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Abstract

Classic approaches to automatic input data generation are usually driven by the
goal of obtaining program coverage and the need to solve or find solutions to
path constraints to achieve this. As inputs are generated with respect to the
structure of the code, they can be ineffective, difficult for humans to read, and
unsuitable for testing missing implementation. Furthermore, these approaches
have known limitations when handling constraints that involve operations with
string data types.

This paper presents a novel approach for generating string test data for string
validation routines, by harnessing the Internet. The technique uses program
identifiers to construct web search queries for regular expressions that validate
the format of a string type (such as an email address). It then performs further
web searches for strings that match the regular expressions, producing examples
of test cases that are both valid and realistic. Following this, our technique
mutates the regular expressions to drive the search for invalid strings, and the
production of test inputs that should be rejected by the validation routine.

The paper presents the results of an empirical study evaluating our approach.
The study was conducted on 24 string input validation routines collected from
10 open source projects. While dynamic symbolic execution and search-based
testing approaches were only able to generate a very low number of values
successfully, our approach generated values with an accuracy of 34% on aver-
age for the case of valid strings, and 99% on average for the case of invalid
strings. Furthermore, whereas dynamic symbolic execution and search-based
testing approaches were only capable of detecting faults in 8 routines, our ap-
proach detected faults in 17 out of the 19 validation routines known to contain
implementation errors.
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1. Introduction

There has been much work in the literature of late devoted to automated
test input generation [1], however handling string input types remains a chal-
lenging task [2, 3]. This is due to the inherent complexity of real-world data
that is naturally encoded as strings—e.g., dates of different formats, banking
codes, registration numbers, etc.—which have very large input domains, and
consequently, involve a huge search space for test data generation.

To date, a number of approaches have been investigated, including symbolic
execution [4] and search-based testing [5]. However, since they are driven by
the need to obtain high levels of structural coverage—e.g., branch coverage—the
test suited produced have the following deficiencies:

Low test effectiveness: Test suites that achieve high coverage are not neces-
sarily effective, particularly where string data types are concerned, since it is
possible to cover program structure without generating any inputs similar to
those actually supplied in practice when the software is deployed. For exam-
ple, the Java method below—isMonth (from the open source project TMG*')—
validates whether a given string input is a month name, i.e. ‘January’ to
‘December’. However, the method can be fully “covered” without an actual
month name being supplied, through execution of the method with an arbitrary
(possibly empty) string:

// declaration of a set // method body

Set months = new HashSet(); boolean isMonth(String month) {
// initialisation return months.contains (month);
months.add (" January") ; }

months.add ("December") ;

Difficult-to-read test inputs: Automatically generated test inputs tend to
be hard for human testers to read and understand. Since a formal specification
is frequently unavailable, a tester often assumes the role of a human oracle
[6]—that is, manually determining whether the right outputs were produced
for the generated inputs. This task is made harder when test inputs are not
easy to read [7]. For instance, it is harder for a human to distinguish between
arbitrary email addresses such as ‘"b\2@3#t"@s3t’ (valid) and ‘"b\203#"t@s3t’
(invalid?), than ‘bob@mail.com’ (valid) and ‘bob@mailcom.’ (invalid®).

Inability to test missing implementation: Roughly 35% of program im-
plementation errors result from missing functionality [8]. One way to detect such
errors is to test programs with invalid values. However, automated techniques
guided by program structures cannot produce such values due to missing logic

Thttp://tmgerman.sf.net
2quotes must be separated by ‘.’, or they must be the outer characters of the local-part.
3¢.” must not be the last character in the domain-part.



paths, or so-called “sins of omissions”. For example, an email validation program
in the open source project LGOL*, misses a check for rejecting values containing
more than one ‘Q’ symbol. Hence, the address ‘i.am@invalid@for.sure.com’
passes the validation test.

This paper builds upon our previous work [3] that proposed an approach
for generating valid values using tailored web searches and regular expres-
sions (which were also sought dynamically from web sources). The web searches
are conducted through web queries that are generated using information ex-
tracted from program identifiers following the application of natural language
processing techniques.

In this paper, we extend the approach for generating invalid values using
regular expression mutation, and further define a testing procedure using the
generated valid and invalid values to find potential program errors—in particular
missing logic paths. The paper furnishes an empirical study conducted on 24
string input validation routines collected from 10 open source projects. The
results of the study show that the approach was capable of finding a number of
valid and invalid values for different string types, with an average accuracy of
approximately 34% for valid values and 99% for invalid values. The approach
also detected that 17 out of the 19 routines contained implementation errors
when using the values generated. The approach has been analysed against
two contemporary test data generation tools implementing dynamic symbolic
execution [9] and search-based testing [2, 10] techniques. These tools were only
able to generate a very low number of values, and detected errors in only 8
routines.

The rest of the paper is organized as follows. Section 2 provides an overview
of the proposed approach. Sections 3-7 explain different steps of our approach
in detail. Section 8 then reports the empirical and comparative study of the
approach, while Section 9 discusses potential inherent threats to validity in our
evaluation. Section 10 details related work, and finally Section 11 concludes the
paper with directions for future work.

2. Overview of the Approach

Before describing the approach, we define the following terms used through-
out the paper:

e Validation routine: a program function that takes a value as an input
and returns true if it is accepted, or false if it is rejected.

e Valid /Invalid value: a generated value that is assumed to be accepted /rejected
by a validation routine.

“http://1gol.sf.net/
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Figure 1: Overview of our approach

Figure 1 presents an overview of our approach, which consists of four steps.
Step 1 performs preprocessing on the identifier names found in the source code
of a Java class, in order to gain information on the types of string that are
involved. Step 1 is explained in the next section, Section 3.

Step 2 takes the processed identifier names as an input from Step 1 and
searches for suitable regular expressions using web searches. It then generates
web queries and performs them using a search engine, collecting the resulting
web pages. Finally, it extracts valid values from those pages collected using
regular expressions matches. Step 2 is explained in Section 4.

Step 3 takes regular expressions and web pages as inputs from Step 2 and
generates invalid values. It first mutates the regular expressions, and then uses
them to extract string matches from the web pages. Step 3 is explained in
Section 6.

Finally, Step 4 performs testing using the valid values (in Step 4a) and the
invalid values (in Step 4b) generated from Steps 1-3. The valid values that are
not accepted, and the invalid values that are not rejected by the program are
reported as exposing potential errors. Step 4 is explained in Section 7.

3. Preprocessing

Step 1 in Figure 1, the preprocessing step, takes a Java class source file and
extracts all the identifiers contained in it. Each identifier name is then refined



using natural language processing techniques into a form that may help infer
the format of the string data corresponding to the parameters of the routines
in the original source.

Figure 2 shows a snippet of a Java class that will be used as an example of
the identifier names in the subsequent sections. The goal in this example is to
generate values for the string parameter named “an_Email_Address_Str”. The
rest of this section provides details on each part of this step.

// class body
class Validator {
// method body
boolean parseEmail (String an_Email_Address_Str) {

}
}

Figure 2: Snippet of a Java class used as an example for identifier refinement

3.1. Extracting Identifier Names

The key idea behind our approach is to extract important information from
program identifiers, and then use them to construct web query search queries
that are likely to return search results (web pages) containing examples of valid
values for those identifiers. For example, an identifier name including the word
‘email’ is a strong indicator that its value is expected to be an email address.
A web query string containing ‘email’ can be used to retrieve example email
addresses from the Internet.

