
Towards the Automatic Identification of
Faulty Multi-Agent Based Simulation Runs

Using MASTER

Chris J. Wright, Phil McMinn and Julio Gallardo

University of Sheffield, Department of Computer Science,
Regent Court, 211 Portobello, S1 4DP, UK.

Abstract. Testing a multi-agent based model is a tedious process that
involves generating very many simulation runs, for example as a result of
a parameter sweep. In practice, each simulation run must be inspected
manually to gain complete confidence that the agent-based model has
been implemented correctly and is operating according to expectations.
We present MASTER, a tool which aims to semi-automatically detect
when a simulation run has deviated from “normal” behaviour. A sim-
ulation run is flagged as “suspicious” when certain parameters traverse
normal bounds determined by the modeller. These bounds are defined
in reference to a small series of actual executions of the model deemed
to be correct. The operation of MASTER is presented with two case
studies, the first with the well-known “flockers” model supplied with the
popular MASON agent-based modelling toolkit, and the second a skin
tissue model written using another toolkit—FLAME.

1 Introduction

Multi-agent based modelling and simulation is an increasingly popular form of
paradigm that is helping scientists, industrialists and policy makers develop their
understanding of natural systems, make forecasts, and predict the impact of po-
tential future changes [17], [3], [4], [8]. The need for rigorous model testing and
testing tools is becoming ever greater, since model errors can have potentially
disastrous consequences, including financial loss [16] and incorrect scientific con-
clusions [5]. One barrier to the thorough testing of simulation models is the time
that must be spent manually inspecting a potentially enormous number of sim-
ulation executions for potential errors, which may have been produced as the
result of common verification procedures such as parameter sweeps.

This paper presents MASTER (Multi-Agent based Simulation TestER). MAS-
TER is a testing framework that aims to semi-automatically detect “suspicious”
simulation runs that may indicate a fault in the implementation of a multi-agent
based model. MASTER works by observing a series of simulation runs believed
by the modeller to represent the “normal” behaviour of the model. The modeller
then specifies a set of assertions that place bounds on which particular simulation
properties of the model may deviate from those already observed. In addition, a

series of so-called “facts” about the model may also be specified—states of the
simulation which should never occur. MASTER then monitors further, poten-
tially extensive, simulation executions of the model—automatically flagging up
executions that deviate from normal behaviour or violate some specified fact.
The end result is a smaller set of simulation runs, flagged up as suspicious, to
be further examined by the modeller.

The MASTER framework was originally written for use with the MASON
agent-based modelling toolkit [12], but has since been extended for FLAME [10].
This paper describes the use of MASTER with the simple flockers model supplied
with MASON. Results are also presented showing the detection of suspicious runs
when the code of the flockers model is randomly mutated to introduce small
faults. A further case study is presented with a real-world skin tissue model [17]
written for FLAME. White noise is injected into key statistics collated from the
model, the presence of which is identified by MASTER.

The contributions of this paper are therefore as follows:

1. A technique for semi-automatically identifying “suspicious” simulation runs
of an agent-based model, using past simulation data and modeller annotations

2. An implementation of this technique into a tool, MASTER
3. An investigation into the capabilities of the technique with two case stud-

ies, the first with the flockers model and the second with a real-world skin
tissue model.

The remainder of this paper is organized as follows. Section 2 describes our
technique for identifying suspicious simulation runs for multi-agent based mod-
els, implemented into the MASTER tool. Section 3 then presents the usage
of MASTER with the well-known flockers model provided with the MASON
Java-based agent modelling and simulation toolkit. Section 4 then presents re-
sults when MASTER is used with a real-world skin tissue model. Section 5 then
presents related work while Section 6 closes with concluding remarks and avenues
for future work.

2 The Technique Implemented by MASTER

In normal software testing practice, test cases are evaluated with respect to a
specification of a system. However, agents tend to perform actions in a prob-
abilistic or non-deterministic manner, meaning that—given exactly the same
circumstances—an agent may choose do something different from one simulation
to the next; while the interaction of agents can give rise to complex emergent be-
haviours, which by their nature are unpredictable and hard to specify precisely.
When a specification is not present, a system is evaluated by a software tester
who has a detailed knowledge of the system’s requirements and which behaviours
constitute correct or incorrect behaviour. However, the manual evaluation of long
simulation runs is a time-consuming and laborious process.

