
provides the means to incorporate developer preferences in
the remodularisation process, and forms the basis of the
SUMO approach presented in this paper.

Given a set of software entities E (which may be files,
classes, or other entities [3]), the objective of a software
remodularisation process is to identify a suitable grouping
of these entities into modular components. This is equiv-
alent to the set partitioning problem, where a set of such
groupings is referred to as a partition:

Definition 1 (Partition). A partition of some set E involves
a set M of components (modules) {M1, . . . ,Mm} such that
E =

⋃
{M1, . . . ,Mm}, and

⋂
{M1, . . . ,Mm} = ∅, where

1 ≤ m ≤ |E|.

For a set of software elements, the search space includes
all possible partitions. The number of possible partitions
for a set of size n is given by the Bell number [23] of n.
This number grows extremely steeply, making even small
partitioning problems intractable; for example, for n = 4,
there are 15 possible partitions. This number grows to 52
for n = 5, and 203 for n = 6. One of the tasks in Glorie
et al.’s industrial case study [3] involves the remodulari-
sation of 109 entities. Accordingly, there are 1.096 × 10129

possible partitions. As a system grows, so does the number
of possible configurations of its components, compounding
the difficulty in remodularising it by hand.

Our approach exploits the fact that the search space of
the possible partitions (solutions) is governed by an intrinsic
partial order. A solution that includes all elements in one
module is more general (or coarser) than a solution that
divides the elements into subgroups. This partition refinement
relation forms a partition lattice over the possible solutions.

Definition 2 (Partition Lattice). In a partition lattice, >
denotes the most general partition where all of the elements belong
to a single set, and ⊥ the most specific partition where each
element belongs in its own set. The remaining partitions are
ordered according to the partition refinement relation �. For
any pair of partitions P1 and P2, P1 � P2 if for every set a ∈ P1,
there exists b ∈ P2 such that a ⊆ b.

Finding a suitable software modularisation can be inter-
preted as identifying a suitable node in the partition lattice.
The developer will be aware of some constraints (informed
by domain knowledge of the elements, or opinion about
the system architecture) that ought to hold between pairs
of elements; that is, certain elements should belong in the
same module, or should be kept apart. This knowledge is
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Fig. 1. Example of a partition lattice for four elements (a, b, c, and d).
Each node represents a different partitioning.

held in two sets, Rel+ and Rel−, respectively. The challenge
is to find a node in the lattice (i.e., a modularisation) that
is consistent with the developer’s conceptual view of the
system (i.e., the information in Rel+ and Rel−).

Definition 3 (Consistency). The developer’s preferences are
denoted as the sets Rel+ and Rel− (the sets of relations indicating
that elements belong together or apart respectively). A partition
of M is consistent with Rel+ and Rel− if for every relation
{i, j} ∈ Rel+, there exists a module M ∈ M such that
{i, j} ⊆ M . Conversely, for every relation {k, l} ∈ Rel− there
should exist no module M ∈M, where {k, l} ⊆M .

The set-theoretical illustration of the software modular-
isation problem enables us to cast the search for a suitable
modularisation as a traversal of the partition lattice of pos-
sible solutions. Although the theoretical size of this lattice
is huge, the number of solutions within the lattice that are
consistent with Rel+ and Rel− can amount to a relatively
small fraction.

Figure 1 illustrates the partition lattice for four elements.
On the face of it, for just four elements there are 15 possible
solutions. It shows how the number of solutions that con-
forms to a given relationship constitute a relatively small
proportion of the space of possible modularisations. For the
example in Figure 1 and the two relations Rel+ = {{a, b}}
and Rel− = {{a, d}}, only three of the fifteen possible
solutions are consistent (highlighted with bold borders).

This property – that the supply of a relatively small
amount of external information can substantially reduce
the search space – forms the basis of our SUMO approach,
which will be presented in full in Section 4. Naturally, Figure
1 is merely a conceptual illustration of the technique. The
number and nature of constraints required, and the extent
to which the search space is reduced, will be revisited in full
in the evaluation.

In Machine Learning terminology, the sub-lattice of so-
lutions that are consistent with the input data (in our case
Rel+ and Rel−) is referred to as a version space [24].

Definition 4 (Version Space). A version space
VS (Rel+, Rel−) represents the subset of solutions that
conform to Rel+ and Rel−. It can be defined in terms of
two boundary sets of solutions: the set of most general (or
coarse) solutions VSG and the set of most specific solutions
VSS . Formally, VSG = {p|(∀q ∈ VS (Rel+, Rel−))q � p}.
Similarly, VSS = {p|(∀q ∈ VS (Rel+, Rel−))p � q}. The
lattice of solutions in between VSG and VSS represents those
solutions that can be obtained by merging modules in VSS or
splitting modules VSG in such a way that remains consistent
with Rel+ and Rel−.

By re-characterising the search for a suitable modular-
isation in these terms, we can identify the “ideal” modu-
larisation (consistent with Rel+ and Rel−) if the version
space contains only one solution. In other words, the two
boundary sets VSG and VSS are equal and contain one
element.

The question of what constitutes an “ideal” modulari-
sation is ultimately subjective; different users could have
differing opinions on which elements do or do not belong
together. The next section introduces the SUMO algorithm,
which allows a user to iteratively feed their opinions and
domain knowledge (Rel+ and Rel−) into the remodularisa-
tion process. Using a constraint solver to produce a solution
M ∈ VS (Rel+, Rel−), SUMO is guaranteed to be consistent
with the user’s corrective feedback and eventually converge
on the user’s ideal solution. Although it does not use cluster-
ing techniques itself, SUMO can use outputs from existing
tools, such as Bunch [11], as a starting point for refinement.

4 THE SUMO APPROACH

The SUMO approach works by presenting hypothesised
modularisations to the user, who will agree with some
relations, and disagree with others. The developer’s correc-
tions can be integrated into the modularisation process, in
turn leading to a new modularisation, which can again be
refined. This forms a “virtuous cycle” of conjectures and
refutations [25], where each new hypothesis results in fur-
ther corrections, gradually aggregating the requisite domain
knowledge (in the form of constraints) that is required to
produce a modularisation that the developer is satisfied
with.

This section provides a basic overview of the algorithm,
followed by a more in-depth analysis of the constraint-
solving part that identifies the hypothesis modularisations.
This is followed by an analysis of the worst-case perfor-
mance of the algorithm, and a brief overview of our imple-
mentation of the SUMO algorithm into a tool with a GUI.

4.1 SUMO Algorithm

Figure 2 summarises the steps of the SUMO algorithm,
which we elaborate in more detail in Algorithm 1. The
algorithm relies on two types of information that influences
the solutions it generates:

1) An initial modularisation, Mod
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Bunch∗

Mod SUMO H

UserNewPos, NewNeg

Clustering

solve

identifyCorrections

Fig. 2. The SUMO process: starting with an initial modularisation Mod,
SUMO repeatedly presents the hypothesised solution H and refines
it according to relations supplied by the user. In this example Bunch
(highlighted by the asterisk) generates the starting point; in practice
other remodularisation algorithms can be used.

