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ABSTRACT

State machines are a popular method of representing a sys-
tem at a high level of abstraction that enables developers to
gain an overview of the system they represent and quickly
understand it.

Several techniques have been developed to reverse engi-
neer state machines from software, so as to produce a concise
and up-to-date document of how a system works. However,
the machines that are recovered are usually flat and con-
tain a large number of states. This means that the abstract
picture they are supposed to provide is often itself very com-
plex, requiring effort to understand.

This paper proposes the use of search-based clustering as
a means of overcoming this problem. Clustering state ma-
chines opens up the possibility of recovering the structural
hierarchy of a state machine, such that superstates may
be identified. An evaluation study is performed using the
Bunch search-based clustering tool, which demonstrates the
usefulness of the approach.

Categories and Subject Descriptors

D.2.2 [Software Engineering]: Design Tools and Tech-
niques—State diagrams; D.2.7 [Software Engineering)]:
Distribution, Maintenance, and Enhancement—Documenta-
tion, reverse engineering

General Terms

Algorithms, design, experimentation

Keywords

State machines, search-based clustering, hill-climbing, Bunch

1. INTRODUCTION

Over long periods of development and maintenance on
a piece of software, specification and design documents in-
evitably become neglected, and diverge from the actual op-
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eration and structure of the system. When the software
requires bug fixes or the implementation of further features,
these documents can potentially do more harm than good,
should they even still be in existence.

In such circumstances, the developer needs to invest valu-
able time familiarising or re-familiarising themselves with
the code of the system, building up an abstract picture them-
selves of how a system works and how its components relate
to one another.

One way of lowering the cost and human effort involved
in performing this task is to use automatic techniques that
can reverse engineer design documents through static and
dynamic analysis [6].

Reverse engineering of state machines from software, has
received much interest |1}, |8} |20, 21]. However the machines
synthesised tend to be flat and lacking a hierarchical struc-
ture, consisting of many states; meaning that the derived
machines are themselves complex and hard to understand.

This paper addresses the problem of rediscovering the hi-
erarchical structure of a state machine, through analysis of
its transition structure. The approach taken is to cluster
the states of the machine so that related states are grouped
together. In this way, the potential superstates of the ma-
chine may be revealed. The expectation is that a hierarchical
state machine will allow a developer to grasp more quickly
the behaviour of a software system.

The clustering method used is the search-based method of
Mitchell and Mancoridis [16], which has been implemented
in a tool called Bunch. Bunch was originally used to cluster
module dependency graphs, but has since been adapted to
other clustering problems in the software engineering field,
including dynamic clustering of the heap in order to improve
the performance of garbage collection algorithms [7].

This is the first work in which Bunch is applied to cluster-
ing state machines, with the aim of deriving its hierarchical
structure. An evaluation study is performed to two case
studies to assess its usefulness, with promising results.

The contributions of this paper are therefore:

1. The application of the search-based clustering tool Bunch
to clustering state machines into a two-level hierarchy,
so that the potential superstates of the machine are
identified

2. An evaluation study that applies Bunch to two flat-
tened state machines, with an assessment of how close
the clustering technique is to recovering the original
2-level hierarchical structure of the original machine



This paper is organised as follows. Section [2] introduces
some background to clustering, the application of search-
based techniques to the problem, and the Bunch tool. Sec-
tion 3| discusses the application of Bunch to clustering state
machines. Section[d]then presents the evaluation study, with
Section [5| presenting and discussing the results obtained.
Section [6] presents related work, while Section [7] concludes
and details future work.

2. BACKGROUND - CLUSTERING

Unsupervised or automatic clustering is a mature problem
in the fields of Computer Science and Statistics. Despite this
maturity, there still does not exist a general clustering algo-
rithm; this is unlikely to change due to the computational
complexity of the problem. Automatic clustering seeks to
produce logical groups of a set of entities where each entity
is similar to other entities in a subset, but significantly dif-
ferent to those from other subsets. The fundamental prob-
lem with producing a general clustering algorithm is this
measure of similarity; often it is difficult to generalise the
difference between two entities as a single distance measure.

Popular metrics used typically include some numerical
value that gauges the similarity between objects, such as the
euclidean distance. While this is not an issue when the data
to be clustered is numeric or can be represented numerically
it becomes a problem for more complicated data.