For a model of any reasonable complexity, generating and evaluating all pos-
sible simulation runs is an intractable task. The approach taken by the MASTER

framework is to capture data from a small set of simulation runs believed to ade-
quately represent the principal “behaviours” of a model. Following this, a much
larger number of simulations can then be run and automatically checked for
similarity with those previously observed model executions. A deviation from
“normal” behaviour may indicate that the simulation run has exposed a pre-
viously undetected fault in the underlying code of the model. The extent of
the deviation at which a simulation run is deemed to be “suspicious” is speci-
fied by the modeller. Furthermore, the modeller can specify “hard” constraints
about a model that are independent of observed model executions—e.g., an agent
should never move off the bounds of the grid representing the world in which
they inhabit.

The various stages involved in using MASTER are depicted in Figure 1 and
can be summarised as follows:

1. Capturing is where information regarding “normal” operation of a model in
simulation is recorded from a series of sample executions. The modeller must
specify what information is to be captured.

2. Observation Generation is where so-called “observations” are created by re-
lating data obtained during capturing with modeller-specified assertions that
place bounds on that data. These bounds relate the degree to which certain
attributes may deviate in future simulation runs from the values already
observed for them.

3. Testing involves repeated execution of new simulation runs checking for vi-
olations of observations and additional modeller-specified facts. Violating
simulations are flagged up to the modeller for further investigation.

In much the same way that a tester must write a test class in an xUnit testing
framework (such as JUnit [1] for testing Java classes), MASTER requires the
tester to extend a common interface to specify the types of information that
needs to be captured from normal model behaviour, along with the formulation of
“fact” and “observation” assertions. Unlike JUnit, however, MASTER does not
require the tester to write specific scenarios in which the assertions will be tested.
Instead, each assertion statement is evaluated against a set of simulation runs
and evaluated to see if it holds or not. These simulation runs may be generated as
a result of a parameter sweep of a model, or from random starting configurations.

MASTER is written in Java for the testing of models written using either
MASON [12] or FLAME [10]. The following sections explain each step involved
in using MASTER in detail, with the testing of the simple MASON agent
class SpatialAgent shown in Figure 2. SpatialAgent implements MASON’s
Steppable interface, which simply involves implementing the step method to
move the agent to a new (x, y) co-ordinate at each time step of the simulation.

CapturingNormal simulation runs

Tester specified
attributes
to capture

Captured information

Observation Generation
Tester specified
normal bounds

Observations

TestingFurther simulation runs Tester specified facts

Information about
cases that violate any
observation or fact

Fig. 1. The process behind MASTER. The “Capturing” stage involves recording spec-
ified information over a number of example simulation runs exhibiting “normal” be-
haviour. The “Observation Generation” stage is the process of combining recorded
information and tester-specified bounds of deviation with respect to that information.
The final “Testing” stage is where new simulation runs are evaluated against observa-
tions and “facts”—additional hard constraints specified by the tester.

public class SpatialAgent implements Steppable {

private int x, y;

public SpatialAgent(int x, int y) {

this.x = x; this.y = y;

}

public void step(SimState state) {

x = state.random.nextInt(100);

y = state.random.nextInt(100);

}

}

Fig. 2. A simple agent for demonstrating testing with MASTER. At each simulation
time step, the agent moves to randomly-chosen co-ordinates.

Capturing. Recording every piece of information about a model’s execution
over several simulations quickly leads to a situation where an enormous quantity
of data must be managed. Simulations consist of several time steps, usually in-
volving many different agents all in different states. The capturing stage involves
the tester writing code using the MASTER framework to track and capture spe-
cific types of data only. This reduces the quantity of data to be stored, managed,
and the cost of later analysis. It also allows for richer types of information to be
collated other than just raw agent state information. For example, the tester can
specify that a computed value such as distance travelled by a particular agent
be captured, by tracking the co-ordinates of that agent over different time steps.