ALGORITHM 1: SUMO algorithm
Input: Mod
Data: Rel−,Rel+,solved,H ,NewPos,NewNeg
Uses: solve(X,Y, Z), identifyCorrections(X)
Result: H
Rel+ ← ∅;
Rel− ← ∅;
solved← false;
H ←Mod;
while (¬solved) do

(NewPos,NewNeg)← identifyCorrections(H);
if (NewPos ∪NewNeg = ∅) then

solved← true;
else

Rel+ ← Rel+ ∪NewPos;
Rel− ← Rel− ∪NewNeg;
H ← solve(Rel+, Rel−, H);

end
end
return H

2) Corrections Rel+ and Rel−

The algorithm begins with an initial modularisation
Mod , which may be the current package structure, or a
proposed modularisation from a tool such as Bunch [11].
The algorithm builds on this solution by iteratively soliciting
feedback from a user and applying a constraint solver to
produce new solutions.

The first most significant part of the main loop is the
call to the identifyCorrections function, which presents a
hypothesised modularisation H to the user, and allows them
to supply the positive (two elements should be together in a
module) and negative (two elements shouldn’t be together)
relations belonging to the sets Rel+ and Rel− respectively.
For instance, these corrections could be to better align the
modularisation with their domain knowledge, or for archi-
tectural or design reasons (e.g., to place two classes together
that play a similar role in a design pattern).

Figure 3 shows how such relations can be elicited from
the user by presenting the hypothesised solution through
a wireframe GUI that allows the user to add in positive
and negative information. Figure 3a shows a wireframe
in which the hypothesised modularisation H is shown to
the user. Figure 3b shows how the user may add relations
by creating edges between elements in the user interface,

AbstractParserDataVisualizer

HTMLParser

XMLParser

JSONParser

(a) Initial set of modules

AbstractParserDataVisualizer

HTMLParser

XMLParser

JSONParser

(b) Following developer-supplied domain knowledge

XMLParser

AbstractParserDataVisualizer

JSONParser

HTMLParser

(c) Proposed remodularisation, consistent with the
supplied domain knowledge

Fig. 3. Eliciting relations from the user with SUMO. Solid lines indicate
positive information, dashed lines indicate negative relations

which are added to the Rel+ and Rel− sets (solid lines
indicate positive information, dashed lines indicate negative
relations). Figure 3c then shows a solution revised to take
account of this feedback, presented in the next iteration of
the loop.

Following feedback supplied by the user through the
identifyCorrections function, the solve function locates a
partition that is consistent with the new set of constraints,
retaining as much of the previous solution H (or input
modularisation Mod ) as possible. We describe how the solve
function computes a partition for a given set of constraints
in the next section.

4.2 Constraint Solving in SUMO

Producing a partition of elements that is consistent with the
relations in Rel+ and Rel− is a constraint satisfaction prob-
lem that existing solvers can provide solutions for. Given a
set of elements E = {e0, . . . , en} in a system, we represent
each distinct module to which they potentially belong as
a unique number drawn from the set N = [1 : n]. The
solver must then find a set of assignments (i.e., a partition)
p : E → N, where each element in E is mapped to a number
that denotes its module. The constraints on the possible
mappings of p are contained within Rel+ and Rel−.

A pair {ei, ej} in Rel+ implies p(ei) = p(ej). Similarly,
the presence of a pair {ei, ej} in Rel− implies that p(ei) 6=
p(ej). Figure 4 shows an example in which the elements
of the set E are to be remodularised subject to the given
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Elements:
E = {XMLParser , JSONParser

HTMLParser ,DataVisualizer
AbstractParser}

Variables:
XMLParser = [1:5]
JSONParser = [1:5]
HTMLParser = [1:5]
AbstractParser = [1:5]
DataVisualizer = [1:5]

Relations:
Rel+ = {{XMLParser ,AbstractParser},

{XMLParser , JSONParser}}
Rel− = {{AbstractParser ,DataVisualizer}}

Constraints:
XMLParser == AbstractParser
XMLParser == JSONParser
AbstractParser != DataVisualizer

Fig. 4. Representing remodularisation as a constraint program. Ele-
ments (left) become variables, and user-supplied relations (right) are
translated into constraints.

relations in Rel+ and Rel−. The lower portion of the figure
shows how these can be translated into a constraint program
that can be solved by existing constraint solvers.

The constraint solver will produce an assignment for the
elements that is consistent with Rel+ and Rel−. For the ex-
ample, the assignments XMLParser = 1, JSONParser = 1,
HTMLParser = 1, AbstractParser = 1, DataVisualizer = 2
satisfy the constraints, and is the solution shown visually by
Figure 3c.

The user may supply constraints that are contradictory. If
this occurs, the solver will fail, and identifyCorrections will
indicate the problem to the user who must then remove the
contradicting relations before the SUMO loop can continue.

A key challenge is to enable SUMO to efficiently converge
on the correct result — that is, to minimize the number of
elements in Rel+ and Rel− required from the developer.
If the constraint solver picks particularly poor solutions
that require a lot of corrections from the developer, SUMO
will be too burdensome to use. As observed by Glorie et
al. [3], large segments of the modularisations produced by
automated tools such as Bunch can be “correct” according
to the developer. This implies that corrections should be
relatively localised.

Accordingly, SUMO biases the constraint solver to focus
on solutions that are as close as possible to previous so-
lutions. This takes place in the solve function. The search
for a solution by the constraint solver consists of changing
assignments until consistency is achieved with the relation-
ship set. Accordingly, to keep new solutions similar to old
solutions, we set the initial assignments to those of the
previous solution H (or Mod ).

Using the example in Figure 3a, the solver would
be first initialised such that DataVisualizer and
AbstractParser were set to, for example the value 2
indicating they are in the same package. Accordingly, the
remaining variables would be assigned to another value, 1

in this example. After the feedback is provided, the solver
will search for changes to these assignments resulting in a
consistent solution. In this example, as AbstractParser
is linked to XMLParser, the value of DataVisualizer
can be changed to 1 to move it without making any other
assignments.

Elements of the input without user-supplied constraints
will be unchanged by SUMO, and will reflect the solution as
proposed by the original clustering tool used to produce the
initial modularisation. Biasing the solver in this way allows
SUMO to build upon the good parts of the modularisation
Mod , generated by tools such as Bunch.

4.3 Theoretical Performance Bounds

In this section, we conduct an analysis of the bounds on
the efficiency of the SUMO algorithm. We consider (a) the
maximal number of relations that could be added to Rel+

and Rel−, and (b) the minimal number of relations required
to guarantee that SUMO produces the ideal result.

Theorem 1 (Maximum number of relations). For a system
with n elements the number of relations that can be provided is
bounded by n(n−1)

2 .

Proof. The maximum number of relations is given by the
number of distinct pairs of entities (there can only be one
relation for each distinct pair). This can be calculated by the
triangle number of the number of entities: n(n−1)

2 .
For example, suppose the five elements from the ex-

ample in Section 4.2 are to be clustered. A maximum of
5∗4
2 = 10 unique relations can be added between each

distinct pair of elements:
{AbstractParser,DataV isualizer} {DataV isualizer, JSONParser}
{AbstractParser,XMLParser} {DataV isualizer,HTMLParser}
{AbstractParser, JSONParser} {XMLParser, JSONParser}
{AbstractParser,HTMLParser} {XMLParser,HTMLParser}
{DataV isualizer,XMLParser} {JSONParser,HTMLParser}

The above bound is pathological. The only theoretical
circumstance that could require this amount of input to
guarantee a correct result is if the user opts to supply a
relation for all pairs of elements (and continues to do so
even if SUMO produces the desired result). In reality, the
developer will supply fewer relations than this maximum,
so we wish to determine the minimum number of relations
required to guarantee that SUMO will converge.

