
Empirically Evaluating the Use of Bytecode for Diversity-Based
Test Case Prioritisation

Islam T. Elgendy
University of Sheffield

Sheffield, UK

Robert M. Hierons
University of Sheffield

Sheffield, UK

Phil McMinn
University of Sheffield

Sheffield, UK

ABSTRACT
Regression testing assures software correctness after changes but
is resource-intensive. Test Case Prioritisation (TCP) mitigates this
by ordering tests to maximise early fault detection. Diversity-based
TCP prioritises dissimilar tests, assuming they exercise different
system parts and uncover more faults. Traditional static diversity-
based TCP approaches (i.e., methods that utilise the dissimilarity
of tests), like the state-of-the-art FAST approach, rely on textual
diversity from test source code, which is effective but inefficient
due to its relative verbosity and redundancies affecting similarity
calculations. This paper is the first to study bytecode as the ba-
sis of diversity in TCP, leveraging its compactness for improved
efficiency and accuracy. An empirical study on seven Defects4J
projects shows that bytecode diversity improves fault detection by
2.3–7.8% over text-based TCP. It is also 2–3 orders of magnitude
faster in one TCP approach and 2.5–6 times faster in FAST-based
TCP. Filtering specific bytecode instructions improves efficiency
up to fourfold while maintaining effectiveness, making bytecode
diversity a superior static approach.

CCS CONCEPTS
• Software and its engineering→ Software testing and debug-
ging; Empirical software validation.

KEYWORDS
test case prioritisation, diversity-based testing, bytecode diversity,
textual diversity, Levenshtein distance, static analysis

ACM Reference Format:
Islam T. Elgendy, Robert M. Hierons, and Phil McMinn. 2025. Empirically
Evaluating the Use of Bytecode for Diversity-Based Test Case Prioritisation.
In Proceedings of The 29th International Conference on Evaluation and As-
sessment in Software Engineering (EASE 2025). ACM, New York, NY, USA,
11 pages. https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION
Regression testing is a fundamental component of software testing.
Its purpose is to verify the correctness of software after modifica-
tions to the software itself or its execution environment. Although

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
EASE 2025, 17–20 June, 2025, Istanbul, Türkiye
© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-XXXX-X/2025/06. . . $15.00
https://doi.org/XXXXXXX.XXXXXXX

regression testing is important, it is widely recognised as a resource-
intensive and time-consuming process [33]. Test Case Prioritisation
(TCP) is a primary strategy to mitigate this challenge. TCP reorders
test cases to maximise early fault detection, particularly when it has
to be prematurely halted due to budgetary constraints [33]. In the
domain of software testing research, TCP has garnered significant
attention [13, 17, 22, 33], with diversity-based testing techniques
playing a pivotal role [7, 20, 23]. Elgendy et al. [7] provide a formal
definition of diversity-based testing techniques, which quantify
dissimilarity among test cases through a distance metric derived
from various artefacts related to the test, such as inputs or the text
of the test cases. The idea of using test diversity is that dissimilar
test cases are more likely to exercise different parts of the system
than more similar test cases, increasing fault detection.

TCP approaches that utilise the source code of the test cases
can be classified mainly as static techniques (i.e., techniques that
analyse test cases’ text), and dynamic techniques (i.e., techniques
that require test suite execution). An example of a static technique
is using the source code of the test cases [20], while an example of
a dynamic technique is using coverage information [28]. Static ap-
proaches may be less effective, but they do not require any complex
program instrumentation and program execution.

Many diversity-based TCP techniques leverage different testing
artefacts, with static approaches that rely on test case text being
commonly used and showing promising results [1, 20, 23, 31, 32].
These static techniques simplify the process by avoiding program
instrumentation or model construction. However, relying on test
case text has inherent limitations. The string-based representation
of test cases is verbose and often large, increasing the time required
for similarity calculations, particularly with complex distance met-
rics like Levenshtein distance [5]. Furthermore, we hypothesise
that test cases contain extraneous information for detecting faults
such as variable names, comments, and assertion messages, which
can distort similarity calculations and affect prioritisation.

Miranda et al. [23] introduced the FAST family of TCP approaches
to address runtime concerns with large test suites by leveraging
big data techniques such as Shingling, Minhashing, and Locality-
Sensitive Hashing to compute test similarity for TCP. However,
these techniques still measure similarity based on test case text.
While preprocessing to remove comments and whitespace can miti-
gate some issues, it does not eliminate all irrelevant information. A
more concise and efficient representation of test cases could address
these limitations by reducing the size of the data used for similarity
calculations and eliminating irrelevant information.

In this paper, we propose to use the bytecode of the test cases
as the basis for diversity calculations. Bytecode, the intermediate
code executed by a virtual machine, offers a more abstract repre-
sentation than machine code but is more concrete than high-level
programming language code. The bytecode is smaller than the

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

EASE 2025, 17–20 June, 2025, Istanbul, Türkiye Islam T. Elgendy, Robert M. Hierons, and Phil McMinn

source code, as it is a condensed form of the original source code
that strips away information such as comments, whitespace, and
variable names. It retains only execution-critical details, making it
more efficient to store and process than source code. While this may
reduce diversity, our hypothesis it does not hinder effectiveness.
Moreover, not all bytecode instructions differentiate tests. Some
instructions, such as loading and storing variables in/from the stack,
serve a mechanical role rather than providing insight into the logic
of the test. Therefore, we further propose to filter out these types
of bytecode instructions and extract only instructions that relate to
the functionality being tested, such as setting up specific values or
calling methods that are central to the test’s purpose.

We implemented two state-of-the-art static TCP approaches,
Ledru-TCP [20] and FAST-TCP [23], applying bytecode similarity
for the first time instead of textual similarity. We evaluated its ef-
fectiveness and efficiency against traditional static TCP approaches
using textual diversity. The Levenshtein distance measured textual
similarity, as it suits string data representations [7] and varying
test sizes, and the same metric was used for bytecode similarity
to ensure consistency. Results show that bytecode-based TCP out-
performs text-based TCP, achieving 2.3%–7.8% higher APFD and
up to 3.9 times better real-fault detection. The filtering bytecode
approach improved APFD by 4.5% to 5.1% and doubled real fault
detection compared to textual information.

Additionally, bytecode diversity-based methods are significantly
faster than textual diversity-based ones. Ledru-TCP using all byte-
code information was 2–3 orders of magnitude faster than using
text and 2.5 to 6 times faster in FAST-TCP. Filtering bytecode in-
formation was 455–2798 times faster than text in Ledru-TCP and
4–17.9 times faster in FAST-TCP.

Finally, we evaluated how closely static bytecode diversity TCP
matches dynamic TCP performance. We implemented two dynamic
TCP techniques using greedy total and greedy additional algo-
rithms [28]. As expected, dynamic approaches, with more informa-
tion, outperformed bytecode diversity in fault detection, achieving
2.8%–3.5% higher APFDs. However, the best bytecode TCP approach
was 6.5–8.3 times faster and avoids the complexity of program in-
strumentation required for coverage-based techniques. We provide
a replication package [6] with detailed descriptions of the system.
The paper offers the following contributions:

(1) The first known use of bytecode of test cases as a basis for
measuring their diversity in a TCP technique.

(2) A novel bytecode filtering method for further enhancing
TCP efficiency.

(3) An evaluation of bytecode diversity against textual diversity-
based approaches, providing new insights into their effective-
ness in mutant and real-fault detection, as well as runtime
performance.

(4) An empirical comparison of static and dynamic TCP ap-
proaches with bytecode diversity-based TCP, using data from
seven projects and 97 versions from Defects4J, offering in-
sights into the benefits of bytecode diversity.

2 BACKGROUND
In this section, we briefly explain TCP in general and diversity-
based TCP approaches in particular.

 1. Input Stage
 Start with a set of test
 cases (T1, T2, T3).

 2. Analysis Stage
 Analyse test cases for criti-
 cality factors (e.g. code
 coverage, test similarity)

 3. Prioritisation Algorithm
 Apply a prioritisation technique
 to reorder test cases.

 4. Reordered Test Cases
 Output prioritised list of test
 cases (T3, T1, T2)

 5. Execution Stage
 Execute test cases in
 prioritised order

Coverage

Text

Bytecode

Figure 1: TCP process diagram

2.1 Test Case Prioritisation
Test case prioritisation (TCP) re-orders test cases so that the tester
gets the maximum benefit if testing is prematurely stopped at
some arbitrary point due to some budget constraints [33]. Figure 1
presents the general TCP process diagram showing the main stages
of TCP. The primary goal of TCP is to identify and execute the most
critical test cases earlier in the testing process. This leads to earlier
fault detection and better resource utilisation. Rothermel et al. [28]
formally defined TCP as follows: Given a test suite 𝑇 , the set of
permutations 𝑃 of 𝑇 , and an award function 𝑓 from 𝑃 to real num-
bers, find (𝑇 ′ ∈ 𝑃) such that ∀𝑇 ′′, where 𝑇 ′′ ∈ 𝑃 and 𝑇 ′′ ≠ 𝑇 ′,
𝑓 (𝑇 ′) ≥ 𝑓 (𝑇 ′′). The award function 𝑓 can be based on several cri-
teria, such as code coverage [27, 28], fault detection history [11, 19],
high-risk features [4], software requirements [2, 29], or diversity
of test cases [20, 23].