In order to track specific data values in simulation using MASTER, the tester
must write a tracker class that extends MASTER’s abstract Tracker class. A
tracker describes how raw values are captured from the state of a particular
agent. An example tracker for a SpatialAgent can be seen in Figure 3. It is
called “XMinTracker”, and captures the minimum x co-ordinate value of the
particular agent attached to the tracker at a time step of the simulation. Raw x
co-ordinates are obtained using MASTER’s Reflector, which uses Java’s reflec-
tion mechanism the access the private instance variables of an agent. Information
regarding what is to be accessed is specified using a “locator”. A locator is sim-
ply an object that describes the sequence of method calls or instance variables
required to retrieve some desired information about an agent (or set of agents).

public class XMinTracker extends Tracker {

SpatialAgent agentBeingTracked;

Locator locator;

int min;

public XMinTracker(SpatialAgent spatialAgent) {

agentBeingTracked = spatialAgent;

locator = new Locator("x");

}

public boolean capture() {

int x = Reflector.retrieveInt(agentBeingTracked, locator);

if (x < min)

min = x;

return true;

}

public Infolet getInfolet(long step) {

return new XMinInfolet(locator, step, min);

}

}

Fig. 3. Tracker code to capture the minimum x co-ordinate value of a spatial agent
over the course of a simulation.

Note that the MASTER tracker code is kept entirely separate from the
MASON agent code. MASTER does not require special hooks to be inserted
into MASON code in order to test it. Trackers must be attached to a simulation
so that data can be captured. In attaching a tracker, the tester must specify
the number of time step intervals for which the data will be captured using the
capture method. That is, an interval of 5 would lead to data being captured
from SpatialAgent after every 5th call by MASON to the agent’s step method.

Data captured by a tracker is made available after the simulation has finished
via Infolet objects. A specific Infolet class is implemented for each tracker to
simply return the data captured and the time step that it was captured for (the
creation of this class is currently a manual process, but is a step which can
be automated in future). MASTER is capable of writing Infolet objects to a
text file using the JSON (JavaScript Object Notation) common data interchange
format. This is an alternative to binary serialization of objects, and allows for
human-readability of information, as well as enabling the captured data to be
imported easily into other tools for other types of analysis.

Observation Generation. The second stage in MASTER involves the gener-
ation of “observations” for later use in the testing phase. An observation is an
assertion relating new simulation data to that already captured in the prior cap-
turing phase. The assertion specifies when data from the new simulation should
be regarded as “suspicious”; for example if certain values are over some defined
boundary, or represent outliers (e.g., are a certain number of standard deviations
from an established mean), or are found to be significantly different from those
previously obtained—established using some statistical test.

Observations are written as classes that extend MASTER’s Observation

class. An example can be seen in Figure 4, XLessThanObservation, which as-
serts that all x co-ordinate values for SpatialAgents are less than the observed
minimum value from the simulations examined during capturing—denoted by
the variable observedMin. The assertion code is found in the check method,
which takes a “target”—in this case a SpatialAgent. The target variable
could also refer to an entire MASON SimStep object, so that all agent data
from a particular simulation state is accessible. As for Infolet objects, obser-
vations may be saved to text files in JSON form.

Testing. The testing phase of MASTER involves taking new simulation runs
and checking each simulation step against each observation and fact. Observa-
tions and facts may be scheduled for checking at intervals rather than at every
individual time step. The underlying algorithm for the testing phase can be seen
in Figure 5.

If a simulation is found to violate an observation or fact, information is
recorded, according to a violation handler, about the simulation and the violation
that occurred. This includes the initial configuration of the model, the states of
each agent present in the initial time step, any environmental parameters, and
the random seed used. This allows the entire simulation to be recreated, and

public class XLessThanObservation extends Observation {

int observedMin;

Locator locator;

public XLessThanObservation(int observedMin) {

this.observedMin = observedMin;

this.locator = new Locator("x");

}

public Result check(Object target) {

int x = Reflector.retrieveInt(target, locator);

if (x < observedMin)

return Result.newSuccess();

else

return Result.newFailure(x);

}

}

Fig. 4. Example code for an observation. The check method is responsible for asserting
whether the data from some current simulation (passed into the method as the target

object) is violated or not.

step← 1
While (step ≤ maxStep)

Run the simulation step
Obtain all observations and facts scheduled for step
For Each observation or fact

Check for a violation
If violation

Report all violation details to violation handler
End If

End For Each
step← step + 1

End While

Fig. 5. Algorithm used in the testing phase

visually inspected if necessary, to allow the tester to understand the nature
of the violation and to undertake any debugging steps that may be required.
MASTER provides handlers that write violation information to a file or the
console, or the tester can provide their own handler that overrides the provided
violation handling interface.