For a given Java method, our approach extracts 1) the identifier of the class
containing the method, 2) the identifier of the method itself, and 3) the string
type parameter identifier. These identifiers are of interest because they may give
clues about the types of string values that the method expects. In the example
of Figure 2, the following identifier names are extracted:

Identifier Type [ Class Method String Parameter
Extracted Name { Validator parseEmail an_FEmail_Address_Str

We use the Java 6.0 Compiler API in order to extract the information about
the identifiers in the source code under analysis.

3.2. Processing Identifier Names

Once identifiers are extracted, their names are processed using the following
techniques.



3.2.1. Tokenisation

Identifier names are often formed from concatenations of words and need
to be split into separate words (or tokens) before they can be used as part of
natural language web queries. Conventions for concatenating token to form
identifiers are to use camel casing and/or underscores [11]. Identifiers are split
into tokens by replacing underscores with whitespace and/or adding a whites-
pace before each sequence of upper case letters. Finally, all characters are
converted to lowercase. For example, “parseEmail” becomes “parse email”
and “an_Email_Address_Str” becomes “an email address str’”.

3.2.2. Part-of-Speech (PoS) Tagging

Identifier names often contain words that are articles (“a”, “and”, “the”) and
prepositions (“t0”, “at” etc.), which are not useful when included in web queries.
In addition, method names often contain verbs as a prefix to describe the action
they are intended to perform. For example, “parseEmail” parses an email
address. The key information for the input value is contained in the noun
“email”, rather than the verb “parse”. The part-of-speech category in the
identifier names can be identified by applying a Part-of-Speech (PoS) tagger
[12], and thereby removing any non-noun tokens. Thus, “parse email” becomes
“email” and “an email address str” becomes “email address str’.

The implementation uses Stanford Log-linear PoS Tagger Version 3.0.4 [13].
The default options are used, including the pre-trained bidirectional model [14]
for the English language.

8.2.3. Removal of Non-Words

Identifier names may include non-words which can reduce the quality of
search results. Therefore, names are filtered with the intention of producing web
queries that consist solely of meaningful words. This is performed by removing
any word in the processed identifier name that is not a dictionary word. For
example, “email address str” becomes “email address”, since “str” is not
a dictionary word.

In order to implement this sub-step, we use an edited version of the SCOWL
word lists [15] that consist of 573,120 English language words and common
abbreviations. A modified version of the Jazzy tool [16] is used to carry out the
word lookup.

The above three techniques are applied in the order presented. In the ex-
ample of Figure 2, the extracted identifier names are processed as follows:

Extracted Identifier Name Validator parseEmail an_Email_Address_Str

Tokenisation validator parse email an email address str
4 4 4

PoS Tagging validator email email address str
1 { 4

Removal of Non-Words <empty string> email email address

Final Processed Identifier Name validator email email address
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Figure 3: Valid Values Generation

It is important to note that for an identifier name that is processed as an
empty string, the application of the last one or two processing techniques is
reversed. For example, the identifier name “Validator” becomes empty string
after removal of non-words, since it is not a dictionary word. In this case, the last
processing step will be reversed to avoid generating an empty string, as shown in
“Final Processed Identifier Name” above for the identifier name “Validator”.

4. Valid Values Generation

Figure 3 presents a schematic view of the process of generating valid values
(Step 2 in Figure 1). It takes the processed identifier names of class, method and
string parameters as inputs from the previous step. Then, each identifier name is
used to 1) generate web queries, and 2) obtain regular expressions dynamically.
The web queries are performed using a search engine. Finally, the textual
contents of the URLSs produced in the search results are downloaded, from which
the valid values are extracted using the regular expressions matches. The rest
of this section provides details on each part of this step.

4.1. Generating Web Queries

This section explains the generation of web query strings, which include
different combinations of pluralization and quotation styles. These combinations
of queries increase the number of sources to acquire target string types, and are
explained in the following.

4.1.1. Pluralization

The approach generates pluralised versions of the processed identifier names
by pluralising the last word according to the grammar rules. For example,
‘email address’ becomes ‘email addresses’.

The implementation uses the Inflector utility of the ModeShape library [17]
for grammar-based pluralisation.



4.1.2. Quoting

If an identifier name consists of multiple words, the approach generates query
strings with and without quotes. The latter style is a general search to target
web pages that contain the words in the query string, whereas the former style
forces the search engine to target web pages that contain all words in the query
string appearing together as a phrase.

Using different combinations of pluralization and quotation style, a maxi-
mum of four query strings are generated for each identifier name. In the example
of Figure 2, the following eight query strings are generated from the processed
identifier names of class, method and method parameter identifiers.

Processed identifier name ‘ validator email email address
Query strings validator, email, email address, email addresses,
validators emails "email address", "email addresses"

4.2. Performing Web Queries

The query strings generated from class, method and string parameter names
are used to perform web queries to generate values for the target string param-
eter. In the example of Figure 2, all eight query strings generated (as shown in
Section 4.1) are applied one by one to a search engine to generate values for the
string parameter with the identifier ‘an_Email_Address_Str’.

Web queries were performed using Microsoft’s Bing [18]—the only major
Internet search engine providing free API access at the time this research was
conducted. The implementation used version 2.0 of Bing’s API [19] to retrieve
search results in the form of a list of URLs. The localisation is set to ‘en-GB’,
source type to ‘web’ to obtain only textual contents (excluding images, videos
etc.) and non-HTML content types (e.g., PDF, MS Word files) are ignored.
The API limits the results to the first 50 URLSs for each query.

The web pages given by the URLs are then downloaded using JSoup [20]—an
open source parser for extracting and manipulating data from HTML pages.

4.83. Obtaining Regular Expressions

Regular expressions are obtained dynamically in two ways:
1) RegExLib Search, and 2) Web Search. These methods are explained in the
following.

4.3.1. RegExLib

RegExLib [21] is an online regular expression library that currently indexes
around 4000 expressions for different types (e.g., email, URL, postcode) and sci-
entific notations. It provides an interface to search for regular expressions using
keywords. The search can also be filtered using ratings on the expressions that
have been given by the library users according to their quality. The ratings are
given on the scale of 1 (poor) to 5 (the best).



The approach accesses the search interface by generating HTTP requests
for a processed identifier name on-the-fly. The regular expressions are then
collected from the search results (in the HTTP response). Only the best-rated
expressions are selected in the results (i.e., those rated 5).

4.8.2. Web Search

When RegExLib is unable to produce regular expressions, the approach per-
forms a simple web search using Bing’s API [19]. The search query string is
formulated by prefixing the processed identifier names with the string ‘regular
expression. For example, the regular expressions for ‘email address’ are
searched for by applying the query string ‘"regular expression" email address’.

The web pages linked from the first 50 URLs returned in the search results
are then downloaded and parsed using JSoup [20]. The regular expressions are
extracted from the web pages by identifying any string that starts with ~ and
ends with $ symbols. These regular expressions are further filtered with the
Pattern.compile() method from the Java Class Library, which helps in discarding
any malformed expressions in the search results.

4.4. Extracting Data

Finally, the collated regular expressions are used to extract data from the
downloaded web pages. For each web page, the HTML tags are stripped out
and the regular expressions are matched on the remaining text one by one. All
unique matches are then identified as potential valid string values.