Theorem 2 (Minimal number of relations). For a system con-
taining n entities, the minimum number of positive and negative
relations required to guarantee convergence on a solution with m

modules is given by |Rel+| ≥ n−m and |Rel−| ≥ m(m−1)
2 .

Proof. We need to quantify the minimum number
of constraints between elements to guarantee that
solve(Rel+, Rel−) returns the correct result. Rel+ and Rel−

must be sufficiently complete that any relation not in the
union of these sets can be deduced (by exploiting the
transitivity of positive information).

Let G = (E,Rel+ ∪ Rel−) be a graph, of the entities
in the system (E) forming vertices, and the relation sets
forming labeled edges in G.
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Considering positive relations first, a positive edge must
exist between each element within a module. Positive edges
are transitive, so it is sufficient such that each module is
a connected component in G. For each module M ⊆ E,
at least |M | − 1 positive edges are needed to make it a
connected component. Summation over all m modules gives
|Rel+| = |E| −m. This solution, however, only guarantees
all of the elements will be grouped together, so one single
module satisfies this constraint. We must add negative
information to prevent this and guarantee convergence.
If a negative edge is added between a pair of elements
in different modules, which are connected, then it can be
inferred for all other pairs of elements between the modules.
Thus, only one edge is needed between each distinct pair of
modules: |Rel−| = m(m−1)

2 .

These bounds give insights into the value of the SUMO
approach. Although there is a combinatorial explosion in the
number of possible modularisations for n elements, these
all arise from the configuration of a much smaller number
of pair-wise relationships. SUMO exploits this observation;
by constraining certain relationships between elements, the
number of possible modularisations of the elements is re-
duced by several orders of magnitude.

Section 2 showed that for n elements the number of
possible partitions is the Bell number of n and that process-
ing these modularisations individually becomes intractable
very rapidly. However, this is not necessarily the case when
considering the sets of modularisations in terms of the
relationships between elements. With respect to the example
from Glorie et al. [3], for a system of 109 classes, there
are 1.096 ∗ 10129 possible partitions. However, using the
limit derived in Theorem 1, the number of interrelationships
between classes that would need to be specified to guarantee
an exact solution is bounded by the relatively much smaller
number 109∗108

2 = 5,886.
Theorem 2 shows that this number may be smaller

than this upper bound if there are fewer than n modules.
For example, if there are 18 target modules (the number
produced by Bunch in Glorie et al.’s paper), then |Rel+| =
109− 18 = 91 and |Rel−| ≥ 18∗17

2 = 153.

4.4 The SUMO Tool

Finally, we implemented the SUMO algorithm into an open
source tool which is available for download1, so that we
could observe real users interacting with it for the pur-
poses of informing our empirical study (as described in
Section 5.1). Written in Java, it uses the CHOCO constraint
solver [26] to identify possible modularisations from the
user’s constraints. It elicits constraints from the user through
a graphical interface, enabling them to link elements with
positive or negative relations and lock modules when they
have been correctly identified in the hypothesis solution.

SUMO takes as initial input a text file that contains all
of the entities that are to be modularised (usually source
code files), along with a preliminary modularisation. This
initial modularisation might simply constitute their current

1. Available at https://bitbucket.org/mathew hall/sumo/ and
https://bitbucket.org/mathew hall/sumo-api/

TABLE 1
Overview of the user testing sessions.

Sheffield Leicester
Participants 22 35
Subject JDOM Guava
Task Size (Classes) 57 122

organisation into directories, or it may be the output from
an unsupervised clustering tool, such as Bunch [11].

The tool presents modules as visual “blobs”, each of a
different colour, where elements that are thought to belong
together share the same blob. A screenshot of an interaction
with SUMO is shown in Figure 5. The visualisation, built
on the Prefuse [27] visualisation framework, is dynamic; the
user can interact by dragging modules around, and zooming
in and out. The zooming functionality becomes critical to
enable the navigation of larger systems [22].

The user interface implements the identifyCorrections
component of the SUMO algorithm. As described in Sec-
tion 4.1, the user provides relations by creating edges be-
tween nodes in the visualisation. The visualisation reacts to
these relations, positive edges cause elements to be drawn
closer and negative edges cause elements to repel one an-
other. After the user has added their corrections, they can
click on a button labelled “next”, which invokes the solve
function to produce a new, refined modularisation. The tool
then presents this new modularisation to the user, allowing
them to supply further relations if necessary.

If a user is completely satisfied that a module is correct,
it can be locked. Internally, we implemented this by adding
positive relations between all of the elements in the module,
and negative relations between the elements in the module
and all other external elements. This enables the user to add
large amounts of information in a single click.

Given that users will make mistakes (for instance, a user
might add edges that are negative when they should be
positive, or attempt to add relations that contradict each
other), the tool provides an undo button that the user may
click to remove the relations added to the Rel+ and Rel−

sets in the last round of corrective feedback (i.e., the last
invocation of identifyCorrections).

4.5 User Testing the SUMO Tool
During the development of SUMO, we observed how users
interacted with it to identify improvements and understand
what type of feedback people might provide.

We conducted two sessions with users from the Uni-
versities of Sheffield and Leicester. In each session, users
received a short tutorial on remodularisation and SUMO
before being invited to use SUMO on an example system.
After this example, during which participants could ask
questions, we directed the participants to use SUMO to
remodularise a larger system, starting from a configuration
generated automatically using Bunch. Table 1 summarises
the two sessions we ran.

We used the Sheffield session as a pilot study and
collected qualitative feedback by observing users and not-
ing the problems they found with the tool. In response
to their feedback, we implemented the solver initialisation
described in Section 4.2 to alleviate the problem of SUMO
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Fig. 5. The SUMO user interface, showing an overview of a hypothesised modularisation in the top right hand corner. The main panel zooms into a
smaller part of this modularisation, allowing the user to add positive and negative information. SUMO aids the user by with the help of JavaDocs in
the bottom right panel. In this example, the main panel shows a positive link between “AsynchronousComputationException” and “Platform”, and a
negative link between “Synchronized” and “Platform”.

generating highly dissimilar solutions between iterations.
Without any other guidance, CHOCO returns the most
general solution, leading users to request new solutions less
frequently and thus foregoing the advantage SUMO offers.

We used the revised SUMO algorithm we present in
this paper for the user feedback session at Leicester. En-
couraged by the rate at which participants of the Sheffield
study completed the task, we opted to use a larger subject.
Alongside the revised algorithm, we instrumented the tool
to collect the relations supplied and time each request for a
new solution was made. The data we collected can be used
to paint an aggregated picture of how users interact with
the constraint solver using the SUMO tool.

Users of the instrumented SUMO tool provided an av-
erage of 82% positive relationships, excluding those using
the lock feature. On average, a user provided 4.89 relation-
ships before requesting the next solution from the constraint
solver. The median time taken to provide information was
one minute and two seconds.