A well-known metric to evaluate TCP approaches is the Average
Percentage of Faults Detected (APFD). The faults can be real faults
or mutants. It is calculated using the following equation:

APFD = 1 − TF1 + TF2 + · · · + TFm
𝑛𝑚

+ 1
2𝑛

(1)

where 𝑛 is the number of tests in the test suite,𝑚 is the number
of killable faults, and TFi is the position of the first test case that
detects the fault 𝑖 .

2.2 Diversity-Based TCP
In this work, we focus on diversity-based TCP, where the function
𝑓 assesses test cases based on their diversity, either by rewarding
those that are most dissimilar to others in an incrementally con-
structed subset 𝑃 or by evaluating the overall diversity of the entire
test suite. Elgendy et al. [7] provided a recent survey on diversity-
based testing techniques in software testing in general and covered
diversity-based techniques in TCP. First, diversity-based TCP col-
lects the relevant information of the test case. These can be the
source code of the test cases, the inputs to the test, the outputs of
the test cases, etc. Then, the pairwise dissimilarity values between
test cases are measured according to some distance metric, such as
Euclidean distance, Jaccard distance, Levenshtein distance, etc. A
“dissimilarity value” is a measure that quantifies how different two
test cases are, typically based on shared characteristics or features.
In our work, a lower dissimilarity value indicates greater similarity,
while a higher value reflects greater dissimilarity. Finally, test cases
are ordered based on the dissimilarity values. The ordering occurs
in iterations, where in each iteration a test case is removed from the
test suite and added to the new permutation set. The first test case

Empirically Evaluating the Use of Bytecode for Diversity-Based Test Case Prioritisation EASE 2025, 17–20 June, 2025, Istanbul, Türkiye

to be added to the permuted set can be selected randomly, or might
be the most dissimilar test case from all others. Then, subsequent
tests are selected one at a time, where the most dissimilar test from
the ones already in the permuted set is selected, and the process
continues until the test suite is completed.

Ledru et al. [20] proposed such a diversity-based TCP approach.
They used five different distance metrics to calculate the pairwise
dissimilarity values between test cases. The dissimilarity values are
stored in a “similarity matrix”. Miranda et al. [23] developed the
FAST family of TCP techniques, which are quick and scalable for
large test suites. They applied some big data techniques, such as
Shingling, Minhashing, and Locality-Sensitive Hashing to calculate
the dissimilarity between test cases. In both works, the source code
of the test cases is used as a basis to calculate dissimilarity. We will
expand more on these works in Section 3.3.

2.3 Bytecode
Bytecode is an intermediate representation of source code, designed
to be executed by a virtual machine rather than directly by the
hardware. Bytecode is generated by a compiler from the source code
and is typically more compact, as it omits non-essential elements
like comments and variable names. This compactness enhances
processing efficiency and reduces storage requirements, making
bytecode an attractive artefact for TCP.

Java Bytecode is the Java Virtual Machine (JVM)-executable
intermediate representation compiled from Java source code. Java
Bytecode consists of a set of instructions and operands encoded
in a binary format, providing a structured and efficient means of
representing the program’s logic and structure. ASM [8], a widely
used library, enables dynamic bytecode manipulation, supporting
class transformation, instrumentation, and analysis.

3 APPROACH
In this section, we show a motivating example and describe the
TCP approaches used in our study.

3.1 Motivating Example
Consider three test cases written by developers for the Apache
Commons Math project shown in Figure 2 parts a)-c). We made a
variation of test case 3, to showcase the problem, shown in Figure 2d.
The test cases are designed to test the BigFraction class. Figure 3
shows the bytecodes of the test cases shown in Figure 2 in the
human-readable and hexadecimal forms.

Let us take the example of the method testFormatNegative
shown in Figure 2b and its corresponding bytecode shown in the
second column of Figure 3a to illustrate how high-level Java in-
structions translate into low-level bytecode instructions. In the
source code, a BigFraction object is created and initialised with
the values -1 and 2. The bytecode reflects this sequence starting
with the new instruction at index 0, which allocates memory for the
new BigFraction object. The dup instruction at index 3 duplicates
the top value of the stack to prepare for the constructor invocation,
and the iconst_m1 and iconst_2 instructions at 4 and 5 push the
values -1 and 2 onto the stack, respectively. The invokespecial in-
struction at 6 calls the constructor to initialise the object. Bytecode
method invocation instructions are represented by invokevirtual,

1 public void testParseBig () {
2 BigFraction f1 = improperFormat.parse("16721..." +
3 " / " + "532255...");
4 Assert.assertEquals(FastMath.PI,

f1.doubleValue (), 0.0);
5 BigFraction f2 = properFormat.parse("3 " +
6 "75363..." + " / " + "53225...");
7 Assert.assertEquals(FastMath.PI,

f2.doubleValue (), 0.0);
8 Assert.assertEquals(f1, f2);
9 BigDecimal pi = new BigDecimal("3.14159...");
10 Assert.assertEquals(pi, f1.bigDecimalValue (99,

BigDecimal.ROUND_HALF_EVEN));
11 }

(a) Test case 1

1 public void testFormatNegative () {
2 BigFraction c = new BigFraction(-1, 2);
3 String expected = "-1 / 2";
4
5 String actual = properFormat.format(c);
6 Assert.assertEquals(expected , actual);
7
8 actual = improperFormat.format(c);
9 Assert.assertEquals(expected , actual);
10 }

(b) Test case 2

1 public void testFormatZero () {
2 BigFraction c = new BigFraction (0, 1);
3 String expected = "0 / 1";
4
5 String actual = properFormat.format(c);
6 Assert.assertEquals(expected , actual);
7
8 actual = improperFormat.format(c);
9 Assert.assertEquals(expected , actual);
10 }

(c) Test case 3 (original)

1 public void testFormatZero () {
2 BigFraction bigFraction = new BigFraction (0, 1);
3 // The expected output
4 String output = "0 / 1";
5
6 // The actual output
7 String actual = properFormat.format(bigFraction);
8 Assert.assertEquals(output , actual);
9
10 actual = improperFormat.format(bigFraction);
11 Assert.assertEquals(output , actual);
12 }

(d) Test case 3 (variation)

Figure 2: An example of four test cases from theMath project,
with test case 3 having two variations

invokestatic, and invokespecial. Other bytecode instructions
that involve loading and storing references to/from local variables
are aload and astore, respectively. Field access instructions, like
properFormat or improperFormat.format, are represented by
getfield, putfield, and getstatic.

The textual test cases from Figure 2 are 705, 258, 252, and 320
bytes, respectively. Textual representations of test cases include
additional elements such as variable names, comments, and for-
matting, which do not contribute to test behaviour but can inflate
dissimilarity calculations. For instance, testFormatZero has two
variations (Figures 2c and 2d), differing only in variable names

EASE 2025, 17–20 June, 2025, Istanbul, Türkiye Islam T. Elgendy, Robert M. Hierons, and Phil McMinn

and comments—purely informational elements to the tester that
do not affect execution. However, textual diversity methods treat
these variations as more dissimilar than they actually are. In con-
trast, bytecode diversity captures only the core executable logic,
leading to a more compact and precise representation. The two
variations of testFormatZero produce identical bytecode despite
textual differences, as shown in the last column in Figure 3.

The bytecode sizes are just 48, 37, and 37 bytes, respectively. The
significant difference in size between the textual representation
and the bytecode form highlights the potential inefficiencies of
using textual diversity in TCP. Using Levenshtein distance, the
textual dissimilarity between test cases 1 and 2 is 545, whereas
their bytecode dissimilarity is only 31. For test case 2 (Figure 2b)
and the original test case 3 (Figure 2c), the textual dissimilarity
is 13, increasing to 69 in the second variation (Figure 2d) due to
extraneous information (i.e., a difference of 56). In contrast, both
variations of test case 3 produce identical bytecode, resulting in a
consistent bytecode dissimilarity of just 2.

Clearly, bytecode is significantly smaller than its textual counter-
part, reducing the computational overhead involved in calculating
similarity values. This can lead to faster execution of TCP processes.
Also, by focusing on the actual executable logic, bytecode diversity
can avoid being potentially misled by superficial differences in the
textual representation, leading to a more accurate assessment of
the diversity between test cases.