3 Case Study 1: Flockers Model

The “Flockers” model in MASON simulates a number of agents exhibiting co-
ordinated movement with one another, as seen with natural flocks of birds or
shoals of fish. Each flocker agent takes into account local spatial information
when deciding which co-ordinates to move to in the next time step; including the
direction and momentum of the flockers around it, the need to avoid colliding
with other Flockers, coupled with a small degree of random movement. The
model also includes optional “dead” flockers, that do not move, but which the
live flockers try to avoid colliding with.

In order to evaluate MASTER, an experiment was performed with the Flock-
ers model using Mutation Analysis [9]. Mutation Analysis inserts small syntactic
changes to program code, which are designed to mimic typical errors made by
programmers—for example, “off by one” errors, where a branching predicate in
an if statement is changed from x > y to x >= y. A “mutant” is a piece of pro-
gram code that has had exactly one syntactic change made to it. The mutant is
said to be “killed” when it produces different output from the original program
with the same input. The use of Mutation Analysis allows us to artificially inject
errors into models, resulting in potentially faulty simulation runs. The effective-
ness of MASTER can then be analysed by comparing the number of facts and
observations violated by the mutated model simulations.

A special case of mutant is the equivalent mutant. An equivalent mutant
occurs when a syntactic change cannot result in a change of output [9]. An
example of an equivalent mutant is shown below. The mutation changes the
relational operator of the inner-nested if statement from “equals” to “greater
than or equals”. Since i can never be greater than 10 as specified in the condition,
there is never any difference in the behaviour of the program, despite the minor
change that has been made. In general, detection of equivalent mutants is an
undecidable problem.

if (i <= 10) {

...

if (i == 10) {

...

}

}

Original program code

if (i <= 10) {

...

if (i >= 10) {

...

}

}

Equivalent mutant

Mutant number

Av
er

ag
e

Vi
ol

at
io

ns

0
10

0
20

0
30

0
40

0
50

0

Total violations by mutant

0
17

2
54

6
30

0 43 57
8

33
7

50
5

49
7

46
0

42
7

29
5

56
2

49
1

56
9 30 28 36
9

10
9 47 10
4

19
6

20
1

36
1

23
9

21
3

35
6

14
1

14
2

35
8

66
6

75
4

13
8

53
9

65
5

66
1

76
6

15
7

62
1

60
8 86

Fig. 6. Average number of observation violations for each mutant of the Flockers model.
Violations (outlier values) for the original model appear as bar #0. The dotted line is
plotted across the graph to show how the average number of violations for each mutant
compares to the original, non-mutated model.

The original flockers model was sampled 30 times, in which data for the
attributes listed in Table 1 were captured for each flocker in the tracking phase.
The model was run with 40 flockers (with each flocker set to being a non-moving
“dead” flocker with a probability of 0.1), for 1500 time steps. The Flockers
model was mutated automatically using the MuJava tool [13], resulting in several
hundred mutants, of which forty were selected at random. Each mutated model
was then run again to check for observation violations. The attributes listed in
Table 1 triggered a violation if they were over two standard deviations from the
recorded mean for that property in the previous tracking phase. The purpose of
this observation is to trap outlying behaviour of the model.

Each mutated model was run 50 times to obtain an average. The average
number of property violations for each mutant can be seen in Figure 6. Each
mutant is assigned a unique identification number, with the original non-mutated
model assigned an ID of 0 and appearing as the left-most bar in the chart.

The average number of property violations per mutant recorded in Figure 6
correlates well with visual observations comparing original model behaviour with
mutated model behaviour, as recorded in Table 2. Moving from left to right in
Figure 6, the first 16 mutants up to #28—apart from #569—are recorded in
Table 2 as having no visually detectable difference in behaviour (i.e., potentially

Table 1. Flocker attributes captured during tracking for the flockers model. With the
exception of “distance travelled” each attribute is accessed directly from each individual
flocker—i.e., from an instance variable or an accessor method of each flocker object.