Alongside these aggregated measures, we observed
users throughout the session and found that it was common
for participants to provide non-confirmatory feedback. For
example, if a relation a + b and b − c were provided, users
may also provide the matching a− c relation that is already
deducible from the previous two relationships. We postulate
that providing relationships serves one of two purposes
for our users: identifying incorrect assignments to directly
correct them; or to indicate agreement with the proposal
and mark them as “done”, serving as a reminder of which
parts of the system they have already visited.

Our observation of users also shows a high degree of
subjectivity, measuring the difference between the starting
modularisation and the final one produced by each indi-

vidual (using MoJo [28]) yielded a distribution showing a
high degree of discordance. The median distance between
the starting point and the final modularisation was 44.
The spread of this distribution, with a minimum of 3 and
maximum of 73 highlights the subjective nature of the
remodularisation problem.

5 EMPIRICAL EVALUATION

Although SUMO will always eventually produce the
desired set of modules, its practicality is dependent upon
the amount of effort (in terms of time spent providing input)
that is required from the user. This, however, can depend
on a multitude of factors. Considerations have to include,
for example, the size of the system being remodularised, the
number of modules that the user envisages in that system,
and the type of input they provide (e.g. whether they focus
on highlighting classes that belong together, or instead
focus on highlighting ‘negative’ relations between classes
that should remain in separate modules). This section
provides an empirical evaluation of SUMO in these terms.
Our specific research questions are as follows:

RQ1 How expensive is SUMO in terms of effort required
from the user?

RQ2 What factors affect SUMO’s performance?

5.1 Methodology
Given the multitude of (potential) factors at play, we use
an automated evaluation method, running multiple config-
urations of SUMO on 100 different Java systems. In order
to validate our findings in RQ1, we relate them to data
obtained from the user testing sessions in 4.5.
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5.1.1 Setup

The automated evaluation method is based on previous
work by the authors [14] and Bavota et al. [16]. This ap-
proach uses a simulated user to interact with SUMO on
a multitude of different subject systems, from a variety
of starting configurations, and enables us to control for a
variety of factors. Ultimately this allowed us to examine
a larger range of systems and gather more data than an
observational study would permit: our results are made up
of a total of 1,380,000 individual runs of SUMO.

As starting configurations we used modularisations of
the system that were suggested by Bunch [11]. This approxi-
mates the process of the industrial study described by Glorie
et al. [3] wherein a user, simulated in our case, is asked to
provide subjective feedback on a solution produced using
Bunch. As Bunch is a randomised algorithm, we repeated
the process 30 times. This generated 30 starting points for
each subject system. We then developed a simple model of a
user to supply SUMO with inputs on a selection of 100 open-
source Java systems (both the user model and the subject
systems are described below). Figure 6 outlines the process
taken to acquire the results used in our analysis.

5.1.1.1 User Model: Our user model is deliberately
simple: Given a target modularisation (which is taken to be
the original modularisation of the subject system), it quasi-
randomly selects pairs of classes, using the target modu-
larisation to express whether or not the relation between
that pair should be positive or negative. The choice is quasi-
random because the user model (a) makes sure that it does
not supply the same relation twice, (b) is parameterised
according to the proportion of class pairs that should be pos-
itive, and (c) supplies a random number of feedback-pairs
at each iteration, where this random number is governed by
sampling from the distribution of feedback sizes provided
by users in the user testing described in Section 4.5.

As we measure the information required to transform
an input modularisation to a target modularisation, we
require a suitable target that represents the developer’s
domain knowledge about the system. Remodularisation is a
highly subjective problem, as shown in the summary of our
user testing in Section 4.5. In our experiments the original
modularisation is the target, which ensures the topology of
the target is realistic in terms of the grouping and sizes of
components.

It is important to note that, although the model de-
termines the number of relations and the proportion of
positive versus negative relations, the specific choices of
relations remain random. This means that the model can
easily choose relations that are of little or no utility to the
remodularisation task at hand. One would expect a real
developer to make more considered choices — choosing
relations to either corroborate or contradict specific features.
As a consequence, any results that are produced by our user
model ought to be interpreted in this light — a discerning
developer would probably require fewer inputs to yield a
useful result than our model.

5.1.1.2 Subject Systems: For the subject systems we
used the “SF100” set of Java programs [29], a set of 100 pro-
grams randomly selected from SourceForge. We chose to use
a random sample of subjects to avoid the risk of bias arising

from curating a set of projects. For each of these programs,
we extracted its module dependency graph (MDG) using
the DependencyFinder2 tool. Table 2 summarises each of the
subjects, showing its name and size, given in terms of the
number of classes in its dependency graph and packages.
The systems range from one very small system with just
a single class, to several systems with hundreds of classes,
and one single large system with 6, 817 classes.

The input format required by the Bunch remodulari-
sation tool is unable to represent classes without depen-
dencies, and so they are not accounted for by the figures
in Table 2. Consequently, we could not remodularise the
“greencow” system as it only included one class. As such,
it had an empty dependency graph, and so we removed
it from our analysis. Of the remaining 99 case studies, we
found one to be unusable because it exceeded one week of
runtime in Bunch and could not be used.

5.1.2 RQ1: How expensive is SUMO in terms of effort
required from the user?
We investigate RQ1 in terms of the time taken, in iterations,
by the simulated user to remodularise each subject system
with SUMO. From starting modularisations produced by
Bunch, we ran SUMO using the original package structure
as the target modularisation for the user model. At each
iteration of SUMO, we compared the current hypothesised
modularisation to the target and if there were any differ-
ences, we provided SUMO with more inputs from the user
model. The process stopped when SUMO reproduced the
original decomposition for the subject system.

Having observed from the user-study (Section 4.5 that
approximately 75% of relations selected were positive rela-
tions (indicating that a pair of classes belonged together), we
fixed this as a parameter for the user model in this RQ too
(different balances are explored in RQ2). As the user model
selects its inputs quasi-randomly, we ran 100 repetitions of
the process for each of the 30 Bunch results for each subject
system. We limited each SUMO run to 4GB of memory and
6 hours of runtime.

To study how the modularisation proposed by SUMO
changed in response to feedback throughout, we measured
the similarity of the hypothesised modularisation to the
target at each step, and used this similarity measure as
an estimate of the qualitative improvement SUMO had
generated since beginning the process. To this end, we
adopted the “MoJo” difference [28]. MoJo calculates the
difference between two modularisations for a system in
terms of the number of modifications that must be made
to one to transform it into the other. It does so by estimating
the number of operations to move elements between, or
join clusters required. The MoJo value is an integer that
is bounded by the number of entities (classes) in the data
set. When the MoJo value is 0 the two modularisations are
identical.

5.1.3 RQ2: What factors affect SUMO’s performance?
In addition to the MoJo history and steps taken, we recorded
the total number of positive and negative relations sup-
plied by the user model to reach the target result from the

2. http://depfind.sourceforge.net
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Subject System

Extract MDG

Cluster with Bunch Refine with SUMO

Extract Packages

User Model

Relations

User inputMDG

Modularisation Refined Modularisation

Fig. 6. Methodology of the systematic study. We study the italicized items as outputs of the experiment. We vary the items indicated in bold.