3.2 Filtering Bytecode
When analysing the diversity of test cases based on their bytecode
instructions, note that not all instructions contribute equally to
the logical complexity or uniqueness of a test. Certain bytecode
instructions, while essential for execution, are ubiquitous and serve
a mechanical role rather than reflecting the test’s unique logic.
For instance, instructions like aload (loading a variable onto the
stack) and astore (storing a variable from the stack) are necessary
for code execution but are common across most tests and do not
provide meaningful insight into the test’s distinct behaviour.

In contrast, instructions such as iconst (pushing constant val-
ues onto the stack) or method invocations like invokevirtual and
invokestatic better reflect the test’s intent and logic. These in-
structions directly relate to the functionality being tested, such as
initialising specific values or invoking methods that are central to
the test’s purpose. By focusing on these substantive instructions,
diversity calculations can more accurately capture the variation in
test logic and functionality by excluding routine operations that do
not contribute to the core logic of the test case.

Filtering out routine bytecode instructions from diversity cal-
culations will have a significant advantage: it reduces the overall
size of the resulting bytecode. Many bytecode instructions, such as
aload and astore, occur frequently and contribute to the bulk of
the bytecode without adding meaningful diversity in terms of test
logic. By excluding these routine instructions, the size of the byte-
code representation for each test case becomes smaller and more
concise. Figure 3b shows the hexadecimal forms of the bytecode
and the filtered versions.

This filtering approach allows for a more meaningful analysis of
the test suite’s variety, highlighting the differences in test goals and

testParseBig: testFormatNegative: testFormatZero:
0: aload_0 0: new #8 0: new #8
1: getfield #3 3: dup 3: dup
4: ldc #50 4: iconst_m1 4: iconst_0
6: invokevirtual #19 5: iconst_2 5: iconst_1
9: astore_1 6: invokespecial #9 6: invokespecial #9
10: ldc2_w #52 9: astore_1 9: astore_1
13: aload_1 10: ldc #13 10: ldc #14
14: invokevirtual #54 12: astore_2 12: astore_2
17: dconst_0 13: aload_0 13: aload_0
18: invokestatic #55 14: getfield #2 14: getfield #2
21: aload_0 17: aload_1 17: aload_1
22: getfield #2 18: invokevirtual #11 18: invokevirtual #11
25: ldc #56 21: astore_3 21: astore_3
27: invokevirtual #19 22: aload_2 22: aload_2
30: astore_2 23: aload_3 23: aload_3
31: ldc2_w #52 24: invokestatic #12 24: invokestatic #12
34: aload_2 27: aload_0 27: aload_0
35: invokevirtual #54 28: getfield #3 28: getfield #3
38: dconst_0 31: aload_1 31: aload_1
39: invokestatic #55 32: invokevirtual #11 32: invokevirtual #11
42: aload_1 35: astore_3 35: astore_3
43: aload_2 36: aload_2 36: aload_2
44: invokestatic #12 37: aload_3 37: aload_3
47: new #57 38: invokestatic #12 38: invokestatic #12
50: dup 41: return 41: return
51: ldc #58
53: invokespecial #59
56: astore_3
57: aload_3
58: aload_1
59: bipush 99
61: bipush 6
63: invokevirtual #60
66: invokestatic #12
69: return

(a) The human-readable form

testParseBig:
19 00 B4 12 B6 3A 01 12 19 01 B6 0E B8 19 00 B4 12 B6 3A 02 12 19 02 B6 0E

B8 19 01 19 02 B8 BB 59 12 B7 3A 03 19 03 19 01 10 63 10 06 B6 B8 B1

testParseBig -filtered:
B4 B6 B6 0E B8 B4 B6 B6 0E B8 B8 59 B7 10 63 10 06 B6 B8 B1

testFormatNegative:
BB 59 02 05 B7 3A 01 12 3A 02 19 00 B4 19 01 B6 3A 03 19 02 19 03 B8 19 00

B4 19 01 B6 3A 03 19 02 19 03 B8 B1

testFormatNegative -filtered:
59 02 05 B7 B4 B6 B8 B4 B6 B8 B1

testFormatZero:
BB 59 03 04 B7 3A 01 12 3A 02 19 00 B4 19 01 B6 3A 03 19 02 19 03 B8 19 00

B4 19 01 B6 3A 03 19 02 19 03 B8 B1

testFormatZero -filtered:
59 03 04 B7 B4 B6 B8 B4 B6 B8 B1

(b) The Hexadecimal form

Figure 3: The human-readable and the Hexadecimal formats
of the bytecodes for the tests in Figure 2

behaviours rather than superficial variations in how variables are
manipulated. Also, the reduction in bytecode size has a direct impact
on the efficiency of diversity calculations. With a smaller set of
instructions to analyse, the computational overhead for comparing
test cases decreases significantly. This leads to faster processing
times, making it feasible to evaluate large test suites more efficiently.

3.3 TCP Approaches
We implemented Ledru-TCP [20] and FAST-TCP [23], two state-of-
the-art TCP approaches. Miranda et al. [23] proposed a family of
TCP approaches, and we used one of these, FAST-pw. We chose
to use FAST-pw because they reported it to be the most precise in
the ranking, as it guarantees the selection of the most dissimilar
test case from the ones already prioritised. We will simply refer
to it as FAST from now on. Ledru-TCP and FAST-TCP are general
TCP algorithms that can operate on either textual or bytecode
information.When using textual information, they are referred to as

Empirically Evaluating the Use of Bytecode for Diversity-Based Test Case Prioritisation EASE 2025, 17–20 June, 2025, Istanbul, Türkiye

Algorithm 1: Ledru-TCP algorithm, summarised from [20]
Input: List of tests 𝑇 ; Similarity matrix 𝑆𝑖𝑚𝑇

Output: Prioritised test suite 𝑃
1 𝑃 ← ∅
// First selection

2 minValues← getMinValues(𝑆𝑖𝑚𝑇 , 𝑇)
3 maxKey = getMaxOfMins(minValues)
4 𝑃 ← Append(𝑃 , 𝑇 [maxKey])
5 𝑇 ← Remove(𝑇 , 𝑇 [maxKey])
// Subsequent selections

6 while |𝑇 | ≠ 0 do
7 minValues← getMinValues(𝑆𝑖𝑚𝑇 , 𝑃)
8 maxKey = getMaxOfMins(minValues)
9 𝑃 ← Append(𝑃 , 𝑇 [maxKey])

10 𝑇 ← Remove(𝑇 , 𝑇 [maxKey])
11 return 𝑃

Ledru-Text and FAST-Text, respectively, and when using bytecode,
they are referred to as Ledru-Bytecode and FAST-Bytecode.

For Ledru-Bytecode, we used the ASM Java library to read the
bytecode of the test cases and applied the Levenshtein distance [21]
to calculate the pairwise dissimilarity values and save them in a sim-
ilarity matrix. Algorithm 1 shows the steps of the Ledru-TCP [20].
The information we have is the pairwise similarity matrix 𝑆𝑖𝑚𝑇 ,
and the list of tests 𝑇 . The similarity matrix is a two-dimensional
array, where each cell contains the textual/bytecode dissimilarity
value between two test cases. We keep another list of the permuted
tests 𝑃 , which is initially empty (Line 1). First, using the similar-
ity matrix, the minimum value of each row is saved into an array
minValues (Line 2). For the first selection, we get the test that has
the maximum value of the minValues (Line 3). This is the test that
is the farthest away from all the rest. If multiple candidates have
the same maximum value, we pick the first one. We add this test
into 𝑃 and remove it from 𝑇 (Lines 4 and 5).

For the subsequent selections, we calculate the minimum values
of 𝑃 from the matrix and save them into minValues (Line 7). Then
we get the test that has the maximum value of the new minValues
array (Line 8). This is the test that is the farthest away from all the
tests already selected in P. This test is added to 𝑃 and removed from
𝑇 (Lines 9 and 10), repeating until all tests are selected.

In FAST-Bytecode, we used the ASM Java library to read the byte-
codes, which are then converted into a hexadecimal format to serve
as the encoded representation of the test suite. Algorithm 2 outlines
the steps involved in FAST-TCP [23]. Initially, the permuted test
suite 𝑃 is empty (Line 1), and the indices of the test cases are stored
in 𝐼 (Line 2). Using the encoded representation (text or bytecode) of
the test suite𝑇 , FAST generates the MinHash signatures𝑀 (Line 3).
The algorithm then computes the Locality-Sensitive Hashing (LSH)
buckets 𝐵 (Line 4), while the cumulative signatures of the ordered
test cases, denoted as𝑀 (𝑣), are initially set to empty (Line 5).