4.5. Complezity Analysis

The complexity of generating valid values is bounded by the following pa-
rameters. Let b be the search time for one web query and x be the search time
to obtain regular expressions for an identifier. Then, the maximum web search
time for an identifier using ¢ queries is ¢(b + z).

Furthermore, let  be the number of regular expressions, d be the download
time for a web page, e be the regular expression matching time to extract values
from a web page. Then, the maximum time to extract values from « URLs using
q queries is qu(d + re).

From the above two equations, the worst case complexity to find valid values
for one identifier using ¢ queries is

gx (b+z+uld+re)) (1)

There are no absolute limits on b and = and it is assumed that the search
engine always responds in a finite time. There is also no limit on the number
of regular expressions. The limits on d, e and u can be set at runtime but the
default time for d per web page is set to 3 seconds by JSoup [20] and the default
limit on u per query is set to 50 by the Bing API V2 [19].



5. Regular Expression Mutation

The mutation of regular expressions is performed as a part of the process of
generating invalid values (Step 3 in Figure 1). There exist a number of operators
(e.g., character substitution, BitFlip [22]) for string mutation but they cannot
be applied directly to regular expressions because of their special characteris-
tics. For example, a string can be mutated by replacing characters randomly
or changing the length by adding or removing characters arbitrarily. However,
a regular expression has a well-defined format that can also be represented as
a deterministic finite automaton. Therefore, adding or removing characters
randomly can distort a regular expression or make it invalid. Moreover, regu-
lar expressions have a special character set and operators that have semantic
meanings, requiring a careful treatment before they can be altered.

This section presents an algorithm for regular expressions mutation that has
been designed to produce invalid string values in our approach.

5.1. Preliminaries

A regular expression s is a finite string of elements defined over an alphabet
¥, ie., s € 7. Let C be a set of alphabet classes such that for each class ¢ € O,
¢ C ¥ and for two classes ¢, ¢’ € C, where ¢ # ¢/, cN ¢ =0, i.e., all classes are
disjoint. Table 1 shows the list of alphabet classes developed for the algorithm.
The list is not exhaustive® but includes important characters for an effective
mutation.

Let the length of a string or a set s be denoted by |s|. Also, each element in
the string s is uniquely positioned in the order of its occurrence. For example,
if s =e1 ea -+ e of length k = |s|, where each ¢; € X, 1 < i < k, then e;
is indexed at the 1st, ey is indexed at the 2nd, ..., and e; is indexed at the
kth positions. Also assume that all positions have equal probability of being
selected randomly.

Let s, be a projection on s that is obtained by erasing all elements in

Y\ U c That is, s; contains elements only belonging to the alphabet classes.
ceC
For example, if s = (a)*, then s = ax, as per the alphabet classes in Table 1.

A string s is said to be mutable iff |s;| > 0, i.e, if its projection is a non-
empty string. Also, & denotes a set consisting of range elements: , and -, i.e,
each element in § specifies a range in a regular expression.

Let r be the mutation rate, in the range [0.0,1.0]. Then, the number of
possible mutations in s is defined by r x |s;|. For example, if » = 0.5 and
|s;| = 2, then the number of possible mutations in s is 0.5 x 2 = 1. Finally, let
n be a positive integer denoting the maximum number of mutants (or mutated
s) to be generated.

5A complete reference for regular expressions and related information can be found at
http://www.regular-expressions.info/
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Table 1: Character classes defined for the regular expression mutation algorithm

Description

Class Elements
c1 {\w, \W, \d, \D, \s, \S, \}
co {a, ... , z, A, ...
c3 {0, cee 9}
[ {+, %, 7}
cs {?7=, 7<=, 7!, <!}

, Z}

special characters for alphanumeric characters & spaces
alphabetic characters

numeric characters

quantification characters

look-around characters

5.2. Mutation Algorithm

Given a regular expression string s, mutation rate r» and the maximum num-
ber of mutants n, the regular expression mutation algorithm generates a set of
at most n mutants. The algorithm is given in Figure 4 and explained in the

following.

Line 1 initializes an empty set called mutants, which will hold the mutants
generated during the run of the algorithm. Line 2 performs a check whether s
is mutable. If s is not mutable, the algorithm returns an empty set.

From lines 3 to 11, the algorithm iterates to generate m mutants. Line
4 initializes an empty set called positions, which will hold the positions in s
where mutations are performed during the generation of one mutant.

From lines 5 to 9, the algorithm iterates to generate one mutant. A mutant is
generated when the number of mutations at different random positions reaches
to r X |sy|. A mutation in the mutant is performed from lines 6 to 9 as follows.

Line 6 selects an element A in s at a random position p with two conditions:
1) h is also in the projection of s, and 2) p has not been selected previously.
The first condition ensures that the element is selected from the defined classes.
The second condition ensures that each time a different position is selected for
mutation for the same mutant. Note that the position can be selected again but
for another mutant, as the set positions is reinitialized at line 4.

Line 7 selects a replacement of h through the function replacement(s,h).
This function returns a random element h’ ensuring that h and h’ are different
but belonging to the same class, and the selection of A’ is under a valid range if
h is a start/end of the range.

Once I is selected, h is replaced with A’ in s at the position p at line 8. Line
9 adds the position p to the set positions to ensure that p will not be selected
again for the same mutant.

When the loop at line 5 terminates, i.e., a mutant is generated, line 10 adds
the mutant into the set, and line 11 decrements the required number of mutants.

When the loop at line 3 runs for n times, line 12 returns the set of mutants.

5.3. Characteristics

Given a syntactically valid regular expression s, mutation rate r (in the
range [0.0,1.0]) and the maximum number of mutants n > 0, the algorithm
generates at most n mutants, and for each mutant z, = # s,|z| = |s|, ie.,
x and s are syntactically different but having the same length. All elements
at distinct positions given by r x |s;| are mutated in x. Furthermore, x is
a syntactically valid regular expression. This is due to the correctness of the

11
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Input: String s (where s is a syntactically valid regular expression)
Input: Mutation rate r (in the range [0.0, 1.0])

Input: Number of mutants n (where n > 0)

Output: Set of at most n mutants

mutants = () ; // set of mutants initially empty
// check if s is mutable

if |s;| > 0 then

/* generation of n mutants */
while n > 0 do

// set of positions in s where elements will be mutated
positions = () ;

/* generation of one mutant */
// repeat to obtain the required number of mutations
while |positions| < (r x |s;|) do

select an element h € s at position p randomly such that

1. hesy
2. p € positions

h' = replacement(s,p,h) ; // selects a replacement of h
replace h with A’ in s at p ;

| add p to positions ; // records p
add s to mutated ; // s has now been mutated
n=n—1; // decrement the number of mutants required

return mutated

/* Get replacement of element h at position p in string s */
function replacement(s, p, h)
select b’/ randomly from a class ¢ € C using the four rules:

R1: h#£ R // h and h' are different
R2: h,h' €c,ceC; // h and h' belong to the same class

R3: If h is followed by a range element from §, which is followed by an
element p € ¢, i.e., h is the start of a range that ends at p and

e if h,p € ¢y then ‘a’< h/ <p
e if h,p € c3 then ‘0O°<h' <p

RA4: If h is preceded by a range element from §, which is preceded by an
element p € ¢, i.e., h is the end of a range that starts from p and

e if h,p € cy then p < h <¢z°
o if h,p€c3then p<h <9’

return b’