Property Description

Position The X and Y co-ordinates of each flocker.

Momentum The X and Y momentum values of each flocker. High momentum values encourage
a flocker to keep travelling in the same direction.

Avoidance The X and Y avoidance values of each flocker. High avoidance values encourage
a flocker to keep a minimum distance from other flockers.

Cohesion The X and Y cohesion values of each flocker. High cohesion values encourage a
flocker to towards the local area containing the majority of flockers.

Consistency The X and Y consistency values of each flocker. High consistency values encour-
age a flocker to move similarly to other nearby flockers.

Orientation The orientation value (in radians) of each flocker. The orientation value repre-
sents the direction the flocker is facing.

No. of neighbours The number of neighbours throughout the simulation that are close enough to
a flocker such that the information regarding those neighbours factor into its
cohesion, avoidance and consistency calculations.

Distance travelled The last position of each flocker is stored in order for the distance travelled by
each flocker to be computed and tracked.

“equivalent” mutants). The first 10 mutants up to and including mutant #427
in the graph Figure 6 show little difference in terms of observation violations
(outlying statistics) when compared with the non-mutant #0, the original model.

4 Case Study 2: Skin Tissue Model

The skin tissue model [17] is written using the FLAME multi-agent based mod-
elling and simulation environment [10], and is designed to simulate colonies
of skin cells on a laboratory culture plate. The simulation begins with a few
randomly-seeded individual cells, which form the epicentre of a colony. In each
time step of the model, cells progress through the cell cycle and divide, produc-
ing new cells. Colonies grow outwards from the initial cell, eventually covering
the entire plate. One important aspect of the model is the so-called “differenti-
ation” of a skin cell from one type to another (e.g., to a “corneocyte” skin cell
found in the upper-most layers of skin tissue). In the model, cells change type
based on the distance from the centre of the skin cell colony of which they are a
part. For the purposes of evaluating MASTER, a function was introduced into
the model which applied a random proportion of noise to this distance property,
thus introducing a source of potential simulation error into the model.

In evaluating MASTER, the model was run for 1000 time steps, with 50 runs
performed for tracking and 10 repetitions with three proportional noise levels
(low, medium and high). Six skin cells were initially seeded for each simulation
run at random locations on the culture plate. In tracking and testing, the distance

Table 2. Visual descriptions of each simulation for each model after a mutant has been
applied

Mutant Difference

28 No visual difference detectable
30 No visual difference detectable
43 No visual difference detectable
47 Flockers show a strong preference to flying towards the right of the screen
86 Flockers gradually disappear

104 Flockers arrange into up to three evenly-spaced horizontal bands
109 Flockers tend to move in horizontally aligned formations
138 Flockers move to the left only
141 Flockers move vertically only
142 Flockers move vertically only
157 Flockers move downwards only
172 No visual difference detectable
196 Flockers attract one another, causing “piles” of flockers to develop
201 Flockers attract one another, causing “piles” of flockers to develop
213 Flockers move downwards only
239 Flockers do not flock
295 Flockers do not flock consistently together as normal
300 No visual difference detectable
337 No visual difference detectable
356 Flockers stabilise to move consistently along the X axis
358 Flockers stabilise to move consistently along the Y axis
361 Flockers stabilise to move consistently along the Y axis
369 Flockers do not flock, moving as individuals or pairs
427 No visual difference detectable
460 No visual difference detectable
491 No visual difference detectable
497 No visual difference detectable
505 No visual difference detectable
539 Flockers move downwards only, avoiding each other
546 No visual difference detectable
562 Flockers move mostly normally, with occasional erratic turns
569 Flockers move mostly normally, but do not form large groups moving together
578 No visual difference detectable
608 Flockers gradually disappear
621 Flockers gradually disappear
655 Flockers move mostly only horizontally to the right only
661 Flockers move mostly only vertically to the bottom of the screen only
666 Flockers move in normal patterns, but slowly and jerkily
754 Flockers move in almost the same direction all of the time
766 Flockers move mostly vertically only

Amount of noise (±)