The candidate sets are generated within a while loop (Lines 6-
15), where the prioritisation process occurs.𝑀 (𝑣) is divided into 𝑏
bands, each of which is hashed. If a collision is detected with the
corresponding bucket in 𝐵, the test cases within that bucket are

Algorithm 2: FAST-TCP algorithm [23]
Input: Coded test suite 𝑇
Output: Prioritised test suite 𝑃

1 𝑃 ← ∅
2 𝐼 ← GetTextCaseIDs(𝑇)
3 𝑀 ← MHSignatures(𝑇)
4 𝐵← LSHBuckets(𝑀)
5 𝑀 (𝑣) ← MHSignatures(∅)
6 while |𝑃 | ≠ |𝐼 | do
7 𝐶𝑠 ← LSHCandidates(𝐵,𝑀 (𝑣))
8 if 𝐶𝑠 = ∅ then
9 𝑀 (𝑣) ← MHSignatures(∅)

10 𝐶𝑠 ← LSHCandidates(𝐵,𝑀 (𝑣))
11 𝐶𝑑 ← (𝐼 − 𝑃 −𝐶𝑠)
12 𝑠 ← argmax𝑐∈𝐶 {JaccardDistance(𝑀 (𝑣), 𝑀 (𝑐))}
13 𝑀 (𝑣) ← UpdateMHSignatures(𝑀 (𝑣), 𝑀, 𝑠)
14 𝑀 ← Remove(𝑀 , 𝑠)
15 𝑃 ← Append(𝑃 , 𝑠)
16 return 𝑃

added to the candidate set 𝐶𝑠 (Line 7). The actual candidate set 𝐶𝑑 ,
used by FAST, is calculated as the complement of 𝐶𝑠 , excluding the
test cases that have already been prioritised in 𝑃 (Line 11). FAST
then selects the candidate test case that is farthest from𝑀 (𝑣) based
on the Jaccard distance (Line 12). 𝑀 (𝑣) is updated to reflect the
cumulative signatures of 𝑃 (Line 13). Lastly, the selected test case
is removed from𝑀 and added to 𝑃 (Lines 14 and 15).

4 EVALUATION
We evaluated the proposed use of bytecode as a diversity artefact
in TCP with the textual artefact in two static TCP approaches. We
described the diversity-based TCP approaches in Section 3.3.

Additionally, we compared the static TCP approach using byte-
code with dynamic TCP approaches. Thus, we implemented two
coverage-based TCP techniques, Greedy Total and Greedy Addi-
tional. First, we selected the test case with the highest coverage. If
two tests have the same coverage, the first one is selected. Then we
selected the next test cases based on the total maximum coverage,
in the case of greedy total, or based on the maximum additional
coverage, in the case of greedy additional. If there is more than one
possible test case with maximum coverage, the first one is selected.
For greedy additional, when max coverage is reached, we used a
stacking approach, where coverage information is reset and the
selection process continues as before. This process continued until
the last test case was selected.

4.1 Research Questions
This study introduces the use of bytecode diversity as a diversity
artefact in diversity-based TCP techniques. We answer the follow-
ing research questions:

RQ1: Bytecode vs. Textual Diversity How does bytecode
diversity compare to textual diversity in the context of diversity-
based TCP techniques, such as those proposed by Ledru and FAST?

EASE 2025, 17–20 June, 2025, Istanbul, Türkiye Islam T. Elgendy, Robert M. Hierons, and Phil McMinn

Table 1: The test subjects used in our work

ID Project name #Versions #Unique
Classes

#Real
Faults

#Mutants # Test Cases

Randoop EvoSuite Developer Total

Cli jfreechart 5 4 7 851 7425 279 242 7946
Compress commons-compress 7 5 7 1051 10769 133 38 10940
Csv commons-csv 10 5 10 767 15050 260 550 15860
Jsoup jsoup 16 10 16 767 20575 278 632 21485
Lang commons-lang 15 11 15 4136 25893 1103 688 27684
Math commons-math 42 36 50 10986 27235 962 1612 29809
Time joda-time 2 2 2 268 499 172 69 740
Total 97 67 107 18826 107446 3187 3831 114464

This RQ seeks to evaluate the effectiveness and applicability of
bytecode diversity as an alternative to textual diversity.

RQ2: Filtering BytecodeWhat is the impact of filtering byte-
code instructions on the effectiveness and efficiency of static TCP
approaches? RQ2 explores whether reducing the set of bytecode
instructions considered can improve performance (speed) while
maintaining or enhancing prioritisation quality.

RQ3: Bytecode TCP vs. Dynamic TCP How does bytecode
diversity, as a static TCP technique, perform compared to dynamic
techniques that rely on coverage information? Finally, RQ3 aims to
assess how close the performance of a static TCP approach based
on bytecode is to that of dynamic TCP approaches.

4.2 Evaluation Metrics
To assess the effectiveness and efficiency of testing processes in our
study, we used the following evaluation metrics. We used mutation
testing evaluated by APFD defined in Equation 1 and described
in Section 2.1. Also, we utilised the real faults recorded in De-
fects4J [16] and used the number of the first test to reveal the real
fault as the evaluation metric. A test that can reveal a real fault is
one that fails in the buggy version of the Defects4J but passes in
the fixed version.

In order to evaluate the efficiency of the TCP approaches, we
recorded the wall clock time of each TCP approach. For diversity-
based techniques, there is a stage to calculate the similarity matrix
for Ledru-TCP, or the signatures for FAST-TCP. This stage is re-
ferred to as “preparation time”. Then, there is the “prioritisation
time”, which is the time taken to reorder the test suite based on the
various TCP approaches. Obtaining coverage information requires
either instrumenting the program under test and running the entire
test suite or executing each test case individually to record coverage
data. In this work, we adopted the latter approach. However, to
prevent unfair treatment of coverage-based techniques, as instru-
mentation would be considerably faster, we excluded preparation
times and concentrated solely on prioritisation times.

4.3 Subjects
We ran our experiments using Java projects from the Defects4J
framework [16]. While we initially considered all available projects,
we selected seven Maven-based projects where JaCoCo [15] suc-
cessfully generated coverage reports and PIT mutation analysis [3]
ran without issues. Other projects were excluded due to failures in

meeting these requirements. We attempted to debug these issues
for a week but ultimately did not pursue them further.

For our test suites, we used the developer-written tests aug-
mented with automatically generated tests from Randoop [26] and
EvoSuite [9]. We undertook this to create large, diverse test pools
that possess high fault detection rates (i.e., mutation score) and can
identify the real faults. Table 1 shows the projects and the size of
the test suites for each project used in our study, where a total of 97
versions and 67 unique classes are used in our experiments. Also, we
reported the number of mutants generated using the PIT mutation
tool, the number of Randoop tests, the number of EvoSuite tests,
and the number of developer-written tests for each project. PIT
is a widely adopted tool in both academic and industrial settings,
and we employed Randoop and EvoSuite, which are state-of-the-art
tools for automated test generation in Java.

In Defects4J, the targeted classes of two different versions can
be the same, but the real fault can be different. For example, the
project Math version 26 (Math26) and version 27 (Math27) both
target the “Fraction” class. The fault in Math26 is in the con-
structor of the class, while the fault in Math27 is in the method
“percentageValue”. As a result, the number of unique classes is
lower than the number of versions.

We configured PIT to target the classes specified by Defects4J
as target classes for which there are real faults. For example, in
Math26, we configured PIT to target the “Fraction” class, since the
real fault is in the “Fraction” class.

4.4 Methodology
In this section, we describe our methodology for obtaining the tex-
tual and bytecode information, mutation data, real fault detection,
runtime, and coverage information, all of which are to be used in
the static and dynamic TCP approaches. We developed a tool to
automate all the steps for our experiments.

4.4.1 Data Collection. Our tool parses the test files’ source code
and extracts each test case. The lines of each test case are concate-
nated into a single string, where the tool calculates the pairwise
dissimilarity values between the strings of test cases using Lev-
enshtein distance. We used the Levenshtein distance because it
was reported by Elgendy et al. [7] to be more appropriate with
string data, which is the nature of our test cases. In another study,
Elgendy et al. [5] reported that Levenshtein distance performs well
as a string distance metric. Then, a textual similarity CSV file is

Empirically Evaluating the Use of Bytecode for Diversity-Based Test Case Prioritisation EASE 2025, 17–20 June, 2025, Istanbul, Türkiye

generated that represents the textual similarity matrix. We com-
piled the source code using Apache Maven 3.6.3, which in turn
used the javac compiler from OpenJDK 1.8.0_442. The tool also
uses the ASM Java library to read the bytecode files (.class) in their
binary format and uses the same Levenshtein distance to calculate
the pairwise bytecode similarity between test cases. A separate
bytecode similarity CSV file is generated. The textual and bytecode
similarity files are to be used in Ledru-TCP.

To collect data for FAST-TCP, the tool saves the concatenated
strings representing test cases and the hexadecimal form of the
bytecodes in text files. These text files are the input for FAST-TCP.