One of the most popular methods used in this area is k-
means, an application of Lloyd’s algorithm; wherein k data
points are assigned randomly or via a heuristic, these be-
come the ‘means’. Each data point is assigned to the cluster
with the closest mean. After the initial clustering is per-
formed the centroid of each cluster is obtained and data
points moved to each cluster based on the proximity to the
origin of each centroid. This iterative process continues un-
til the clustering converges. Although effective, k-means is
also very costly as it is iterative and determining the correct
value of k is difficult. The k-means algorithm is NP-hard
so its utility is somewhat restricted and additionally it may
not converge on the global optimum.

Another problem with clustering algorithms is the size of
the data set; for large sets of elements exhaustively search-
ing for the best clustering is infeasible in this domain [15].
The problem is made particularly worse when the number
of clusters is not defined. Because of this problem, a search-
based approach is used.

Search-based Clustering

By using a search algorithm to find the optimum solution
large state machines can be considered rather than only
those for which exhaustive search is feasible. The cluster-
ing method detailed in this paper is built upon work per-
formed by Mitchell and Mancoridis in software module de-
pendency graphs (MDGs) [16]. In their research they ap-
plied an agglomerative approach to clustering these depen-
dency graphs; where the solution is developed by merging
clusters, starting from an initial state where each cluster
contains one element. A search-based approach was used;
they concluded that hill-climbing was superior to a genetic
algorithm approach [16].

Mitchell and Mancoridis produced a tool called Bunch to
implement the technique developed in their research. The
fitness function used, called ‘Modularisation Quality’ (MQ),
rewards clusterings that have a low number of edges between

clusters in proportion to the edges within the cluster. The
MQ value for k clusters is given by:

k
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Where p; is the number of edges within a cluster (intra
edges) and ¢; ; is the number of edges from cluster ¢ to cluster
j (the inter edges).

3. CLUSTERING OF FINITE STATE
MACHINES

The original intention behind Bunch was to cluster mod-
ule dependency graphs, which are directed graphs, where
nodes represent modules and edges are dependencies. Since
state machines are also directed graphs, with nodes as states
and edges as transitions from one state to another, state ma-
chines may also be clustered by the tool without the need
for any adaptation.

One difference in applying Bunch, however, centres around
reflerive edges in the graph. These are removed by Bunch
prior to clustering, because for module dependency analysis
(Bunch’s original design goal), they add no new information.
For state machines, however, a reflexive edge is a transition
that leaves and re-enters the same state. Thus although they
will play little part in the overall structure of the machine,
they at least need to be re-instated after the clustering pro-
cess so as to produce an equivalent machine to the original.
In addition, transition labels are not catered for by Bunch,
and so these are also reinstated after the clustering process.

Figure [Th depicts a state machine for a water pump con-
troller [9]. The clustering by Bunch is depicted in part b,
showing two superstates that correspond to states where the
water level is high and low.

Of course, the reduction in complexity of the hierarchical
machine is dependent on the clustering making sense. As the
clustering is driven by structure of nodes and edges alone,
the clustering may not necessarily correlate with what a hu-
man would deem to be logical. The extent to which this is
the case using this technique is examined in the next section.

4. METHOD OF EVALUATION

In order to evaluate the ability of Bunch to recover super-
state information, two statecharts were taken and flattened.
Bunch was then run on the example 30 times, with the re-
sults compared back to the original hierarchical machine.
As Bunch uses a hill-climbing approach (as with any search
based technique) there is a possibility of it converging on a
local optimum; the repeated runs are used in an attempt to
reduce the probability that results consist entirely of such
suboptimal solutions.

The two flattened state machine case studies are shown
in Figures 2h and [3h respectively. The first example state
machine is an alarm clock. The original statechart consists
of 3 superstates; the statechart contains superstates for nor-
mal operations (show the time, display the alarm time and
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(b) The machine clustered by Bunch, with a division of
the machine into superstates corresponding to high and low
water levels.

Figure 1: The original and clustered state machine
for a water pump controller

beep) and operations for setting the alarm time, as well as
the current time.