TABLE 2
The SF100 subject systems used in the systematic study, with the number classes and packages involved in their MDG (Module Dependency

Graph), as clustered by Bunch. Subject systems that exceeded the runtime or memory limits during refinement with SUMO and were excluded,
and appear in italics. The system that Bunch failed to remodularise is denoted by † and the system that contained only one class is highlighted

with an ∗ (this system appears in the table as having zero classes, as the MDG only considers classes with dependencies).

MDG Classes Packages
a4j 45 6
apbsmem 19 1
asphodel 24 5
at-robots2-j 296 12
battlecry 15 1
beanbin 122 23
biblestudy 24 3
biff 6 1
bpmail 14 5
byuic 9 1
caloriecount 975 112
cards24 26 3
celwars2009 32 1
classviewer 24 2
corina 1005 30
dash 68 19
dbe 92 13
dcparseargs 6 2
diebierse 22 4
diffi 9 5
dom4j 209 14
dsachat 34 10
dvd-homevideo 36 1
echodep 138 6
ext4j 18 3
falselight 9 1
feudalismgame 59 3
fim1 127 7
fixsuite 42 5
follow-1.7.4 96 9
fps370 7 1
fspath-1.0-alpha 19 3
gae-app-manager 8 2
gangup 51 4
geo-google 24 4
gfarcegestionfa 59 6
greencow∗ 0 0
gsftp 34 5
heal 234 37
hft-bomberman 138 17
httpanalyzer 77 1
ifxf-v3.0.0-gen† 6817 2
imsmart 22 9
inspirento 48 6
io-project 16 3
ipcalculator 86 1
javabb 44 10
javathena 38 11
jaw 124 10
jclo 4 1

MDG Classes Packages
jcvi-javacommon 981 82
jdbacl-0.6.9 261 25
jgaap 27 1
jhandballmoves 109 9
jigen 73 5
jiggler 178 17
jipa 5 1
jiprof 6 1
JMCA 54 4
jnfe 190 18
jni inchi 24 1
jopenchart 55 8
jsecurity 134 33
jshop 34 1
jtailgui 52 10
jvc 17 2
jwbf-1.3.4 98 21
lagoon 90 5
lavalamp 54 8
lilith 831 64
lotus 59 10
macaw 187 12
mygrid 39 3
nekomud-20110901 10 4
newzgrabber 41 1
noen 18 3
nutzenportfolio 83 28
objectexplorer 84 8
omjstate 21 3
openhre-hl7 111 9
openjms 791 44
petsoar 79 15
quickserver 107 15
resources4j 19 4
rif 20 7
saxpath 16 4
sbmlreader2 103 6
schemaspy-5.0.0 119 6
sfm 11 4
shp2kml 6 1
summa 736 94
templatedetails 24 1
templateit-1.0-beta4 22 2
trans-locator 6 1
tullibee-api-9.63.00-SNAPSHOT 21 1
twfbplayer 143 11
water-simulator 114 9
wheelwebtool 137 10
xbus 206 42
xisemele 69 3
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same Bunch starting points used for the previous research
questions. We then performed an exploratory analysis to
establish how various factors could affect performance. For
the analysis we followed the guidelines set out by Kitchen-
ham et al. [30] and set out the variables of interest. Our
dependent variables are the steps taken and the number of
positive and negative relations provided. The independent
variables in our analysis are:

• The size of the system (classes)
• The size of the system (packages in target decomposi-

tion)
• The user model
• The quality of the Bunch results (MoJo distance to the

target).
We related the response variables to the dependent vari-

ables using descriptive statistics and visualisation. We per-
formed statistical tests where effects were not apparent in
the descriptive statistics or visualisation. All of our analysis,
including computing statistical tests, was conducted using
R [31].

To establish the impact of different MoJo values on
performance, we tested the hypothesis that different MoJo
values will not produce differences in the number of rela-
tions required by SUMO, for solutions produced by Bunch.
We performed the following analysis on each subject system
for which Bunch generated more than one distinct result
(initial MoJo value).

We used a Kruskal-Wallis test [32] for each of these
systems, which estimates the likelihood that samples from
different groups are from the same distribution. We used the
Kruskal-Wallis test as it is non-parametric; values in some
groups were not normally distributed (as we determined by
visualising the histograms). The outcome of each test is a
p-value. We set a significance level of 0.05 and controlled
for multiple comparisons [33] by adjusting p-values for
multiple tests using Benjamini and Hochberg’s method [34].

5.1.4 Threats to Validity

The simulated user may not represent real user behaviour. The
user makes a random selection of relations from the set of
known-good relations irrespective of the current solution,
until SUMO reproduces it completely. Given that the se-
lection of relations is indiscriminate, there is the inherent
problem that a large (possibly overwhelming) proportion
of the selected relations will be spurious or irrelevant. This
is the reason (discussed above) that the six largest systems
yielded too many constraints. Nevertheless, the validity of
the results is only threatened insofar as the results will over-
approximate the amount of input required from a typical user
— an educated software engineer would be more selective
with inputs, and would likely achieve better results with less
effort. Our user model can therefore be viewed as a “worst
case user”. We later discuss the implications of this user
model in light of our user testing sessions in Section 5.2.3.
Given the randomised nature of relation selection, we re-
peated each SUMO refinement process 100 times.

Simulating the user also means that we cannot capture
the thought process that leads to constraints. By not mod-
elling the decision process we avoid the risk that the user
model outperforms a human by always providing corrective

feedback [14]. Our experiments do, however, assume that a
hypothetical user would eventually be able to make judge-
ments for a substantial proportion of the system. There is a
risk that a real user may not be able to individually perform
this task alone. However, SUMO does not preclude multiple
users entering feedback for parts of a system for which they
are responsible.

As we only have samples of the feedback generated
by real users for one subject system, there is a risk that
this distribution might not be identical for other subject
systems. In turn, the number of steps the user model takes
may not be reflective of use by a human. However, the
number of relations provided (mean of 4.89) relative to the
size of the subject (122 classes) in the user study suggests
an overwhelming preference to provide feedback to small
fractions of the system at each step, irrespective of the size
of the subject.

The use of the existing package structure as a final target in
the evaluation. While a real user would never choose to
remodularise a software system into its existing structure,
existing module structure can be used as a measure of
remodularisation algorithm authoritativeness [4], and has
previously been used as a proxy where no other authori-
tative decomposition is available [14], [16]. While there is
a risk that the modular structure of the SF100 case studies
are not authoritative (i.e., their developers would not create
them), our results still enable us to quantify how SUMO
can tailor a solution to user preferences. The impact of this
choice is that we may be measuring SUMO’s performance
at recovering a modularisation that developers would not
choose themselves. However, it still represents the customi-
sation of Bunch-generated results to a user-specified form
using an authoritative source of feedback.

The use of Bunch to produce starting modularisations. Bunch
is a randomised algorithm so it is unlikely to reproduce
the same solution. We mitigate the internal threat to va-
lidity that the Bunch results are atypical by repeating the
clustering process 30 times per subject system (which, as
previously stated, were refined by SUMO 100 times each).

We chose Bunch as an example of a remodularisation
tool that could produce modularisations for SUMO to refine.
While it might not be representative of all possible modu-
larisation tools, it is one of the most widely studied (see, for
example, references [4], [16], [28], [35]) and is well-suited for
the task of providing a variety of starting points for SUMO
to work from.