Additionally, the tool filters the bytecode instructions to include
only instructions that push constant values onto the stack (like
iconst), get field access instructions (like getfield or putfield),
or invoke methods (like invokevirtual or invokestatic). We
used the ASM Java library to target these specific instructions
and discard the rest. As before, the tool produces separate filtered
bytecode similarity files and text files that contain the hexadecimal
form of the filtered bytecodes.

The tool obtains coverage, mutation, and error-revealing infor-
mation about the test cases. The tool ran each test case indepen-
dently and used the generated JaCoCo reports to gather coverage
information (statement and branch) for that test case. The tool also
runs PIT mutation analysis and parses the XML file generated by
PIT to produce a mutation “kill map”. A mutation “kill map” is a
two-dimensional data structure that shows for each generated mu-
tant which tests were able to kill that mutant. The tool also runs
the test suite against the buggy versions of Defects4J to record all
the error-revealing tests.

4.4.2 Prioritising Test Cases. We are now ready to perform our TCP
strategies, whichwe described in Section 3.3 and the coverage-based
approaches described at the start of Section 4. We apply Ledru-TCP,
described in Algorithm 1, using three different similarity matrices:
textual similarity, all bytecode similarity, and filtered bytecode
similarity. Also, we apply FAST-TCP, described in Algorithm 2,
with three different input files, using the text of the test cases, the
hexadecimal form of all bytecode, and the hexadecimal form of
filtered bytecode.

4.4.3 TCP Evaluation. As described in Section 4.2, we evaluate
the TCP strategies through mutation score, real-fault detection,
and runtime. The tool uses the newly ordered test suite and the
mutation information to calculate the APFD using Equation 1 for
each TCP strategy.

With every test case added to the list of ordered tests, the tool
checks that test case against the list of error-revealing tests. The
tool records the index of the first test case to detect the real fault
for each TCP strategy. The tool records the time taken to gener-
ate the similarity matrix, build the required signatures, and the
prioritisation time.

To validate our results, we employed the non-parametric “Mann-
Whitney U” statistical test, as the data are independent and we
cannot assume a normal distribution. Additionally, we used the
Vargha-Delaney (𝐴12) effect size test [30], a non-parametric mea-
sure that compares two groups by estimating the probability that a
randomly selected value from one group is larger than a randomly
selected value from the other group.

4.5 Threats to Validity
In this section, we address validity threats that can affect our results.

Construct validity: The selected string distance to measure test
case similarity could be wrong. We mitigated this by using a widely
known distance metric (Levenshtein), which is suitable given the
nature of the data as reported by other works [5, 7, 20]. Another
threat would be that the implementation of Ledru-TCP and FAST-
TCP can be invalid. We mitigated this by running the implemented
Ledru-TCP against the case studies provided by Ledru et al. [20],
getting the same results, and by using the replication package for
FAST-TCP provided by Miranda et al. [24]. Miranda et al. [23]
used the text of the entire test classes as records for the input,
while we used the individual test cases as records. We had an email
correspondence with one of the authors to verify that we used the
latest version of FAST, and that using individual test cases is valid.

Internal validity: The results can be affected by the nature
of the used tests in our test suite, as the test suites we used are
comprised of developer-written tests and automatically generated
tests from Randoop and EvoSuite. To mitigate this risk, we ran
our experiments on different test suites, where we used developer-
written tests only, Randoop tests only, and EvoSuite tests only. We
found negligible differences and our findings are not affected. These
results are reported in our replication package [6].

External validity: The findings of our study may not generalise
to different subjects. We mitigated this risk by using seven different
Java projects from Defects4J, a publicly available and widely used
framework, and ran our experiments on 97 versions of the projects
and 67 different classes within the projects. The detailed results
of each project are reported in our replication package. Another
threat is whether our results give a valid summary of performance.
To mitigate this risk, we go beyond single-dimensional summaries
of performance (e.g., median) to include measures of variation (e.g.,
standard deviation), and confidence (e.g., using statistical testing
and effect size).

Reliability: To address reproducibility concerns, we: (1) detailed
all TCP approaches and subject characteristics, (2) thoroughly doc-
umented our methodology (including data collection and bytecode
filtering criteria), and (3) provided a complete replication package
on GitHub [6] with subjects, resources, implementation details, and
an executable README.

5 RESULTS
5.1 RQ1: Bytecode vs. Textual Diversity
Tables 2 and 3 refer to the APFDs and real-fault detection for the
static diversity-based TCP approaches for all projects. The first
column is the TCP approach and diversity artefact used. For in-
stance, Ledru-Text applies Ledru-TCP using textual information,
Ledru-Bytecode applies Ledru-TCP with all bytecode information,
and FAST-Bytecode-Filter applies FAST-TCP employing the filtered
bytecode information. The next two columns have the median and
standard deviation (SD). The last two columns have the pairwise
p-values and the Vargha-Delaney (𝐴12) effect sizes of the diversity-
based TCP approaches. The highest APFD median value of the TCP
approaches and the lowest median number of the first test case to
detect the real faults are highlighted in the table. Also, we high-
lighted the p-values that are significantly different using 𝛼 = 0.05

EASE 2025, 17–20 June, 2025, Istanbul, Türkiye Islam T. Elgendy, Robert M. Hierons, and Phil McMinn

Table 2: APFDs for all static TCP approaches across all
projects.

Approach Median SD p-value 𝐴12
Ledru-Text 87.6 12.8 - -
Ledru-Bytecode 89.9 12.9 0.453 0.53*
Ledru-Bytecode-Filter 92.1 11.6 0.040 0.59*
FAST-Text 85.4 20.5 - -
FAST-Bytecode 93.2 11.9 0.000 0.67**
FAST-Bytecode-Filter 90.5 14.8 0.013 0.60*

SD is the standard deviation and 𝐴12 is the effect size. The p-values
and the effect sizes are between textual diversity and bytecode diversity
for each TCP technique. A small effect size is marked with (*), while a
medium effect size is marked with (**).

Table 3: Real-fault detection for all static TCP approaches
across all projects.

Approach Median SD p-value 𝐴12
Ledru-Text 110.0 520.0 - -
Ledru-Bytecode 124.0 565.0 0.744 0.49*
Ledru-Bytecode-Filter 78.0 559.5 0.211 0.45*
FAST-Text 125.0 890.0 - -
FAST-Bytecode 32.0 523.9 0.007 0.61*
FAST-Bytecode-Filter 63.0 740.4 0.297 0.46*

and marked different effect sizes with stars, where 1, 2, and 3 stars
correspond to a small, medium or large effect size, respectively. The
p-values and effect sizes shown in the table are between the textual
diversity and the corresponding bytecode diversity.

The median APFD of Ledru-Bytecode is 89.9, which is slightly
higher than Ledru-Text. The median real fault detection is 124,
which means that on median, after 124 test cases run, the real fault
can be detected. This is slightly worse than the 110 tests of Ledru-
Text. However, the differences in the APFD and real fault detection
values are not statistically significant and have small effect sizes
over Ledru-Text.

FAST-Bytecode has a median APFD of 93.2 and a median real
fault detection of 32 (i.e., only 32 test cases to run to find the real
fault). The standard deviation is also the lowest, showing more
consistency. Both values are statistically significant at the 99% sig-
nificance level. APFD shows amedium effect size (0.67, whichmeans
that 67% of the cases favored FAST-Bytecode over FAST-Text), while
the real fault detection demonstrates a small effect size.

In terms of runtime, Figure 4 shows the preparation times for
all static TCP approaches. Table 4 shows the runtime for all TCP
approaches in each project in our study. For Ledru-TCP and FAST-
TCP, the diversity artefact has the biggest impact on the preparation
time, while the prioritisation time is usually the same per TCP
approach. Thus, we reported the preparation times of each TCP
approach and the average prioritisation time for Ledru-TCP and
FAST-TCP. Using bytecode rather than the text of test cases hugely
improves the efficiency of the Ledru-TCP and FAST-TCP.

Using Ledru-TCP, the preparation times using all bytecode infor-
mation were 124 to 814 times faster than using textual test cases,
where the bigger the test suite size and the larger the test case, the
more improvements can be observed. Figure 4a shows a substantial

difference between using text and bytecode in Ledru-TCP. Simi-
larly, Figure 4c highlights a significant reduction in preparation
time when using bytecode instead of text in FAST-TCP. The small-
est project in our study is the Time project, where the test suite size
is 740 test cases. The preparation time in Ledru-TCP for building
the similarity matrix dropped from 633.3 seconds (almost 10 min-
utes) using text to 5.1 seconds using all bytecode information. In
FAST-TCP, the preparation time for building the signatures dropped
from 2.6 seconds to 0.6 seconds. The Math project has the largest
number of different versions and the largest number of test cases
(29,610), but the test cases are small. In Ledru-TCP, the preparation
times dropped from 347037.9 seconds (almost 96 hours) to 757.7
seconds (almost 12 minutes), while in FAST-TCP, the preparation
times dropped from 88.9 seconds to 33.2 seconds. In FAST-TCP,
the preparation times using all bytecode information were 2.5 to 6
times faster than using the text of test cases.