Av
er

ag
e

Vi
ol

at
io

ns

0
50

00
0

10
00

00
15

00
00

none (0) low (1%) medium (10%) high (100%)

 10036 11062

 21325

163967

Proportional noise − Violations

Fig. 7. Average number of observation violations for the skin tissue model for various
levels of noise. Violations (outlier values) for the original model appear as noise level 0
(“none”). The dotted line is plotted across the graph to show how the average number
of violations for each model with noise compares to the original model without noise.

attribute before a cell makes its first differentiation into another skin cell type
is monitored. Figure 7 shows the number of observation violations that occurred
when the distance attribute strayed over two standard deviations from the mean
found for the property during the tracking step. Low levels of noise (up to 1%
of proportional noise applied to the attribute during testing) result in little
difference from the original model without noise, but many violations occur with
higher levels of noise (± 10-100%) and as such are easily detected by MASTER.

5 Related Work

MASTER is a tool for testing the results of whole simulation runs of multi-agent
based models. While there has been work on testing agent-based systems, there
has been little work that specifically addresses testing of agents designed for
simulation.

SUnit, for example, is an existing testing framework for multi-agent systems
(MAS), based heavily upon the JUnit framework, that provides an approach for
the testing of individual agent behaviour. JAT [6] is similar to SUnit, but uses
“mock” agents to send messages to the “agents under test”, and then compares
the resulting replies against the expected responses. Nguyen et al. [15] propose
“eCat”, which follows a “goal-oriented” approach in which means-end scenarios
are described, such that a series of actions (e.g., message passes between agents)
should result in a particular goal being achieved, for example a final message
containing a given piece of information. Zhang et al. [18] make use of design
artefacts, in this case from the Prometheus design process, to generate the test

data. The data takes the form of “test plans” which describe the various condi-
tions required to evoke a particular behaviour and the predicted outcomes. This,
along with a focus on message passing style agents, leads to an “agent-centric”
testing approach, where the behaviour of each agent is examined in isolation from
other agents and their environment, ensuring that the agent responds correctly
to particular messages and percept information.

VOMAS, proposed by Niazi et al. [14], is one tool for validating and verify-
ing multi-agent based simulations. Agents are grouped together by an “overlay”
agent. The agents of this overlay are then able to define constraints describ-
ing unusual behaviour, and report violations of these if they occur. This val-
idation may relate to both spatial data, i.e. the exact positioning or relative
distance of the agents in the simulation under test, and non-spatial data, such
as the edges in a graph of connected agents in a social simulation. However, it
is not clear how the constrains for the overlay agents are derived, other than
from subject matter experts, who provide these during the design of the overlay
MAS. Rather than relying on such experts, the MASTER approach attempts
to determine the boundaries for these normal values semi-automatically based
upon human-approved runs—using some user-specified tolerance outlier formula.
MASTER then allows the use of “facts” to allow such expert knowledge to also
be incorporated—if there are known domain-specific constraints.

MASTER differentiates itself from the discussed works by both allowing the
user to determine the appropriate level of testing, such as applying agent-specific
or simulation wide as facts or observations, and reducing reliance on subject area
experts, by determining “normal” boundaries from user-approved runs.

6 Conclusions and Future Work

This paper has described a technique for semi-automatically detecting anoma-
lous behaviour in simulations of multi-agent based models. This technique has
been implemented into a prototype tool called MASTER. MASTER involves
capturing sample data from simulation runs confirmed by a tester to be behav-
ing “normally”. Testing of further simulation runs is then directed at comparing
whether those simulations have deviated from those witnessed previously auto-
matically. This removes some reliance on expert users, who may otherwise need
to manually examine or analyse data produced from a simulation. This allows
users to more thoroughly examine the behaviour of their model and ensure,
for example, how variation of parameters may affect some emergent behaviour,
improving the understanding of the given agent-based simulation.

Future work intends to incorporate of statistical analysis and more sophisti-
cated anomaly detection routines, such as those provided by the libAnomaly [2]
library [11], since presently with MASTER, the tester must specify a method
for calculating bounds over captured data from “normal” behaviour, which
quantifies the ranges to which future behaviour should be compared against.
The idea behind anomaly detection systems is similar in principle to that be-
hind MASTER—compare current system behaviour against a representation of

normal behaviour. Anomaly detection has been successfully applied to detect
malicious JavaScript code on websites, which could harm a user’s system [7].