The second machine is taken from a student project to
produce UML documentation for a ‘tamagotchi’ electronic
pet toy. The super states for this machine include a main
menu, which has a sub-state for showing a menu of actions, a
food menu with states for meal or snack, a status viewer with
states for each statistic of the state of the pet weight, nu-
trition, happiness, weight_age, and a catch-all playing sub-
state consisting of a single playing state. In addition to these
states there are two states at the top level for idle and show-
ing the clock.

Each statechart was flattened, such that a state machine
containing all the nodes in the statechart was produced. To
flatten a machine the superstates are removed; this is per-
formed by replacing each transition from the superstate with
a transitions for each substate. For example for a superstate
S consisting of states {51, S2, 83} where there is a transition
in the statechart S — f, the transitions s1 — f, s2 — f and
s3 — [ are produced. At present this is a manual process
but incorporation this functionality into a tool for easier ex-
perimentation is intended. This collapsing method makes
the assumption that a state that is not part of a substate
should be placed in its own cluster by itself.

Where the original statechart involved concurrent states,
the largest state was chosen as the statechart in its own right,
since concurrency is not accounted for in simple directed
graph state machines. The statecharts were also assumed
to operate without memory; that is, when a transition oc-
curs between superstates it always goes to the start state
of the superstate rather than any previous states from it.
Conflicting state names were resolved by adding the name
of the superstate they were obtained from, as otherwise they
would be treated as equal. As this technique ignores state
labels this changing of state names does not interfere with
the clustering in any way.

The flattened state machines were then run through Bunch
a total of 30 times using the default agglomerative hill-
climbing algorithm using the weighted incremental MQ ob-
jective function. The comparisons included recording the
number of clusters that Bunch generated that also appeared
exactly in the statechart as well as the EdgeSim and MeCl
metrics developed by Mitchell [15]. Both EdgeSim and MeCl
are designed to quantify the similarity of clustered graphs.
EdgeSim (Edge Similarity) aggregates the weight of each of
the edges in two clusterings of a graph if the edge is the
same type in each, intra or inter. MeCl characterises the
difference between one clustering and another by counting
the number of inter edges introduced after join operations
required to produce one clustering from the other have been
performed.

The metrics were obtained by running the calculator from
Bunch on the output, using the statechart as a comparison.
Precision and Recall results for each clustering produced
were also obtained in the same way as Bunch provides a
component to calculate these. In the case where multiple
levels were produced the evaluation was performed on each
level of clustering.
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S. RESULTS

The results are shown below in Tables [1l and 2] for the
alarm clock and tamagotchi case studies respectively. The
‘States as in statechart’ column refers to the number of
states that were placed in the same cluster as in the tar-
get clustering. The perfect score here corresponds to the
number of states in the machine, i.e. 9 for the alarm clock
and 14 for the tamagotchi case study.

As shown by the tables of results the first machine clus-
tered with a high degree of success; routinely scoring 100%
for all metrics. Although MQ and accuracy correlate for the
first machine this is not the case with the second machine;
higher EdgeSim and MeCl values are associated with lower
MQ scores. This suggests that using MQ to attempt to re-
cover the clusters from statecharts is not possible without a
high degree of error.

Results for the tamagotchi machine were better with the
MeCl and EdgeSim metrics at the detail level (level 0) than
the median level (level 1); although more clusters were cor-
rect at the median level. The “level” mentioned is a Bunch-
specific term — the “median” and “detail” levels are likely to
be the most interesting when more than 2 levels of cluster-
ing are produced; this is particularly relevant for large state
machines that may produce many levels.

When working at the median level for the tamagotchi case
study, the ‘State’ substate was clustered according to the
sample clustering from the statechart; however this was di-
vided into two clusters at the lower level, shown in figure
— this is reflected in the statechart as the other states are
one level deeper in terms of a hierarchy.

The tamagotchi case study included two reflexive edges;
these are removed by Bunch as discussed in section [3] and
as such this may have skewed the clustering away from the
anticipated result. As well as the reflexive edges the second
machine was far less uniform than the first; this structure
does not conform to the low coupling and high cohesion that
is expected in the MQ fitness function.

Although the numeric results obtained do not show a high
degree of accuracy for the more complicated ‘real world’
‘tamagotchi’ machine the clusterings produced do exhibit
some degree of promise. Similarly named states were placed
together and in the case of the “state” superstate the cluster-
ing was exactly as in the statechart, although at the detail
level this cluster was subdivided. This suggests that the
technique may be viable despite the fact that it does not ac-
curately recover the hierarchy of a statechart; its application
may lie in recommending possibly related states as an aid in
reverse engineering or perhaps even forward engineering.