Conclusion for RQ1: The experiments show that bytecode
diversity has higher APFDs than textual diversity, as it in-
creased by 2.3% in Ledru-TCP and increased by 7.8% in FAST-
TCP. The real fault detection in Ledru-Text was slightly better
than Ledru-Bytecode, but FAST-Bytecode was 3.9 times better
than FAST-Text. The most significant improvement was in effi-
ciency, as using bytecode information is 124 to 814 times faster
than using textual information in Ledru-TCP, while in FAST-
TCP, bytecode is 2.5 to 6 times faster than text. This dramatic
difference in runtime means that bytecode-based approaches
can complete the entire prioritisation process while Ledru-Text
is still calculating similarity values. Although textual diver-
sity shows a marginal advantage in real fault detection for
Ledru-TCP, the enormous runtime savings of bytecode diver-
sity make it a more practical and scalable choice for large-scale
regression testing.

5.2 RQ2: Filtering Bytecode
Filtering bytecode instructions has a positive effect in Ledru-TCP,
as the median APFD increased from 87.6 in text to 92.1 using filtered
bytecode information. This is also an increase of 2.2% over using
all bytecode information. Furthermore, it is statistically significant
at the 95% significance level and has a small effect size in favour
of filtered bytecode over using text. Additionally, the median fault
detection of Ledru-Bytecode-Filter is 78, which is 1.4 times better
than Ledru-Text and 1.6 times better than Ledru-Bytecode.

In FAST-TCP, using filtered bytecode improved APFD by 5.1%
compared with text, but it was 2.7% lower than all bytecode informa-
tion. FAST-Bytecode-Filter demonstrates a statistically significant
improvement over FAST-Text at the 95% significance level, with
a small effect size. The median real fault detection is 63, which is
almost twice as good as FAST-Text. However, the difference is not
statistically significant and has a small effect size.

Once more, the biggest improvement is the efficiency of filter-
ing bytecode information. Ledru-Bytecode-Filter is 455 to 2798
times faster than Ledru-Text and 2.5 to 4.1 times faster than Ledru-
Bytecode. Figures 4b- 4c visualise these time reductions for both
full and filtered bytecode approaches. FAST-Bytecode-Filter is 4

Empirically Evaluating the Use of Bytecode for Diversity-Based Test Case Prioritisation EASE 2025, 17–20 June, 2025, Istanbul, Türkiye

Ledru-Text Ledru-Bytecode Ledru-Bytecode-Filter
0

5000

10000

15000

20000

25000

30000

35000

Pr
ep

ar
at

io
n

tim
e

in
 se

co
nd

s

(a) Ledru-TCP
Ledru-Bytecode Ledru-Bytecode-Filter

0

25

50

75

100

125

150

175

200

Pr
ep

ar
at

io
n

tim
e

in
 se

co
nd

s

(b) Ledru-TCP using bytecode
FAST-Text FAST-Bytecode FAST-Bytecode-Filter

0

2

4

6

8

10

12

14

Pr
ep

ar
at

io
n

tim
e

in
 se

co
nd

s

(c) FAST-TCP

Figure 4: The preparation times in seconds for all static TCP approaches

Table 4: Runtime for all TCP approaches across all projects.

Project Ledru-
Text

Ledru-
Bytecode

Ledru-
Bytecode-

Filter

Ledru Avg
P-Time

FAST-
Text

FAST-
Bytecode

FAST-
Bytecode-

Filter

FAST Avg
P-Time Cov-Tot Cov-Add

Cli 177780.8 405.2 99.8 1117.7 48.9 8.1 2.7 9.8 35.5 42.6
Compress 505855.0 1665.6 664.1 2792.6 36.7 14.7 5.4 18.7 29.3 37.6
Csv 317075.3 852.85 250.95 2145.5 49.5 16.6 5.9 19.6 36.1 46.7
Jsoup 1467823.5 2931.1 794.42 9587.5 80.4 25.3 6.4 43.7 446.1 568.7
Lang 930756.6 1142.6 332.6 5927.5 60.0 21.9 7.3 42.1 279.4 344.1
Math 347037.9 757.65 261.4 2818.7 88.9 33.2 9.2 29.8 89.2 118.5
Time 633.3 5.1 3.0 3.7 2.6 0.9 0.7 0.3 2.2 2.7

Avg P-Time is the average prioritisation time in seconds for the TCP approach. Cov-Tot is coverage-based greedy total, while Cov-Add is coverage-based greedy
additional.

to 17.9 times faster than FAST-Text and 1.4 to 4 times faster than
FAST-Bytecode. The preparation time in the Math project dropped
to only 261.4 seconds (4 minutes) in Ledru-TCP, while it dropped
to only 9.2 seconds in FAST-TCP.

Conclusion for RQ2: Filtering bytecode information in-
creased the APFD in Ledru-TCP by 4.5%, and it was 1.4 times
better in real fault detection than using the text of test cases.
In FAST-TCP, the APFD increased by 5.1% and the real fault
detection was twice as good as using text of test cases. Once
more, the biggest improvement was in efficiency, where in
Ledru it was 455 to 2798 times faster than Ledru-Text and 2.5
to 4.1 times faster than Ledru-Bytecode. In FAST-TCP, filtering
bytecode was 4 to 17.9 times faster than text and 1.4 to 4 times
faster than all bytecode information.

5.3 RQ3: Bytecode TCP vs. Dynamic TCP
We compared the best-performing static TCP approach (FAST-
Bytecode) with the dynamic coverage-based TCP approaches. Ta-
bles 5 and 6 show the APFDs and real fault detection results. The
median APFD of greedy additional is 96.7, which is slightly more
than the greedy total (96), but the difference is not statistically
significant. FAST-Bytecode has lower APFD by 2.8% to 3.5% than
greedy total and greedy additional, respectively. Also, the standard
deviation for the two coverage-based approaches is lower than
bytecode diversity showing better consistency. Furthermore, the

Table 5: APFDs for FAST-bytecode TCP and coverage-based
TCP across all projects.

Approach Median SD p-value 𝐴12
FAST-Bytecode 93.2 11.9 - -
Cov-Total 96.0 5.7 0.003 0.62**
Cov-Additional 96.7 6.3 0.001 0.64**

Table 6: APFDs for FAST-bytecode TCP and coverage-based
TCP across all projects.

Approach Median SD p-value 𝐴12
FAST-Bytecode 32.0 523.9 - -
Cov-Total 10.5 378.6 0.011 0.61*
Cov-Additional 9.0 589.2 0.000 0.65**

results are statistically significant at the 99% significance level, and
there is a medium effect size for coverage-based TCP approaches.

In terms of real fault detection, the median numbers of the first
test case to detect the real fault of greedy additional and greedy
total are 9 and 10.5, respectively. The results of coverage-based TCP
approaches are statistically significant at the 95% significance level
over bytecode diversity, and there is a medium effect size in favour
of bytecode diversity.

Finally, the overall time of FAST-Bytecode, which includes the
preparation and prioritisation times, is better than coverage-based
TCP. As explained earlier in Section 4.2, we included only the
prioritisation times for greedy total and greedy additional, shown

EASE 2025, 17–20 June, 2025, Istanbul, Türkiye Islam T. Elgendy, Robert M. Hierons, and Phil McMinn

in Table 4. Nonetheless, even using prioritisation times only for
coverage-based TCP, FAST-Bytecode is still up to 6.5 times faster
than greedy total and up to 8.3 times faster than greedy additional.
In the Jsoup project, the overall time using greedy total is 446.1
seconds (7.4minutes) and using greedy additional was 568.7 seconds
(9.5 minutes), while using FAST-Bytecode the overall time is 68.6
seconds (1.1 minutes).

Conclusion for RQ3: Coverage-based TCP outperform byte-
code diversity TCP approaches, and there is little difference
between greedy total and greedy additional. The results are
statistically significant at the 95% significance level between
bytecode and coverage-based approaches. However, the total
runtime using FAST-Bytecode is up to 6.5 times faster than
greedy total and up to 8.3 times faster than greedy additional.
For larger test suites, the difference in runtime becomes larger.