Figure 4: The regular expression mutation algorithm
12



replacement(s, p, h) function that replaces the element & at position p in s with
a different element such that s remains syntactically valid. This is ensured
by the application of four rules. Rules R1 and R2 ensure that h and h' are
different but belong to the same class. Since each class has more than one
character, it is always possible to select different elements from the same class.
Moreover, R2 ensures that replacing h by h’ does not affect the syntax since
they belong to the same class. For instance, replacing quantification characters,
e.g. ‘¥ by ‘+’, does not invalidate the syntax. The only case is the range
where appropriate selection of h’ is required to ensure syntax validity. This is
ensured by rules R3 and R4. R3 ensures that if h is the start of a range that
ends at an element p, then A’ must be between ‘a’ and p, if h is an element
representing alphabetic characters (class cg), or between ‘0’ and p, if h is an
element representing numeric characters (class c3). R4 ensures that if h is the
end of a range that starts at an element p, then h’ must be between p and ‘z’, if
h is an element representing alphabetic characters (class ¢2); or between p and
‘9’, if h is an element representing numeric characters (class cs).

5.4. Example

Consider a regular expression s, given as ‘(a\d|b[c-£])+’, which accepts
the occurrence of one or more strings consisting of ‘a’ followed by any element
from ‘0’ to ‘9’, or ‘b’ followed by any element from ‘c’ to ‘f’.

The mutation algorithm is demonstrated on this example using the list of
alphabet classes given in Table 1. Suppose the mutation rate r = 0.5 and the
number of mutants n = 1.

According to Table 1, the projection of s is obtained as s; = ‘a\dbcf+’,
which consists of 6 elements. The regular expression is mutable since the length
of the projected string is greater than zero. Hence, the condition at line 2 will
be evaluated to true. Since n = 1, the outer loop at line 3 will be executed
only once. The inner loop at line 5 will run for 0.5 x 6 = 3 iterations and one
mutated s will be generated. Each of the three iterations is illustrated in the
following.

Iteration 1: In this iteration, positions = (), and each element in s is posi-
tioned in the following way.

12 3 4 5 6 7 8 9 10 11 12

P e e e e N SN

s= (a \d | b [ ¢ = f ] ) +
Then, at line 6, let a random element h = b be selected at position p = 5. At
line 7, a random replacement is selected as h' = a. At line 8, b is replaced with
a at the position 5. At line 9, 5 is added to positions.

Iteration 2: In this iteration, positions = {5}, and each element in the string
is positioned as follows.

1 2 3 4 5 6 7 8 9 10 11 12
o o e e e o e e
s=( a \d [ a [ ¢ — f ] ) +

13



Then at line 6, let a random element h = f be selected at position p = 9. At
line 7, a random replacement is selected as h’ = d. Note that h is preceded by
a range element, which is preceded by ¢, therefore i’ is selected randomly from
the range [c, z]. At line 8, f is replaced with d at the position 9. At line 9, 9 is
added to positions.

Iteration 3: In this iteration, positions = {5,9}, and each element in the
string is positioned as follows.

1 2 3 4 5 6 7 8 9 10 11 12

P s e N SN

s= ( a \d | a [ ¢ - d ] ) +
At line 6, let a random element h = \d be selected at position p = 3. At line 7,
a random replacement is selected as b’ = \D. At line 8, \d is replaced with \ D
at the position 3. At line 9, 3 is added to positions.

After the third iteration, positions = {5,9,3}, and hence the size is equal to
the number of mutations required, i.e., 3. The loop at line 5 terminates. At line
10, the following mutated string is added to the set mutated: (a\Dlalc — d])+.

At line 11, the number of mutants required is decremented, i.e., n = 0. Hence,
the loop at line 3 terminates. At line 12, mutants is returned.

6. Invalid Values Generation

Figure 5 presents a schematic view of the process of generating invalid values
(i.e., Step 3 in Figure 1). It takes regular expressions and web search results as
inputs from the valid values generation step. Then, the regular expressions are
mutated, and invalid values are produced either by extracting matches from the
pages retrieved by the web search results from Step 2, or by generating them
randomly using the mutated regular expressions, if no matches are found. The
rest of the section provides details on each part of this step.

6.1. Mutating Regular Expressions

The regular expressions are mutated one by one using the mutation algo-
rithm explained in Section 5. A unique set of mutated regular expressions is
obtained such that the string representations of any two mutated regular expres-
sions in the set must be different—i.e., the two mutated regular expressions are
syntactically different.

Depending upon the length of the regular expression and the rate of muta-
tion in the algorithm, it is possible that a generated mutated regular expres-
sion still accepts valid values. Therefore, all mutated regular expressions are
passed through a sanity check such that no mutated regular expression accepts
a valid value in the set of valid values generated in the previous step (i.e. Step
2 in Figure 1). Otherwise, such a regular expression is discarded.
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Figure 5: Invalid Values Generation

6.2. Extracting and Generating Values

All mutated regular expressions are applied to the textual contents of the
web pages one by one. All unique matches are then identified as potential invalid
string values.

If there are no matches found, the invalid values are generated automatically
from the mutated regular expressions. Only one string is generated per regular
expression. The implementation uses the Xeger library [23] that generates a
random string from a given regular expression using an automaton approach.

6.3. Complexity Analysis

The complexity of generating invalid values is bounded by the following
parameters. Let m be the mutation time for a regular expression, then the
maximum time to mutate r regular expressions is rm.

Furthermore, let e be the regular expression matching time to extract values
from a web page, u be the number of web pages, and g be the value generation
time from a regular expression, then the maximum time to extract/generate
values from r’ mutated regular expressions is 7’/ (ue + g).

From the above two equations, the worst case complexity to find invalid
values for one identifier is

rm + 1’ (ue + g) (2)

The limit on m and r’ depends upon the mutation rate and the maximum
number of mutants respectively, which are inputs to the mutation algorithm (cf.
Section 5.2). Similarly, the maximum time for e and g can be set at runtime.

7. Testing Procedure

The last step (i.e., Step 4 in Figure 1) tests the validation routine on the
valid and invalid values produced in the previous steps (as explained in Sections
4 and 6 respectively). This is done in two parts (Step 4a and Step 4b).
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Step 4a tests the routine on the valid values. Any walid value that is not
accepted by the routine is reported as a value exposing a potential error.

Conversely, Step 4b tests the routine on the invalid values. Any invalid value
that is not rejected by the routine is reported as a value exposing a potential
error.

8. Empirical Evaluation

8.1. Research Questions
The evaluation study has been performed in the light of the following re-
search questions.

RQ1. Does the use of reqular expressions and web queries formulated by the
knowledge extracted from the program identifiers generate valid values? If yes,
what is the precision?

It seems intuitively plausible that regular expressions can be used to help
identify valid values. However, this question analyses the feasibility of the ap-
proach in practice, measuring the average precision of valid values found for the
case studies.

RQ2. Does the use of mutated regular expressions result in producing invalid
values? If yes, what is the precision?

Similar to RQ1, this question concerns the use of regular expression mutation
to obtain invalid values. Does mutating the regular expressions that were used
to extract valid values result in producing invalid values?

RQ3. Does the use of valid and invalid values generated by the approach
reveal program errors?

This question aims to evaluate the fault-finding capabilities of our techiques.