The use of SF100. We adopted the SF100 as a benchmark to
remove any threat to validity that may have arisen from
our own curation of a set of “suitable” subject systems. As
a representative sample of SourceForge projects [29], using
the SF100 benchmark allows us to generalise our results
beyond the subjects we consider in our analysis. Using such
a random sample means we are unable to control the size
of the systems we study ourselves. As a result, some of
the subject systems may be smaller than those typically
requiring corrective refactoring such as remodularisation.
We opt to include all the subjects in the SF100 rather than
applying a threshold to the size of the system, thereby
avoiding a source of bias in our results.
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5.2 Results
We now discuss the results we obtained from our experi-
ments and the answers we obtained to our research ques-
tions.

5.2.1 RQ1: How expensive is SUMO in terms of effort
required from the user?
Under the control of the user model SUMO yielded the
target result for all bar six of the subject systems within
the six hour limit. Figure 7 summarises the number of
steps taken, ordered by the median number of steps taken
to converge. The plots are separated according to scale to
preserve the visibility of smaller values.

The amount of input required varied substantially from
system to system (and the reasons for this are explored in
RQ2). For all but nine of the systems, SUMO required less
than 500 iterations on average. For 48 systems, the median
number of relations required was lower than 50 (often much
lower). Figure 8 depicts this relationship graphically.

The average time taken by users to supply some feed-
back in our user testing (Section 4.5) was one minute and
two seconds. Assuming this holds for other subjects, then
these figures would suggest that the majority of SF-100
systems would be processed within a couple of hours, more
than half being completely remodularised within an hour
(probably much less if we assume that real developers make
more discerning feedback choices than our user model).

For the few particularly complex systems, the amount
of feedback shoots up to >1000 iterations. Of course it is
unrealistic to expect a user to use SUMO for > 10 hours
(if we adopt the rule of thumb of one minute per iteration).
However, for such cases it is important to remember that the
results here are only counting the effort required to achieve
exactly correct solutions.

In practice, SUMO tends to produce a reasonable approx-
imation of the target modularisation after a relatively small
number of iterations (usually 50-100), whereafter a large
proportion of the inputs are spent on minor improvements.
Figure 10 illustrates this with respect to the echodep subject
system. As a consequence, it is not necessary to to wait until
the tool has converged to obtain a potentially useful result.
So even though the amount of time required to achieve
exactly correct modularisations might be prohibitively high
in some cases, a small proportion of that input will tend
to yield results that are at least approximately correct, and
possibly suffice for typical re-engineering purposes.

In the context of the best and worst-case functions de-
rived in Section 4.3, all subjects converged before the theo-
retical maximum number of relations could be supplied. The
median proportion of the worst-case figure required was
0.266 across all the included subjects. In terms of the best
case, SUMO required more than the theoretical minimum
number of relationships to converge for the majority of
subjects, requiring a median of 2.864× the theoretical lower
bound. For a small number of subjects, convergence was
reached before the feedback reached the lower bound which
is made possible by solver initialisation. If parts of the
solution are already acceptable then they are retained in the
absence of feedback to the contrary (see Section 4.2).

This property also holds for the six systems that failed
to yield the target result within the time-limit. In all but one

subject, the MoJo value was reduced to less than 35% of
its initial value. In some cases, the improvement follows a
similar pattern to the series in Figure 10, in the sense that
there is an initial sharp drop in MoJo distance (increase in
accuracy). In two cases (caloriecount and summa), this is
followed by a small ‘hump’, where the accuracy plateaus
or decreases momentarily. This is an artefact of the user
model. In both of these cases there are a large number of
packages in the target modularisations, which means that
the user model must supply more negative relations; the
rapid rate of improvement after the plateau occurs when
all positive relations are exhausted and thus more negative
relations are provided at each iteration. For these large
systems, the volume of possible relationships overwhelms
the proportion of useful feedback, which ultimately leads to
an exhaustion of runtime or memory when the selection is
entirely random.

RQ1: For the majority of systems (of the nature represented
by the SF-100 dataset), a perfect solution can be obtained in

1-2 hours. In certain cases, however, obtaining a perfect
solution can take more than 10 hours. An approximation of

the ideal result can be achieved within the first 50-100
iterations (depending on the system).

5.2.2 RQ2: What factors affect SUMO’s performance?
Our findings for RQ1 show that the amount of input
required to obtain a satisfactory result with SUMO can
fluctuate, depending on the system being remodularised.
This research question investigates the underlying reasons.
Clearly the number of classes in the systems plays a role,
but there are other factors at play. This question explores
the influence of the accuracy of the initial Bunch modulari-
sation, along with system-specific factors, and the role of the
proportion of positive and negative relations.

Effect of the accuracy of the initial (Bunch) modularization.
Of the 92 subjects that we did not exclude as described
in Section 5.1.1.2, the initial modularisations produced by
Bunch resulted in variable MoJo scores for 68. For the
remaining 24 subjects, the generated Bunch solutions were
similar or identical. These were smaller subjects, with a
median size of 19 classes.

From the subject systems that had multiple initial MoJo
values we found significant differences in the amount of
input required for SUMO for 6 subjects. These systems were
smaller than most of the other case studies in the systematic
study, the largest of which comprises 34 classes.

The remaining 62 cases with multiple MoJo values had
p-values above our significance level of 0.05. In these cases,
the effect of the MoJo score on the number of relations
required was not statistically significant. The majority of
these systems are larger (median number of classes of 68.5)
than those for which the effect was significant (median
number of classes = 21.5). As a result we conclude that the
initial modularisation does not affect the effort required to
apply SUMO unless the system is small.

Effect of the number of classes and (target) modules of the
system. Computing the Pearson correlation between these
two factors and the number of iterations required confirms
that both have an impact. The correlation for the number of
classes is 0.856, and 0.686 for the number of modules.
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Fig. 7. Box plot of the number of SUMO iterations for convergence for each subject system for the 75% user model, showing the variance for each
subject system. The breaks are to illustrate scale.
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Fig. 8. Cumulative number of subject systems ordered by median steps
to converge. Half of the SF100 is remodularised within 51 SUMO itera-
tions; most are remodularised within 500. The dashed line indicates the
total number of subject systems from the SF100 in the study (92)

The role of modules is illustrated by re-examining the
results in Figure 7. For example, two of the largest systems
jdbacl (261 classes) and at-robots2-j (296 classes)
are of a similar size in terms of their number of classes.
However, jdbacl required an average of 2067 iterations
in SUMO whereas at-robots2-j required 1139 — almost
half that of jdbacl. The key difference between these two
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Fig. 9. The MoJo history for the 6 systems that did not converge
during the time of the experiment, averaged over each recorded sample
n ≥ 2, 703. The shaded background describes the range (maximum to
minimum) of the recorded values at each time step. The two dashed
lines indicate the maximum step number where at least 90% and 10%
of the repetitions were recording data respectively. The numbers in the
facet titles correspond to the size of the system in classes and packages.

systems is the number of modules; jdbacl has 25 packages,
whereas at-robots2-j has only 12.