6 RELATEDWORK
There is a plethora of work in TCP in general, and using diversity-
based TCP in particular. This shows how TCP is a very active
topic in the software testing literature. Yoo et al. [33] presented a
comprehensive survey of techniques and strategies used in regres-
sion testing, where TCP is one of the techniques described to deal
with regression testing. They categorised the TCP techniques as
coverage-based (i.e., use structural coverage as metric), interaction
testing (i.e., use multiple combinations of different components),
distribution-based (i.e., use the distributions of the profiles of test
cases), human-based (i.e., use case-based reasoning), history-based
(i.e., use past bug fixes records), requirement-based (i.e., use soft-
ware requirements), model-based (i.e., use system models), and
other approaches (e.g. use of mutation scores, or use of recorded
sessions for web applications). Lou et al. [22] presented 191 papers
on TCP from 1997 to 2016, and investigated six aspects, which
are the algorithms, criteria, measurements, constraints, empirical
studies, and scenarios. Elgendy et al. [7] provided a comprehensive
survey of diversity-based testing in software testing and covered
diversity-based techniques in TCP. They identified text, test steps
(i.e., individual actions that need to be followed to execute a test
case), program executions, and clustering as common diversity
artefacts in TCP but highlighted the need to explore new diversity
artefacts. Our work directly addresses this gap by introducing byte-
code as a novel diversity artefact for TCP, offering a more concise
and efficient representation of test cases compared to traditional
textual diversity.

Several researchers have developed TCP strategies to enhance
early fault detection and test suite efficiency. Wu et al. [32] im-
proved similarity-based prioritisation by incorporating program
element execution times, while Khojah et al. [18] compared lexical
and semantic diversity, concluding that semantic diversity provides
better requirement coverage. Altiero et al. [1] prioritised tests based
on their coverage of modified code parts, and Ledru et al. [20] intro-
duced a greedy algorithm to maximise test diversity using textual
representations. While these studies demonstrate the effectiveness
of diversity-based TCP, they rely on textual diversity. In contrast,

our work uses textual diversity as a baseline for comparison with
bytecode diversity.

Formanual black-box system testing, Hemmati et al. [12] adapted
test prioritisation techniques, and empirical studies have evaluated
the effectiveness of similarity-based TCP. Huang et al. [14] com-
pared local and global TCP techniques, finding global approaches
superior in coverage and fault detection. Haghighatkhah et al. [10]
identified the most effective similarity-based TCP implementation,
testing various distance measures. Noor and Hemmati [25] pro-
posed prioritising test cases by their similarity to previously failing
test cases, using metrics like Basic Counting, Hamming distance,
and Levenshtein distance, suggesting that tests similar to past fail-
ures are more likely to detect new faults. In addressing scalability
and performance for large test suites, Miranda et al. [23] introduced
the FAST family of techniques, which leverage big data methods
like Shingling, Minhashing, and Locality Sensitive Hashing (LSH)
for efficient similarity detection in both white-box and black-box
testing. We implemented our bytecode diversity TCP and compared
it against Ledru et al. [20] and FAST [23].

7 CONCLUSIONS AND FUTUREWORK
This study introduces and evaluates, for the first time, the use of
bytecode (a more concise representation of test cases) as the basis
for Test Case Prioritisation (TCP). The results show that bytecode
diversity improves fault detection rates and significantly reduces
processing times compared to traditional textual diversity-based
methods. Also, the results show that filtering bytecode information
greatly improves efficiency while achieving better fault detection
than textual information and comparable effectiveness to using all
bytecode information. Although coverage-based techniques yield
better fault detection, they require extensive program instrumen-
tation, making them less practical in certain contexts. Bytecode
diversity thus provides a suitable alternative, offering a balance
between effectiveness and operational simplicity. Our findings sug-
gest that bytecode-based TCP can be particularly advantageous
in resource-constrained environments or where coverage data is
unavailable.

Future research can explore different ways to filter bytecode
information and gain insights into which instructions can be the
most beneficial in TCP. One potential enhancement to our approach
and an avenue for future work is using normalised bytecode for
similarity analysis. Raw bytecode can vary due to compiler op-
timisations and structural differences that do not affect program
behaviour. Techniques such as bytecode canonicalisation, variable
renaming, and control flow normalisation (e.g., SootDiff et al. [?
], Schott et al. [?]) could help filter out these variations, leading
to more precise similarity calculations. We could also conduct ex-
periments on datasets having multi-fault programs and use the
cost-cognizant version of the APFD metric to investigate different
fault severity. Additionally, a deeper investigation into diversity-
based approaches, particularly focusing on the effectiveness of
bytecode diversity in addressing stubborn mutants (those hardest
to detect/kill) could provide valuable insights. Such work would fur-
ther validate the robustness of bytecode diversity and its potential
to improve the fault detection capabilities of regression testing.

Empirically Evaluating the Use of Bytecode for Diversity-Based Test Case Prioritisation EASE 2025, 17–20 June, 2025, Istanbul, Türkiye

REFERENCES
[1] F. Altiero, A. Corazza, S. Di Martino, A. Peron, and L. Libero Lucio Starace. 2024.

Regression test prioritization leveraging source code similarity with tree kernels.
Journal of Software: Evolution and Process (2024), e2653. https://doi.org/10.1002/
smr.2653

[2] Md J. Arafeen and H. Do. 2013. Test case prioritization using requirements-based
clustering. In Proceedings of the International Conference on Software Testing,
Validation and Verification (ICST). 312–321. https://doi.org/10.1109/ICST.2013.12

[3] H. Coles, T. Laurent, C. Henard, M. Papadakis, and A. Ventresque. 2016. PIT:
A practical mutation testing tool for java. In Proceedings of the International
Symposium on Software Testing and Analysis (ISSTA). 449–452. https://doi.org/10
.1145/2931037.2948707

[] A. Dann, B. Hermann, and E. Bodden. 2019. SootDiff: bytecode comparison across
different Java compilers. In Proceedings of the International Workshop on State Of
the Art in Program Analysis. 14–19. https://doi.org/10.1145/3315568.3329966

[4] S. Elbaum, A. Malishevsky, and G. Rothermel. 2001. Incorporating varying
test costs and fault severities into test case prioritization. In Proceedings of the
International Conference on Software Engineering (ICSE). 329–338. https://doi.or
g/10.1109/ICSE.2001.919106

[5] I. Elgendy, R. Hierons, and P. McMinn. 2024. Evaluating string distance metrics for
reducing automatically generated test suites. In Proceedings of the International
Conference on Automation of Software Test (AST). 171–181. https://doi.org/10.114
5/3644032.3644455

[6] I. Elgendy, R. Hierons, and P. McMinn. 2025. Replication Package for Empirically
Evaluating the Use of Bytecode for Diversity-Based Test Case Prioritisation.
https://github.com/islamelgendy/Replication-Package-Evaluating-Bytecode-
Diversity. [Online; accessed 25-March-2025].

[7] I. Elgendy, R. Hierons, and P. McMinn. 2025. A Systematic Mapping Study of
the Metrics, Uses and Subjects of Diversity-Based Testing Techniques. Software
Testing, Verification and Reliability 35, 2 (2025), e1914. https://doi.org/10.1002/st
vr.1914

[8] B. Eric, L. Romain, and C. Thierry. 2002. ASM: A code manipulation tool for the
Java virtual machine. Available: https://asm.ow2.io.

[9] G. Fraser and A. Arcuri. 2011. Evosuite: automatic test suite generation for object-
oriented software. In Proceedings of the SIGSOFT symposium and the European
conference on Foundations of software engineering. 416–419. https://doi.org/10.1
145/2025113.2025179

[10] A Haghighatkhah, M. Mäntylä, M. Oivo, and P. Kuvaja. 2018. Test case prior-
itization using test similarities. In Proceedings of the International Conference
on Product-Focused Software Process Improvement (PROFES). 243–259. https:
//doi.org/10.1007/978-3-030-03673-7_18

[11] A. Haghighatkhah, M. Mäntylä, M. Oivo, and P. Kuvaja. 2018. Test prioritization
in continuous integration environments. Journal of Systems and Software 146
(2018), 80–98. https://doi.org/10.1016/j.jss.2018.08.061

[12] H. Hemmati, Z. Fang, and M. V Mantyla. 2015. Prioritizing manual test cases in
traditional and rapid release environments. In Proceedings of the International
Conference on Software Testing, Verification and Validation (ICST). 1–10. https:
//doi.org/10.1109/ICST.2015.7102602

[13] C. Henard, M. Papadakis, M. Harman, Y. Jia, and Y. Le Traon. 2016. Comparing
white-box and black-box test prioritization. In Proceedings of the International
Conference on Software Engineering. 523–534. https://doi.org/10.1145/2884781.28
84791

[14] R. Huang, Y. Zhou, W. Zong, D. Towey, and J. Chen. 2017. An empirical compari-
son of similarity measures for abstract test case prioritization. In Proceedings of
the Annual Computer Software and Applications Conference (COMPSAC), Vol. 1.
3–12.

[15] JaCoCo. 2025. JaCoCo Implementation Design. http://www.jacoco.org/jacoco/tr
unk/doc/implementation.html. [Last accessed: 25-March-2025].