RQ4. Is it feasible to run web searches and mutation in terms of computa-
tion time?

The question concerns the practical limits of the approach. Is it computa-
tionally expensive to find valid and invalid values using web searches and regular
expression mutation?

RQ5. How effective is the approach compared to the other test data gener-
ation techniques for strings?

It is important to study the approach in view of the other test data generation
techniques for string types. Does the approach outperform the other techniques
on average? If yes, by how much?

8.2. Case Studies

The research questions have been addressed on the case studies drawn from
10 open source Java projects. They include validation routines that are inte-
grated in interactive applications to check inputs entered by end users. These
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Table 2: Details of the case studies with class,

method and parameter names

Project Class Name Method Name Parameter | String data type validated
Name
Chemeval CASNumber isValid casNumber CAS registry numbers
Conzilla MIMETYype MIMEType ntype MIME types
PathURN PathURN nuri Path URNs
ResourceURL ResourceURL nuri Resource URLs
URI URI nuri URIs
URN URN nurn URNs
Efisto Util parse_ddmmyyyy Date | date string Dates in format ‘dd.MM.yyyy’
parseDate date string | Dates in format ‘EEE, dd MMM
yyyy HH:mm:ss zzz’
GSVo05 TimeChecker TimeChecker time 24 hour format
JXPFW CLocale toLocale locale POSIX locale identifiers
InternationalBank checkBasicBankAccount | bban Bank Identifier Codes (BICs)
AccountNumber Number
isValidIBAN iban International Bank Account Num-
bers (IBANs)
checkCountry country ISO 3166 country codes
LGOL DateFormatValidator | isValid str Dates in format ‘dd/MM /yyyy’
NumericValidator isValid str Strings that represent Integers
PostCodeValidator isValid str UK postcodes
Open Validator checkEmail email Email Address
Symphony checkSsn ssn US Social Security Number (SSNs)
PuzzleBazar| Validation validateEmail text Email Address
T™G Isbn Isbn isbn International Standard Book Num-
bers (ISBNs)
Month isMonth month Month names
Year Year year Four digit year
WIFE BIC BIC bic Bank Identifier Codes (BICs)
IBAN IBAN iban International Bank Account Num-
bers (IBANs)

routines perform relatively complex operations on strings, for which generat-
ing valid and invalid values is a challenging task, and as such are ideal for the
evaluation study.

There were 24 different string input validation routines selected from 20
Java classes, comprised of 2,833 lines of code. Many of these routines were
non-monolithic programs, i.e., there existed several calls to sub-routines. Ta-
ble 2 provides the list of case studies, along with the names of class, method
and string parameters used in the experiments. The parameters are of the
java.lang.String type. The specific details of each case study are provided
in the following.

Chemeval (chemeval.sf.net) is a chemical evaluation framework to assist
hazard assessment in a molecular structure. One class was selected that validates
unique identifiers, called Chemical Abstracts Service (CAS) numbers, which are
assigned to every chemical substance described in the open scientific literature.
A CAS Number is separated by hyphens into three parts, the first consisting of
up to 7 digits, the second consisting of 2 digits, and the third consisting of a
single digit serving as a checksum. CAS numbers begin at “50-0-0”, the number
for formaldehyde, and end at “1346599-09-4”, the number for naphthalenol.

Conzilla (www.conzilla.org) is a knowledge management tool that is de-
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signed to allow users to peruse related concepts in a browser interface. Six
classes were selected, including one that validates MIME types, while the other
five are responsible for validating different types of URIs.

Efisto (efisto.sf.net) is a tool for web file sharing. One class was selected
that validates two types of Date formats.

GSVO05 (gsv05.sf.net) is a J2ME application for mobile attendance record-
ing. One class was selected that validates 24 hour time format supplied as
strings.

JXPFW (jxpw.sf.net) stands for ‘Java eXPerience FrameWork’, a utility li-
brary used in commercial applications. Two classes were selected, which validate
POSIX locale identifiers, Bank Identifier Codes (BICs) and International Bank-
ing Account Numbers (IBANS).

LGOL (lgol.sf.net) is a framework for building Java applications for local
governments in the UK. Three classes were selected, which validate a date for-
mat, integer numbers and UK postcodes.

OpenSymphony (www.opensymphony.com) is a web development frame-
work. One class was selected for validating email addresses and US Social
Security Numbers (SSNs).

PuzzleBazar (code.google.com/p/puzzlebazar) is a web-based system for
developing puzzles. One class was selected to validate email addresses.

TMG (tmgerman.sf.net) stands for “Text Mining for German documents”,
and performs text processing tasks. Four classes were selected that validate
International Standard Book Numbers (ISBNs), month names and four-digit
year.

WIFE (wife.sf.net) is a framework for parsing, writing and processing mes-
sages between international banks. Two classes were selected, involving the
validation of BICs and IBANS.

8.3. Ezperimental Settings

The following parameter settings were used for the experiments:

+ Parameter Value

1 Mutation rate per regular expression (cf. Sec. 5.1) 1.0

2 Maximum number of mutants per regular expression (cf. Sec. 5.1) 50

3 Maximum regular expression matching time per web page (cf. Sec. 4.5, 6.3) 5 seconds
4 Maximum number of URLs per query (cf. Sec. 4.5) 50

5 Maximum download time per web page (cf. Sec. 4.5) 3 seconds

Parameter #1 was set to the maximum possible mutation rate in order to
mutate all “mutable” characters in a regular expression. The rationale was
to have maximum chance of obtaining invalid values from the collated regular
expressions. Parameter #2 was set to generate a reasonable number of mutants,
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such that it would not be so small as to fail to produce invalid values, and not
too large that it would make the experiments time-infeasible. Parameter #3
was set to an arbitrary time limit for a regular expression to match values in a
web page. Parameters #4 and #5 were set according to the default settings in
the Bing API V2 [19] and the JSoup library [20] respectively.

All experiments were conducted on a dedicated machine running OS X
10.6.8, equipped with 2.6 GHz Intel Core 2 Duo and 4 GB RAM, on a shared
Ethernet network having a theoretical speed of 100 Mbit/s. The remaining of
the section details the empirical evaluation and addresses the research questions.

8.4. FEvaluation Strategy

In order to verify the results of the experiments while answering the research
questions, a set of oracles was implemented for each string type. These oracles
were consulted to analyse the performance of the presented approach (and other
approaches for comparison). Specifically, they were used to furnish the accuracy
figures, e.g., the percentage of valid/invalid values generated by the approach,
and the number of true/false positives received during the testing procedure.

The types of oracles for each string type are given in Table 3. Where possible,
an official source was used. For example, the Chemical Abstracts Service [24] has
defined a format for issuing CAS numbers and provided a regular expression for
their validation. Thus, the oracle for CAS number (Chemeval) was implemented
by using the regular expression. For a few string types, an exhaustive list of
all possible values was used as the oracle. For example, the ISO 3166-1 alpha-
2 standard has defined a fixed list of all country codes. Thus, the oracle for 2
letter country code (JXPFW) was implemented by using the list. In most cases,
the Apache Commons Validator API [25] was used as an oracle. For the rest,
different programs acquired from 3rd-party sources were used as oracles. In this
case, all results were verified manually.

8.5. Answers to Research Questions

RQ1. Does the use of reqular expressions and web queries formulated by the
knowledge extracted from the program identifiers generate valid values? If yes,
what is the precision?