Effect of positive/negative ratio of user-supplied relations.
Figure 11 plots the median number of steps required against
the number of classes in the system. The different lines
represent different proportions of positive relations used to
parameterise the user model. The solid line (uppermost)
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Fig. 10. Improvement (in terms of MoJo) of the solution is most rapid at
the start of the refinement. The shaded region represents the minimum
and maximum MoJo values across 3000 solutions at each time step.
The line shows the mean at each time step.
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Fig. 11. The effect of positive relations on median number of steps
required by SUMO. The lines represent different ratios between positive
and negative relations provided by the user model. Each point is the
median calculated from 3000 samples. The plot is divided into two to
preserve the scale of the data for smaller subjects.

represents the model that will always choose negative re-
lations if possible. The dotted line (bottom) represents the
model that will always choose positive relations if possible.
The others represent different weightings in between.

The results show that there is a clear advantage to
emphasising the selection of positive relations where pos-
sible. This advantage becomes more pronounced, the bigger
the system is. Looking at the performances for systems
consisting of between 100 and 150 classes, choosing to
always emphasise positive edges can reduce the number
of steps required by 500 to 1000. For the larger systems, the
difference increases further.
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Fig. 12. Selection of traces (for users starting off from a similar initial
MoJo distance) from the user-study wrt. Google Guava described in
Section 4.5.

RQ2: The initial modularisation rarely has a significant
bearing on the performance of SUMO, and only if the
system is small. The size of the system, and the (ideal)
number of modules in the final modularisation, have a

substantial impact on the efficiency of SUMO. Providing
positive relations (stating that two modules belong together)

is much more effective than providing negative relations
(stating that two modules don’t belong together).

5.2.3 Contrasts with the user testing sessions

One of the threats to validity discussed in Section 5.1.4
pertains to the fact that our user-model is somewhat sim-
plistic. It selects relations between classes in a quasi-random
way. This potentially leads to a performance that under-
approximates the performance of an actual developer. A
real user could, for example, be expected to scrutinise the
current set of modules, and to pick relations between classes
that specifically contradict (and therefore correct) mistakes
in the modules proposed by SUMO.

Figure 12 shows a selection of traces of MoJo distances
as users interacted with SUMO to remodularise Google
Guava (see Section 4.5). These tend to show a more linear
decrease in the MoJo score and do not exhibit the long
‘tail’ of minor improvements found in traces produced by
the automated user (e.g. in Figure 10). Although many of
the user interactions end with a small number of minor
refinements, this is not nearly as pronounced as the long
tail produced by the user model. This is usually due to
the fact that the user model globally selects relations that
are trivial, and do not necessary contradict SUMO’s current
hypothesis, whereas human users tend to be more judicious
in the choice of feedback, choosing to target relations that
contradict SUMO’s hypothesis. The tail in the user model
traces corresponds to points where the majority of the
remaining feedback supplied was non-corrective (c.f. the
Coupon Collector problem). In contrast the mix of correc-
tive and non-corrective information is more homogenous
throughout the process.

While we observed our users providing feedback me-
thodically, often localised to smaller pieces of the system,
the magnitude of the improvement between steps for the
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human users is not consistent: although the overall trend
is approximately linear, some iterations result in greater
MoJo changes than others. The pattern between users is also
less consistent, which corresponds to the different nature in
which each user chose to solve the problem. The subjectivity
of remodularisation also shows in the differing MoJo scores
for each user trace. In our user testing, users provided
between 39 and 155 relationships during the exercise (mean:
96.1, median: 103.5) relations. Five of the 35 users opted
to use the lock option (Section 4.4), which on their behalf
provided between 3890 and 7381 relations. Most (4) of these
users chose to lock every module, while one used the feature
to freeze part of their solution. The lock functionality allows
users to provide a large volume of feedback with relatively
little effort.

Our empirical work indicates that SUMO can scale for
large constraint systems. In the context of our experiments,
the largest constraint system SUMO successfully solved con-
tained 42, 808 relationships. This is sufficient to represent
every constraint for a subject system containing 293 classes
(by the worst-case formula). In practice, SUMO found the
target within a small fraction of this value (median = 0.266).
Users judiciously applying feedback as they did in our
testing are likely to reduce this factor further, and where
necessary the lock button can assist them to provide an
otherwise prohibitive volume of feedback. Users are free to
save any solution generated, and as shown by our empirical
results, intermediate solutions produced are often net im-
provements (in terms of MoJo score) — even for the largest
systems we studied in Figure 9.

6 RELATED WORK

As mentioned in the background section, there are sev-
eral existing techniques that rely upon user feedback to
produce remodularisations. In Section 6.1 we discuss these
approaches and contrast them with SUMO. The process by
which we obtain feedback from the user is closely related
to the activity of “constraint acquisition”; this relationship
is explored in Section 6.2. There are further parallels be-
tween SUMO and the constraint-based architecture recov-
ery, which are discussed in Section 6.3. Finally, Section 6.4
discusses the related work on visualising modularisations,
and relates these to the SUMO graphical user interface.

6.1 Interactive Approaches

Fully interactive approaches focus on enabling the user to
provide feedback as the algorithm runs. Arch [13], for exam-
ple, allows the user to confirm or reject merges suggested
by a hierarchical clustering algorithm. A similar approach
has been used to incorporate feedback into a genetic algo-
rithm [16], similar to Bunch [11]. In this Interactive Genetic
Algorithm (IGA) process, the user is periodically asked for
feedback on parts of the solution. The IGA uses the same
type of constraint as SUMO; pair-wise positive or negative
relations. However, the user provides feedback only where
the algorithm requests it, subject to random selection, or
prioritised selection based on the size of clusters, although
Bavota et al. remark that their approach could be adapted

to allow the developer to choose where to provide feed-
back [16]. In contrast, SUMO allows the user to apply as
much knowledge wherever they choose.

The IGA uses constraints to alter the fitness values
of individuals used in the search process. Solutions that
violate constraints are penalised according to a parameter
of the fitness function. This contrasts to SUMO, which does
not permit any constraints to be violated. Unlike the IGA,
SUMO does not rely on any other optimisation methods
in parallel with the interactive refinement. Rather, SUMO
incorporates similar heuristic information only through the
initial solution which is then refined subject to user feed-
back.

The solutions returned by SUMO are those first sug-
gested by the constraint solver (after initialising it with a
previous solution as described in Section 4.2) rather than
the best according to a metric. The difference in the two
approaches is that with the IGA the user sees partially opti-
mised architectures and guides the algorithm, whereas with
SUMO, the user “tunes” the architecture after an algorithm
has optimised it.

Abdeen et al. [36] propose a similar approach to
Bavota et al.’s interactive genetic algorithm to build a se-
quence of refactorings. The user can specify where changes
are made a-priori, using the length of the refactoring se-
quence to limit the allowable changes. Similarly, Bavota et
al. [37] study the use of localised remodularisation to de-
compose poorly composed monolithic packages into smaller
components. They achieve this by looking beyond the cou-
pling inherent in the code base by using semantic measures
of coupling.

Tonella explored the tradeoff [8] associated with remod-
ularisation, finding that some refactorings can produce a
better result, but require more extensive changes. Neither
Abdeen et al.’s approach nor Bavota et al.’s semantic cou-
pling methods are automatic in the same sense as ours.
Instead they rely on the user targeting areas to be renovated
a-priori. In contrast, SUMO allows the user to provide
feedback wherever appropriate in an online process. Fur-
thermore, SUMO can still be applied with these localised
refactoring techniques as it does not prescribe one partic-
ular method to generate the initial remodularisation to be
refined, and can thus complement them.