MASTER is available at: http://agents.group.shef.ac.uk/master/download/

Acknowledgements

This work was funded by the EPSRC grant EP/G009600—“Automated Discov-
ery of Emergent Misbehaviour”.

References

1. JUnit. http://www.junit.org (Accessed: April 2012).
2. libAnomaly. http://www.cs.ucsb.edu/ seclab/projects/libanomaly/index.html

(Accessed: April 2012).
3. K. Bentley, H. Gerhardt, and P. Bates. Agent-based simulation of notch-mediated

tip cell selection in angiogenic sprout initialisation. Journal of Theoretical Biology,
250:25–36, 2008.

4. M. Buchanan. Meltdown modelling. Could agent-based computer models prevent
another financial crisis? Nature, 460(7256):680–682, 2009.

5. G. Chang, C. B. Roth, C. L. Reyes, O. Pornillos, Y.-J. Chen, and A. P. Chen.
Retraction of: Pornillos et al. (Science 310 (5756) 1950-1953); Reyes and Chang
(Science 308 (5724) 1028-1031); Chang and Roth, (Science 293 (5536) 1793-1800).
Science, 314:1875, 2006.

6. R. Coelho, E. Cirilo, U. Kulesza, A. von Staa, A. Rashid, and C. Lucena. JAT: A
Test Automation Framework for Multi-Agent Systems. 2007 IEEE International
Conference on Software Maintenance, pages 425–434, Oct. 2007.

7. M. Cova, C. Kruegel, and G. Vigna. Detection and analysis of drive-by-download
attacks and malicious javascript code. In Proceedings of the International World
Wide Web Conference (WWW2010), pages 281–290. ACM Press, 2010.

8. J. Farmer and D. Foley. The economy needs agent-based modelling. Nature,
460(7256):685–686, 2009.

9. Y. Jia and M. Harman. An analysis and survey of the development of mutation
testing. IEEE Transactions on Software Engineering, 37(5):649–678, 2011.

10. M. Kiran, P. Richmond, M. Holcombe, L. S. Chin, D. Worth, and C. Greenough.
FLAME: simulating large populations of agents on parallel hardware architectures.
In Proceedings of the International Conference on Autonomous Agents and Multi-
agent Systems (AAMAS 2010), pages 1633–1636. ACM Press, 2010.

11. C. Kruegel, D. Mutz, F. Valeur, and G. Vigna. On the detection of anomalous
system call arguments. In E. Snekkenes and D. Gollmann, editors, Computer
Security ESORICS 2003, volume 2808 of Lecture Notes in Computer Science,
pages 326–343. Springer Berlin / Heidelberg, 2003.

12. S. Luke, C. Cioffi-Revilla, L. Panait, and K. Sullivan. Mason: A new multi-agent
simulation toolkit. In Proceedings of the 2004 SwarmFest Workshop, 2004.

13. Y.-S. Ma, J. Offutt, and Y.-R. Kwon. MuJava: An automated class mutation
system. Journal of Software Testing, Verification and Reliability, pages 97–133,
2005.

14. A. H. Muaz Niazi and M. Kolberg. Verification and validation of agent-based
simulation using the vomas approach. In Proceedings of the Third Workshop on
Multi-Agent Systems and Simulation’09 (MASS ’09), 2009.

15. C. Nguyen and A. Perini. Automated continuous testing of multi-agent systems.
Workshop on Multi-Agent Systems, 2007.

16. K. Simons. Model error—evaluation of various finance models. New England
Economic Review, pages 17–28, 1997.

17. T. Sun, P. McMinn, S. Coakley, M. Holcombe, R. Smallwood, and S. MacNeil. An
integrated systems biology approach to understanding the rules of keratinocyte
colony formation. Journal of the Royal Society Interface, 4:1077–1092, 2007.

18. Z. Zhang, J. Thangarajah, and L. Padgham. Automated unit testing for agent sys-
tems. In 2nd International Working Conference on Evaluation of Novel Approaches
to Software Engineering (ENASE-07), pages 10–18. Citeseer, 2007.