To answer this question, the identifier names in each string type were pre-
processed to obtain regular expressions from the web. Then, web queries were
performed to collect web pages from which valid values were extracted using the
regular expressions.

The approach was also studied for comparison with the simple approach of
randomly generating synthetic strings directly from the collated regular expres-
sions. For this experiment, 50 random strings were generated from each regular
expression using Xeger [23].

The values generated by both approaches were inputted to the oracles (Table
3), and the percentage of the accepted values was computed for each string
type. Table 4 shows the number of regular expressions collated dynamically,
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Table 3: Types of oracles used to analyse potential errors

The column ‘Oracle Type’ lists the types of oracles for each string type that has been implemented
to evaluate the approach while answering the research questions. The Apache Commons Validator
API [25] was used as an oracle in most cases. For others, ‘Official’ means that oracles have been
derived from an official source, ‘Exhaustive’ means that oracles have enumerated all possible values,
‘3rd party’ means that oracles have been acquired from an external source. For the ‘3rd party’ type,
the results have been verified manually.

Project Class Oracle Type
Chemeval CAS number Official [24]
Conzilla MIME type Exhaustive [26]
Path URN Official [27]
Resource URL 3rd party
URI 3rd party
URN 3rd party
Efisto Date (dd.MM.yyyy) Apache Commons Validator [25]
Date (EEE...) Apache Commons Validator [25]
GSVo05 24 hour time Apache Commons Validator [25]
JXPFW BBAN Exhaustive (all country formats)
POSIX locale identifier | 3rd party
2 letter country code Exhaustive (all country formats)
IBAN Exhaustive (all country formats)
-+ 3rd party checksum validator
LGOL Date (dd/mm/yyyy) Apache Commons Validator [25]
Integer Apache Commons Validator [25]
UK Postcode Official [28]
OpenSymphony | Email address Apache Commons Validator [25]
SSN 3rd party
PuzzleBazar Email address Apache Commons Validator [25]
TMG ISBN Apache Commons Validator [25]
Month Exhaustive (all month names)
Year Apache Commons Validator [25]
WIFE BIC 3rd party
IBAN Exhaustive (all country formats)
+ 3rd party checksum validator

the number of total values generated and the percentage for the 24 string types
in both approaches.

The values generated by the random generation approach included only five
cases where the values were accepted by the oracles, with the average precision of
8.23%. Whereas, the values generated by the proposed approach were accepted
by the oracles in all but three cases, with the average precision of 33.8%. These
three cases are explained in the following.

The first was Path URN (Conzilla). No regular expressions were generated
by RegExLib for this type. The web search produced five regular expressions
were found but no data could be extracted from the search results. Conse-
quently, no valid values could be produced for this case.

The second case was Resource URL (Conzilla). No regular expressions were
generated by RegExLib for this type either. However, many expressions were
collected using the web search method and these produced several values. These
values were mainly related to the Internet resource references (such as URLSs).
However, none of the values generated corresponded to the required URL format,
i.e. a string prefixed with “res://”. Therefore, the count for valid values
remained zero.

The last case was ‘Date (EEE, dd MMM yyyy HH:mm:ss zzz)’ (Efisto). In

20



Table 4: Analysis of valid values for each case study using the approach

‘Total regex’ denotes the number of regular expressions collated for each string type. ‘Random
Gen.’ states the result of the experiments for the approach of generating synthetic strings directly
from the regular expressions. ‘Web Search’ states the results of the proposed approach. ‘Total
Values’ states the total number of generated values and ‘Valid Values’ is the percentage of valid
values accepted by the respective oracles for each string type.

Project String Type Total Random Gen. ‘Web Search
regex

Total Valid Total Valid
Values Values Values Values
Chemeval CASNumber 1 50 0.0% 12,753 95.5%
Conzilla MIMEType 121 6,050 0.0% 708 0.1%
PathURN 5 250 0.0% 0 n/a
ResourceURL 21 1,050 0.0% 8,234 0.0%
URI 20 910 50.0% 19,796 2.3%
URN 15 687 0.0% 26,140 0.1%
Efisto Date (dd.MM.yyyy) 12 600 0.0% 19,768 0.1%
Date (EEE, - - -) 1 48 0.0% 5,007 0.0%
GSV05 24 hour time 11 457 10.94% 3,365 7.0%
JXPFW BBAN 1 50 0.0% 30 33.3%
POSIX locale identifier 38 1,900 0.0% 13,559 1.7%
2 letter country code 23 1,150 0.0% 18,972 0.1%
IBAN 1 50 0.0% 58 82.8%
LGOL Date (dd/mm/yyyy) 117 5,844 0.0% 650 7.7%
Integer 23 1,150 3.13% | 39,697 4.4%
UK Postcode 22 1,100 0.0% 1,032 100.0%
Open- Email Address 2 100 0.0% 5,237 57.7%
Symphony SSN 3 150 0.0% 250 | 100.0%
PuzzleBazar Email Address 49 2,444 0.0% 42,935 0.1%
TMG Isbn 15 634 0.0% 1,117 81.2%
Month 2 10 100.0% 1,760 0.7%
Year 24 260 0.0% 1,339 51.7%
WIFE BIC 24 144 33.33% 103 100.0%
IBAN 9 337 0.0% 67 83.6%
Average 8.23% 33.8%

this case, RegExLib generated a number of regular expressions, however, none
corresponded to this precise date format and no valid values were produced.

The study of the experiments of the two approaches has shown that the
approach of random generation was only successful in cases where a precise
regular expression for the required string type was available. For instance, a
regular expression for Month (TMG) had the names of all the months specified®.
Hence, it was easy to produce a month name from a random walk. On the other
hand, it was hard to produce a string that requires checksums or other logical
encoding by a random walk on a regular expression. The proposed approach of
extracting web values produced more valid strings on average in the experiments.
In some cases, 100% of the generated values were found to be valid, for example
MIMEType (Conzilla), UK Postcode (LGOL) and BIC (WIFE). There were a
few cases where the precision fell below 1%. There were various reasons for such
performance which are described below.

Inappropriate regular expressions

6Snippet of the regular expression: (Jan(uary)?|Feb(ruary)?|...|Nov(ember)?|Dec(ember)?)
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In some cases, the collated regular expressions were not suitable for the required
formats. This was mainly due to the RegExLib search method generating ex-
pressions that are not related to the search query. For example, the search query
“URN” generates expressions related to date formats, XML tags and postal ad-
dresses. Thus, a large set of values generated by these expressions could not be
validated as an URN.

Low informativeness in identifier names

There are cases where a particular format is required for the values to be valid
but the identifier names did not provide enough information for the web queries
to generate the required format. For example, the cases related to date and time
formats (Efisto, GSV05, LGOL) and ISO country codes (JXPFW) produced a
large set of values but few were regarded as valid due to the specific formats
required.

Misguided search due to a general context

There are cases where the identifier names represent a general context, thereby
causing large numbers of values to be generated. For example only 0.1% of
the values for Email Address in the PuzzleBazar project are valid. The main
reason is the identifier names used in this project (“Validation”, “text”) are not
particularly related to email addresses. On the other hand the identifier names
for Email Address in the OpenSymphony project are more suitable search terms,
leading to 57.7% of values being valid.

RQ2. Does the use of mutated regular expressions result in producing invalid
values? If yes, what is the precision?