6.2 Constraint Acquisition

The SUMO process of compiling a set of constraints with
user interactions has also been approached from a query-
driven perspective. CONACQ [38] poses specific queries to
the user, using them as an oracle to deduce the constraint
network. This contrasts to SUMO in that the queries are
“membership queries” (e.g., “do x and y belong together?”)
versus the “equivalence queries” used in SUMO (e.g., “Is
this correct? If not, why?”) [39]. The former constraints are
similar to the approach taken by Bavota et al. [16] in
that they specify the elements about which information is
required.

Bessière et al.’s approach [38] could feasibly be incorpo-
rated into SUMO; one problem to be addressed is the pro-
vision of redundant constraints by the users, observed and
modelled in the first and second stages of our evaluation



16

respectively. CONACQ seeks to reduce the capture of this
information by ensuring the queries posed will improve the
state of the model. We intend to investigate this potential
solution in future work.

6.3 Constraint Satisfaction in Architecture Recovery
Remodularisation is closely related to the process of ar-
chitecture recovery. Architecture recovery processes aim to
extract higher-level abstractions over the source code, but
are not restricted to producing modularisations. Instead,
different perspectives, or views for different concerns are
produced [40], [41]. Constraint satisfaction has also been
deployed in architecture recovery, wherein patterns are
matched over the code base. These patterns may be taken
from a repository [42], or specified in a query language [43].

SUMO differs in the type of view required (a grouping
of modules, rather than an architectural view), and the
information its constraints encode. In the pattern matching
approaches, constraints define abstract structures that the
code must exhibit for a view to be instantiated. SUMO
views the problem principally through the connectivity of
the domain knowledge given and has a very weak reliance
on the original system’s dependency structure (this may
be implicitly introduced by the choice of remodularisation
algorithm, e.g. Bunch, used to generate the starting config-
uration). This loss of information to SUMO is mitigated by
its use as a final filtering step, designed to handle scenarios
where the value of the dependency graph has been extracted
by the modularisation algorithm applied in the previous
step.

6.4 Visualising Modularisations
Visualising the proposed solutions is challenging. SUMO
necessarily visualises the relationships between entities,
supplanting this information with the existing documenta-
tion for the system.

The Distribution Map [44] allows proposed changes to
be visualised at the class and package level. It is a visual
analogue to similarity metrics such as MoJo [45]. A Distri-
bution Map shows new packages containing the reorganised
entities, which are coloured based on their previous assign-
ments. SUMO, in contrast, only shows the modularisation’s
current assignments. However, Distribution Maps could be
used to assess the final result of a SUMO refinement, or in
determining if applying SUMO would be necessary, and are
thus complementary to our approach.

Abdeen et al. [46] describe a visualisation method for
modularisations that represents the structure of each pack-
age in the system. The Package Blueprint visualises pack-
ages as a dependency matrix, showing internal and external
dependencies. This visualisation allows architectural prob-
lems to be detected at a structural level by analysing the
dependencies. For example, by investigating the internal
dependency structure of a package in the Blueprint, low
cohesion is signified by a sparse dependency matrix. This
technique allows architectural problems to be observed.
This approach is similar to the Package Fingerprint [47], a
technique that allows maintainers to visually inspect their
architectures for similar potential defects by presenting the
dependencies amongst packages in the system.

Unlike Package Blueprints and Fingerprints, SUMO does
not attempt to visualise the structure of the system, making
it more similar to Distribution Maps in the information it
displays. SUMO instead relies on other remodularisation
algorithms to rectify any architectural problems prior to
refinement.

The design of SUMO is sufficiently flexible that other
visualisation techniques may be applied, however. The
identifyCorrections function given in Section 4.1 manages
presentation and could be readily adapted to use an alterna-
tive visualisation to the one used in the user study, described
in Section 4.4.

7 CONCLUSIONS AND FUTURE WORK

In this paper, we described SUMO, an algorithm designed to
solve the problems faced when using automatic remodulari-
sation algorithms. The interactive element of SUMO creates
a virtuous cycle of improvement that is guaranteed to be
consistent with the user’s domain knowledge. Transitivity
of positive relations enables SUMO to make the most of the
information provided by the user, which we demonstrated
in Theorem 2 as well as practically in a comprehensive
systematic evaluation.

The study, built on data collected from an observational
pilot study, explored the performance of SUMO for a diverse
set of software systems. The results indicate that SUMO
produces accurate result from an amount of user input
that falls well below the theoretical worst-case. They also
indicate that in order to produce an approximate result, this
can be achieved with an amount of input that is far lower
than the amount required to obtain an exact result.

Our ongoing and future work is focused on further
improving SUMO. This involves the incorporation of au-
tomated source code refactoring tools that work alongside
SUMO [48], refining the constraint satisfaction algorithm
to favour better results, and improving the user-interface
to enable the user to be more expressive when specifying
relations between classes and modules. Alongside these
improvements, we also intend to experiment with the ap-
plication of SUMO in an industrial context.

The way in which we initialise the constraint solver
leaves it free to select any solution, but more likely to
choose similar solutions. This initialisation could be further
improved by representing the similarity to the previous
solution explicitly by treating the problem as a constrained
minimisation problem. This would require adoption of an
appropriate objective function and is a strategy to the prob-
lem similar to Bavota et al.’s interactive GA [16]. We intend
to evaluate to what extent we can improve the solutions pro-
duced by identifyCorrections without negatively impacting
the speed at which it returns solutions.

We intend to improve the SUMO interface implementing
identifyCorrections to make the supply of relations easier
for users. Currently, a “lock” button is the only short cut to
providing a large number of relations. We will implement
similar features to enable users to quickly combine two
modules or split them by supplying the underlying relation-
ships on the user’s behalf. Furthermore, the algorithm we
describe does not allow the user to revise feedback (beyond
reversing the sequence of operations that applied it via an
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undo button). We seek to improve the usability of the tool
by permitting arbitrary relationships to be changed at any
point.

The SUMO approach is advantageous as it does not
rely on the information already present in the objects to be
clustered. This makes SUMO suitable in scenarios beyond
remodularisation. Bunch [11] was found to be similarly
versatile due to its treatment of the problem as graph
partitioning [49]. A significant part of our future work
involves locating problems that have similar parallels with
remodularisation that SUMO may be able to solve. For
instance, Tonella’s application of remodularisation targeted
functions [8] highlights the existence of the remodulari-
sation problem at varying levels. While SUMO only cur-
rently takes constraints from the user, automated extraction
of assistive constraints, such as those used in specifying
general-purpose clustering algorithms [15] could make the
SUMO framework applicable to more complex refactoring
operations beyond migration of entities between modules.

Beyond these changes, we see potential in unification
of automated remodularisation tools with user feedback in
the SUMO framework. Bavota et al. [16] have shown that
using human input can be used to constrain an optimisation
process. We aim to investigate how SUMO can formalise an
environment in which multiple tools make suggested re-
modularisation or refactoring changes subject to constraints
submitted by the user or by other automated tools (for
instance type checkers).
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