[16] R. Just, D. Jalali, and M. D Ernst. 2014. Defects4J: A database of existing faults
to enable controlled testing studies for Java programs. In Proceedings of the
International Symposium on Software Testing and Analysis (ISSTA). 437–440. https:
//doi.org/10.1145/2610384.2628055

[17] M. Khatibsyarbini, M A. Isa, D. NA Jawawi, and R. Tumeng. 2018. Test case
prioritization approaches in regression testing: A systematic literature review.
Information and Software Technology 93 (2018), 74–93. https://doi.org/10.1016/j.
infsof.2017.08.014

[18] R. Khojah, C. H. Chao, and d F G Oliveira Neto. 2023. Evaluating the trade-offs
of text-based diversity in test prioritisation. In Proceedings of the International
Conference on Automation of Software Test (AST). 168–178. https://doi.org/10.110
9/AST58925.2023.00021

[19] J-M Kim and A. Porter. 2002. A history-based test prioritization technique
for regression testing in resource constrained environments. In Proceedings of
the International Conference on Software Engineering (ICSE). 119–129. https:
//doi.org/10.1145/581339.581357

[20] Y. Ledru, A. Petrenko, S. Boroday, and N. Mandran. 2012. Prioritizing test cases
with string distances. Automated Software Engineering 19, 1 (2012), 65–95. https:
//doi.org/10.1007/s10515-011-0093-0

[21] V. I. Levenshtein. 1966. Binary codes capable of correcting deletions, insertions,
and reversals. 10, 8 (1966), 707–710.

[22] Y. Lou, J. Chen, L. Zhang, and D. Hao. 2019. A survey on regression test-case
prioritization. In Advances in Computers. Vol. 113. 1–46. https://doi.org/10.1016/
bs.adcom.2018.10.001

[23] B. Miranda, E. Cruciani, R. Verdecchia, and A. Bertolino. 2018. FAST approaches to
scalable similarity-based test case prioritization. In Proceedings of the International
Conference on Software Engineering (ICSE). 222–232. https://doi.org/10.1145/31
80155.3180210

[24] B. Miranda, E. Cruciani, R. Verdecchia, and A. Bertolino. 2025. FAST replication
package. https://github.com/icse18-FAST/FAST. [Last accessed: 25-March-2025].

[25] T. B. Noor and H. Hemmati. 2015. A similarity-based approach for test case
prioritization using historical failure data. In Proceedings of the International
Symposium on Software Reliability Engineering (ISSRE). 58–68. https://doi.org/10
.1109/ISSRE.2015.7381799

[26] C. Pacheco and M. D Ernst. 2007. Randoop: Feedback-directed random test-
ing for Java. In Proceedings of the Companion to the SIGPLAN Conference on
Object-Oriented Programming Systems and Applications Companion (OOPSLA
Companion). 815–816. https://doi.org/10.1145/1297846.1297902

[27] G. Rothermel, R. H. Untch, C. Chu, andM. J. Harrold. 1999. Test case prioritization:
An empirical study. In Proceedings of the International Conference on Software
Maintenance (ICSM). 179–188. https://doi.org/10.1109/ICSM.1999.792604

[28] G. Rothermel, R. H. Untch, C. Chu, and M. J. Harrold. 2001. Prioritizing test cases
for regression testing. IEEE Transactions on Software Engineering 27, 10 (2001),
929–948. https://doi.org/10.1109/32.962562

[] S. Schott, S. E. Ponta, W. Fischer, J. Klauke, and E. Bodden. 2024. Java Bytecode
Normalization for Code Similarity Analysis. In European Conference on Object-
Oriented Programming (ECOOP), Vol. 313. 37:1–37:29. https://doi.org/10.4230/LI
PIcs.ECOOP.2024.37

[29] H. Srikanth, L. Williams, and J. Osborne. 2005. System test case prioritization of
new and regression test cases. In International Symposium on Empirical Software
Engineering. 10–pp. https://doi.org/10.1109/ISESE.2005.1541815

[30] A. Vargha andH. DDelaney. 2000. A critique and improvement of the CL common
language effect size statistics of McGraw and Wong. Journal of Educational and
Behavioral Statistics 25, 2 (2000), 101–132. https://doi.org/10.3102/107699860250
02101

[31] R. Wang, S. Jiang, and D. Chen. 2015. Similarity-based regression test case prioriti-
zation. In Proceedings of the International Conference on Software Engineering and
Knowledge Engineering (SEKE). 358–363. https://doi.org/10.18293/seke2015-115

[32] K. Wu, C. Fang, Z. Chen, and Z. Zhao. 2012. Test case prioritization incor-
porating ordered sequence of program elements. In Proceedings of the Inter-
national Workshop on Automation of Software Test (AST). 124–130. https:
//doi.org/10.1109/IWAST.2012.6228980

[33] S. Yoo and M. Harman. 2010. Regression testing minimization, selection and
prioritization: A survey. Software testing, verification and reliability 22, 2 (2010),
67–120. https://doi.org/10.1002/stvr.430

Received 3 February 2025; revised 21 March 2025; accepted 17 June 2025

https://doi.org/10.1002/smr.2653
https://doi.org/10.1002/smr.2653
https://doi.org/10.1109/ICST.2013.12
https://doi.org/10.1145/2931037.2948707
https://doi.org/10.1145/2931037.2948707
https://doi.org/10.1145/3315568.3329966
https://doi.org/10.1109/ICSE.2001.919106
https://doi.org/10.1109/ICSE.2001.919106
https://doi.org/10.1145/3644032.3644455
https://doi.org/10.1145/3644032.3644455
https://github.com/islamelgendy/Replication-Package-Evaluating-Bytecode-Diversity
https://github.com/islamelgendy/Replication-Package-Evaluating-Bytecode-Diversity
https://doi.org/10.1002/stvr.1914
https://doi.org/10.1002/stvr.1914
https://asm.ow2.io
https://doi.org/10.1145/2025113.2025179
https://doi.org/10.1145/2025113.2025179
https://doi.org/10.1007/978-3-030-03673-7_18
https://doi.org/10.1007/978-3-030-03673-7_18
https://doi.org/10.1016/j.jss.2018.08.061
https://doi.org/10.1109/ICST.2015.7102602
https://doi.org/10.1109/ICST.2015.7102602
https://doi.org/10.1145/2884781.2884791
https://doi.org/10.1145/2884781.2884791
http://www.jacoco.org/jacoco/trunk/doc/implementation.html
http://www.jacoco.org/jacoco/trunk/doc/implementation.html
https://doi.org/10.1145/2610384.2628055
https://doi.org/10.1145/2610384.2628055
https://doi.org/10.1016/j.infsof.2017.08.014
https://doi.org/10.1016/j.infsof.2017.08.014
https://doi.org/10.1109/AST58925.2023.00021
https://doi.org/10.1109/AST58925.2023.00021
https://doi.org/10.1145/581339.581357
https://doi.org/10.1145/581339.581357
https://doi.org/10.1007/s10515-011-0093-0
https://doi.org/10.1007/s10515-011-0093-0
https://doi.org/10.1016/bs.adcom.2018.10.001
https://doi.org/10.1016/bs.adcom.2018.10.001
https://doi.org/10.1145/3180155.3180210
https://doi.org/10.1145/3180155.3180210
https://github.com/icse18-FAST/FAST
https://doi.org/10.1109/ISSRE.2015.7381799
https://doi.org/10.1109/ISSRE.2015.7381799
https://doi.org/10.1145/1297846.1297902
https://doi.org/10.1109/ICSM.1999.792604
https://doi.org/10.1109/32.962562
https://doi.org/10.4230/LIPIcs.ECOOP.2024.37
https://doi.org/10.4230/LIPIcs.ECOOP.2024.37
https://doi.org/10.1109/ISESE.2005.1541815
https://doi.org/10.3102/10769986025002101
https://doi.org/10.3102/10769986025002101
https://doi.org/10.18293/seke2015-115
https://doi.org/10.1109/IWAST.2012.6228980
https://doi.org/10.1109/IWAST.2012.6228980
https://doi.org/10.1002/stvr.430

	Abstract
	1 Introduction
	2 Background
	2.1 Test Case Prioritisation
	2.2 Diversity-Based TCP
	2.3 Bytecode

	3 Approach
	3.1 Motivating Example
	3.2 Filtering Bytecode
	3.3 TCP Approaches

	4 Evaluation
	4.1 Research Questions
	4.2 Evaluation Metrics
	4.3 Subjects
	4.4 Methodology
	4.5 Threats to Validity

	5 Results
	5.1 RQ1: Bytecode vs. Textual Diversity
	5.2 RQ2: Filtering Bytecode
	5.3 RQ3: Bytecode TCP vs. Dynamic TCP

	6 Related Work
	7 Conclusions and Future Work
	References