The evaluation method was intended to be as objective
as possible; in practice this could not be the case as ulti-
mately the statecharts used cannot be considered “perfect”
as even their own design is subjective to the person who cre-
ated them. As the quality of the evaluation is dependent on
the correctness of the statecharts used it is not possible to
make a confident conclusion as to the viability of this tech-
nique on the whole. A superior evaluation method would
include inviting human subjects to produce statecharts for
a machine and determining if the technique duplicates any
of them, as well as investigating the extent to which human
subjects agree with a statechart representation proposed by
the technique. Essentially this technique’s evaluation is in-
vested in a degree of uncertainty as it is impossible to purely

objectively evaluate its performance; but the area it is aimed
at, system design, is also subjective to a degree.

6. RELATED WORK

Search-based clustering has been developed by many au-
thors |16} [11} [15] to recover the structure and relationship
between modules in a piece of software. This is the first
work to apply clustering to state machines.

A variety of approaches have been proposed for dealing
with state machines that are too large or complex for their
intended tasks. These can be broadly divided into two camps.
One approach is to adopt more powerful modelling approaches
(e.g. Harel Statecharts and Extended Finite State Machines
(EFSMs)) that incorporate abstraction mechanisms to hide
the underlying complexity. The other approach is to de-
velop analysis techniques such as slicing and clustering to
help the developer home-in on sections of the machine that
are of particular interest.

A range of more powerful abstract state-based modelling
techniques have been developed to address the complexity
problem. Notations such as EFSMs [5] or Abstract State
Machines [4] augment conventional finite state machines by
incorporating a memory and labelling transitions with ab-
stract functions on that memory. This enables a potentially
complex range of behaviours to be represented in a much
more compact format.

Hierarchical state machines, such as the UML variants
of Harel Statecharts [10] also include the notion of nested
states. They not only permit abstract transition functions,
but also incorporate more complex semantics to account for
high-level states that contain their own nested state ma-
chines. Whenever a super-state is reached, its nested state
machine represents the ensuing behaviour within that state.

The modelling approaches listed above are effective at
representing complex state-based behaviour and have to a
greater or lesser extent been adopted in practice. However,
even if such modelling approaches are adopted, there are
two problems: (1) Identifying appropriate abstractions can
be extremely challenging and time-consuming, and (2) the
resulting model can still be too complex to be of use. The
first problem (at least partially) addressed by the technique
proposed in this paper; it removes the burden from the devel-
oper by automatically proposing state machine abstractions.
The second problem is elaborated below.

The technique proposed in this paper is not the first ap-
proach to address the important problem of state machine
abstraction. Two basic approaches exist that attempt to do
so: slicing, which takes advantage of variable information in
extended finite state machines (see above) and clustering,
which analyses the state transition structure.

Slicing was originally developed as a source code analysis
technique [22], which could be employed to identify portions
of the source code that could affect the behaviour of a given
statement. A slice is computed by a combined analysis of
control and data-flow. Over the past decade, a growing body
of work has considered the application of slicing techniques
to extended finite state machines [12, 2]. The rationale is
that a slice would isolate only those states and transitions in
the EFSM that are related to the behaviour of a particular
state.

There has been little empirical work to demonstrate the
efficacy of slicing approaches, which makes them difficult to
compare with the work presented in this paper. There seems



| Depth MQ Clusters EdgeSim MeCl Prec. Rec. States as in statechart MQ Evals
Avg. 6.43 1.47 2.53 97.5 99.8 76.67 100 6.2 143.73
Min 2 1.39 2 87.5 99 50 100 3 111
Max 11 1.54 100 100 100 100 9 182
Std Dev. | 2.51 0.08 0.51 5.09 0.41 25.37 0 3.04 22.63
Table 1: Overall results for the alarm clock state machine
Depth MQ Clusters EdgeSim MeCl Prec. Rec. States as in statechart | MQ Evals
Level 1
Avg 3.93 1.35 2.23 51.3 80.3 29.11 100 4 -
Min 0 1.27 2 46.66 79 23.8 100 4 -
Max 9 1.39 3 66.66 88 45.55 100 4 -
Std Dev | 2.53 0.06 0.43 8.56 3.09 9.2 0 0 -
Level 0
Avg 14.7 2.27 5.87 58.97 89.33 48.18 40 0 574.2
Min 8 2.26 5 50 85 36.36 40 0 387
Max 23 228 6 69 90 50 40 0 861
Std Dev | 3.98 0 0.35 3.93 1.73 4.7 0 0 115.61