To answer RQ2, the experiments for generating invalid values were conducted
using the regular expressions and the web search results obtained in the previous
experiments of generating valid values (i.e., in answering RQ1). Moreover, the
mutation rate was set to 1.0 and the maximum number of mutants for each
regular expression was 50 for the mutation algorithm.

The experiments were repeated 10 times for each string type in order to
account for random variations in the mutation algorithm. In each of these 10
runs, the invalid values generated by the approach were inputted to the oracles
(cf. Table 3), and the percentage of the rejected values was computed for each
string type. Table 5 shows the number of mutated regular expressions, the
number of total values generated from the mutated regular expressions, and
records the percentage of invalid values for each string type averaged over 10
runs. As shown, a very high volume of invalid values was generated by the
approach for all cases, averaging 98.8%.

RQ3. Does the use of valid and invalid values generated by the approach
reveal program errors?

In the testing process, the generated valid and invalid values were tested
on the validation routines to expose errors. The valid values which were not
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Table 5: Analysis of invalid values for each case study using the approach.

The experiments were conducted using the mutation rate of 1.0 and the maximum number of
mutants for each regular expression was 50. The experiments were repeated 10 times for each
string type. The column ‘Total mutants’ denotes the number of mutated regular expressions gen-
erated for each string type in each run. ‘Total Values (Av.)’ states the number of invalid values
extracted/generated using the mutated regular expressions, and ‘Invalid Values (Av.)’ is the per-
centage of invalid values from the total values given by the respective oracles, for each string type
averaged over 10 runs.

Project String Type Total Total Invalid
mutants Values (Av.) Values (Av.)

Chemeval CASNumber 299 519.1 99.5%
Conzilla MIMEType 6,964 363.7 100.0%
PathURN 401 39.3 100.0%

ResourceURL 1351 130.1 100.0%

URI 550 17392.0 100.0%

URN 1,311 2363.0 99.5%

Efisto Date (dd.MM.yyyy) 509 34047.4 100.0%
Date (EEE, - - -) 50 72023.3 100.0%

GSVo05 24 hour time 1,009 1552.3 94.7%
JXPFW BBAN 16 43224.9 100.0%
POSIX locale identifier 2,558 1657.8 99.7%

2 letter country code 2,157 61028.8 99.8%

IBAN 16 34147.1 99.9%

LGOL Date (dd/mm/yyyy) 8,235 122.4 97.3%
Integer 1,186 90426.6 99.8%

UK Postcode 1,396 144114.1 100.0%

OpenSymphony Email Address 98 145.0 87.3%
SSN 150 278.9 99.9%

PuzzleBazar Email Address 3,742 133472.6 100.0%
T™MG Isbn 1,076 27012.1 99.4%
Month 51 940.6 100.0%

Year 5,255 47754.6 98.5%

WIFE BIC 246 1098.9 99.1%
IBAN 836 820.0 97.5%

Average 29778.1 98.8%

accepted, and the invalid values which were not rejected by the routines were
assumed to expose potential errors.

In order to check whether these values indicate real program errors, the
non-accepted values (denoted by a) and non-rejected values (denoted by f)
were inputted to the respective oracles (cf. Table 3) for each string type. If the
oracle accepts a value in «, or rejects a value in 3, the value exposes a real error
and thus labeled as a true positive. Otherwise, the error is spurious and the
value is labeled as a false positive.

Out of the 24 routines, five (underlined in Table 6) contained no known
errors. The remaining 19 contained errors regarding either the rejection of
well-formed strings, or the acceptance of malformed strings. Some of these
errors were related to subtle violations in the input format, and could easily go
undetected unless they were exposed by a particular input string. For example,
one of the valid values generated by the approach for 24 hour time (GSV05)
was “8:00”, which had not been accepted by the validation routine. This is due
to the branching sub-condition “minute > 0”, which should have been correctly
written as “minute >= 0”.

In case of invalid values, an example value generated by a mutated regular
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Table 6: Analysis of program errors exposed by generated values

The validation routines were tested on the valid/invalid values generated by the approach. The
rejected valid values and the accepted invalid values indicate potential errors in the routines. The
tables below provide an analysis for the valid and the invalid values respectively. The number of
distinct values exposing potential errors is stated in ‘# Values Exposing Errors’. The true and
false positives were computed using oracles, whose numbers are stated in ‘True Positives’ and ‘False
Positives’ respectively. ‘Precision’ denotes the precision of finding values that expose errors as per
Eq. 3. ‘n/a’ denotes the case when precision cannot be computed due to the absence of values
exposing errors. All routines contain errors except the five that are underlined. The valid values
have exposed errors in 2, whereas the invalid values have exposed errors in 17 out of 19 erroneous
routines.

(a) Analysis of program errors exposed by valid values

Project String Type # Values True False Precision
Exposing Positives Positives
Errors
Chemeval CASNumber 0 n/a n/a n/a
Conzilla MIMEType 13 0 13 0.0%
PathURN 0 n/a n/a n/a
ResourceURL 8234 0 8234 0.0%
URI 19692 0 19692 0.0%
URN 26107 0 26107 0.0%
Efisto Date (dd.MM.yyyy) 19734 0 19734 0.0%
Date (EEE - - ) 5007 0 5007 0.0%
GSV05 24 hour time 3202 33 3169 1.0%
JXPFW BBAN 10 0 10 0.0%
POSIX locale identifier 13125 0 13125 0.0%
2 letter country code 18954 0 18954 0.0%
IBAN 224 54 170 24.1%
LGOL Date (dd/mm/yyyy) 600 0 600 0.0%
Integer 35615 0 35615 0.0%
UK Postcode 0 n/a n/a n/a
Open Email Address 2163 0 2163 0.0%
Symphony SSN 0 n/a n/a n/a
PuzzleBazar| Email Address 42892 0 42892 0.0%
TMG Isbn 209 0 209 0.0%
Month 1748 0 1748 0.0%
Year 113 0 113 0.0%
WIFE BIC 0 n/a n/a n/a
IBAN 11 0 11 0.0%
Average 8357.7 5.7 10023.6 1.3%

(b) Analysis of program errors exposed by invalid values averaged over 10 runs. The
precision is given with the standard deviation to analyse the variation in all runs.