Table 2: Results for both levels of clustering of the ‘tamagotchi’ state machine

to be a complementary relationship between the two tech-
niques. Clustering techniques are ‘coarser’, requiring only
a state transition structure, with no interaction from the
developer. Slicing techniques on the other hand work at a
lower level, requiring the developer to supply specific slicing
criteria. The authors intend to explore this relationship in
more detail in their future work.

To the best of the authors’ knowledge, the only other pa-
per to propose an automated technique for grouping similar
states together was proposed by Huawei et al. [14]. As
with the slicing techniques mentioned above, they assume
that the state machine incorporates data constraints and is a
more-or-less complete description of the underlying software
behaviour. They group states together by analysing the data
constraints that govern state transitions. The clustering ap-
proach adopted in this paper is a departure from their line
of work because it does not rely on data constraints. It can
be applied to any state machine, whether it is abstracted or
not.

This work is closely related to the domain of the State-
Chum state machine inference tool [19]. StateChum imple-
ments a variety of algorithms designed to produce a finite
state machine from a set of traces through a program. Stat-
eChum is able to produce machines that are more represen-
tative of the program as they do not include any unreachable
states; this comes at a price however, without an exhaustive
set of test data the machine may exclude some interesting
states. In addition to this the process is quite intensive as
minimising the machine requires sufficient information to
deduce that states are equivalent in order to merge them.

7. CONCLUSIONS AND FUTURE WORK

This paper investigated the application of the Bunch search-
based clustering tool to the clustering of states in a state
machine. For large state machines, clustering may identify
higher level ‘superstates’, which help developers to quickly
understand state machine diagrams representing a system.
The method of applying the Bunch tool to the problem was
evaluated with two case studies. In both cases, promising,
but not always perfect, results were obtained.

The possibility of incorporating other information into the
clustering process remains to be investigated. There is a pos-
sibility that state labels may be usable as an approximated
distance metric, perhaps through application of the Leven-
shtein distance metric [13]. By approximating a distance
metric between states it is anticipated that it will be pos-
sible to apply graph clustering algorithms as suggested by
Rattigan et al. [17]. There are other properties of the graph
that may be usable as a distance metric, including the num-
ber of transitions in common between nodes for example;
each of these may be usable to at least aid in clustering a
machine. It is also possible to conclude that M(Q may not
be best suited as a fitness function and could be augmented
or replaced with a more appropriate metric, such as EVM
as used by Harman et al. |11].

Of particular interest is the performance of this technique
when contrasted with related techniques. StateChum’s gram-
mar inference process is quite intensive. Although this tech-
nique performs clustering it may be applicable to the domain
of grammar inference as a grammar can be represented by
a state machine. Since this technique is concerned on the
structure of a state machine only rather than the actual
meaning of transitions it runs in a very small amount of
time. It may be the case that this technique can be used
in conjunction with StateChum by providing suggestions of
states to merge; those that are clustered together may be
better merge candidates.

The technique appeared to recover multiple levels of a
state hierarchy from the collapsed statechart which suggests
it may be applicable in production of hierarchies rather than
single clusterings. Although this is ideal as it would allow
generation of more useful diagrams for larger systems it also
creates a problem in that when clustering at one level some
clusters encapsulate nodes that should be in different clus-
ters and at a lower level clusters higher in the hierarchy
are divided into smaller sub-clusters which are not accurate
when compared with the target clustering.

The long term road map for this research is to produce
a stand-alone tool that is able to perform hierarchical clus-
tering driven by a number of algorithms, search-based or
otherwise. As the prime focus is on producing a tool that



will operate on output from StateChum, the effect it has
on the clustering of machines will be examined as it can in-
troduce noise. The initial development of the tool will be
concerned with replicating the functionality of Bunch in a
manner that enables additional information (such as labels)
as well as reflexive edges to be used in evaluating a candidate
clustering.
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