Project String Type # Values True False Precision
Exposing Positives Positives (St. Dev.)
Errors

Chemeval CASNumber 0 n/a n/a n/a
Conzilla MIMEType 72.0 72.0 0.0 100.0% (0.0)
PathURN 0.0 n/a n/a n/a
ResourceURL 0.0 n/a n/a n/a

URI 578.0 404.0 174.0 69.9% (0.0)

URN 28.6 4.7 23.9 16.3% (6.1)

Efisto Date (dd.MM.yyyy) 13.6 12.7 0.9 93.4% (7.0)
Date (EEE ---) 0.0 n/a n/a n/a

GSV05 24 hour time 17.0 5.0 12.0 29.4% (0.0)
JXPFW BBAN 1659.4 1655.0 4.4 99.7% (0.1)
POSIX locale identifier 33.8 32.1 1.7 95.0% (5.8)

2 letter country code 157.5 0.0 157.5 0.0% (0.0)

IBAN 9.7 1.4 8.3 14.4% (7.3)

LGOL Date (dd/mm/yyyy) 5.4 1.0 4.4 | 18.5% (9.2)
Integer 145.3 0.0 145.3 0.0% (0.0)

UK Postcode 8.3 4.0 4.3 48.2% (10.0)

Open Email Address 101.0 80.0 21.0 79.2% (0.0)
Symphony SSN 75.1 75.1 0.0 100.0% (0.0)
PuzzleBazar| Email Address 18.0 11.8 6.2 65.6% (14.2)
TMG Isbn 269.8 2.2 242.0 0.9% (1.1)
Month 0.0 n/a n/a n/a

Year 1842.8 920.8 661.0 58.2% (3.1)

WIFE BIC 67.8 60.0 7.8 88.5% (9.8)
IBAN 32.5 6.0 26.5 18.5% (4.8)

Average 214.0 139.5 62.5 69.0%
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expression for URI (Conzilla) was ‘dttps://41.5vYMM: /:s’, which was not
rejected by the validation routine. The routine performs various checks on the
format of the given URI but did not include checking of whitespaces. Similarly,
an invalid value extracted from a web page by a mutated regular expression for
BIC (WIFE) was “WildBoyz”, which was not rejected either. In this case, the
routine performs checks about the length of the string that must be 8 or 11
characters long and its 5th and 6th characters must be an ISO country code.
The specified value has 8 characters and the 5th and 6th characters (“Bo”) make
the country code for Bolivia.

Table 6 (a) and (b) show the results of testing valid and invalid values
respectively for all string types. The number of distinct values that have exposed
errors are stated in the column ‘# Values Exposing Errors’. Note that these
errors are not necessarily unique—i.e, more than one distinct values may expose
the same error in the program. All these values were verified by the respective
oracles for each string type and true/false positives were computed as follows.

True Positives

N x 100 3
Precsion = ip e Positives + False Positives ®

Table 6 (a) shows that the valid values exposed errors in two routines, i.e,
24 hour time (GSV05) and IBAN (JXPFW). However, there were many false
positives, and therefore, the overall average precision is low (1.3%). One of the
reasons for low precision is the fact that these routines are obtained from older
projects, which have already been tested on well-formed input strings. As a
result, only a few routines contained errors related to non-acceptance of valid
values, which were exposed by the approach.

Table 6 (b) provides the results for testing the invalid values averaged over
10 runs of the experiments. It shows that the invalid values exposed errors in
17 out of the 19 routines known to contain faults (in each of the 10 runs). Out
of the five routines for which errors were found to be error-free, there were only
two cases, i.e., ‘2 letter country code’ (JXPFW) and Integer (LGOL), where the
invalid values exposed potential errors but which were actually false positives.
The precision in this case is given along with the standard deviation to analyse
the variations in all runs. The few cases where the variation is slightly higher is
due to the identifier names that represent a general context. The highest vari-
ation is 14.2 that was found in Email Address (PuzzleBazar) that encapsulates
the target concept only in the method name, i.e., “validateEmail”. The class
and parameter names, “Validation” and “text” respectively, produced regular
expressions that could not extract any values from the given web pages. Conse-
quently, the random generator (Xeger [23]) was applied to generate values that
tended to deviate from one run to the other. There is only one other case, i.e,
UK Postcode (LGOL) where the deviation is given in double figures. However,
the deviations are much smaller than the respective averages in all cases. The
overall average precision of 69% was calculated for all string types.

The accuracy of these results is subjective to the quality of oracles used
in the experiments. However, these oracles were acquired from the respective
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authorities (i.e., official, exhaustive, Apache Commons) where possible. For
other sources, the results have been manually verified. But overall results show
that the approach is capable of finding errors using valid and invalid values
that were extracted or generated by regular expressions and their mutations
respectively. In case of testing valid values, the precision was low; however, the
approach surpassed the other testing techniques in exposing erroneous routines
(see RQ5 for details). In case of testing invalid values, high precision was
obtained.

RQ. Is it feasible to run web searches and mutation in terms of computa-
tion time?

The time taken by the approach for generating valid and invalid values for
all string types is given in Table 7 and measured in seconds.

The time analysis for the valid values generation is given in the second,
third and fourth columns according to Equation 1. The second column states
the web search time and the regular expression search time for all queries. The
third column states the download time and the value extraction time for all web
pages, regular expressions and queries. The fourth column totals the previous
two columns. The average time for generating the valid values is given as 323.08
seconds or about 5.4 minutes.

The time analysis for the invalid values generation is given in the fifth,
sixth and seventh columns according to Equation 2, averaged over 10 runs of
the experiments. The fifth column states the mutation time for all regular
expressions. The sixth column states the value extraction time for all web
pages and mutated regular expressions, plus the value generation time from the
mutated regular expressions in case no values could be extracted. The seventh
column totals the previous two columns. The average time for generating the
invalid values is given as 694.26 seconds or about 23 minutes.

The web page downloading and value extraction processes are a little time
consuming (cf. columns 3 and 6 of Table 7) but are not an overhead that is
infeasible or particularly burdensome if the goal is to obtain valid and invalid
values in high volumes.

RQ5. How effective is the approach compared to the other test data gener-
ation techniques for strings?

There are no known tools available for valid and invalid values generation in
the same settings as provided in this paper. The closest are test data generation
techniques that usually aim for code coverage. Two main techniques: dynamic
symbolic execution [4] and search-based testing [5], were considered for compar-
ison with the approach. For each technique, a relevant tool was obtained that
could generate data for string types. Each class from the case studies was run
on these tools that generated several branch-covering test cases. For each class,
the tools ran for 10 times, where each run was bounded by the maximum time
taken by the proposed approach for that class in any of the 10 runs (see Table
7). Following this, the test data was extracted from the test cases for all string
types to analyse the percentage of valid values through the validation routines.
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Table 7: Time Analysis for valid and invalid values Generation in seconds

The time analysis for valid and invalid values generation according to Equations 1 and 2 respectively.
The second, third and fourth columns state the valid values generation time. The second column is
the web search time and the regular expression search time for all queries, the third column is the
download time and the value extraction time for all regular expressions, web pages and queries. The
fourth column is the total of previous two columns. The fifth, sixth and seventh columns state the
invalid values generation time. The fifth column is the mutation time for all regular expressions.
The sixth column is the value extraction time for all web pages and the value generation time using
all mutated regular expressions. The seventh column is the total of previous two columns.

Valid Values

Invalid Values

Project / Generation Time (sec) Generation Time (sec)

String Types q(b+ )| qu(d+re) q(b+ )+ rm | 7’ (ue+ g) rm+
qu(d + re)) ' (ue + g)

Chemeval

CASNumber 6.00 336.67 342.66 0.16 35.57 35.73

Conzilla

MIMEType 5.71 1230.62 1236.33 11.39 787.04 798.43

PathURN 6.46 108.69 115.15 0.95 90.11 91.06

ResourceURL 6.29 236.48 242.76 2.98 127.91 130.89

URI 6.21 284.34 290.55 || 243.67 788.98 1032.65

URN 8.08 314.46 322.54 7.15 520.17 527.32

Efisto

Date (dd.MM.yyyy) 9.36 30.49 39.84 124.28 2665.38 2789.66

Date (EEE - --) 10.24 29.35 0.66 3.28 3.94

GSVO05

24 hour time 8.29 212.42 220.72 1.99 111.24 113.23

JXPFW

BBAN 9.95 38.69 48.64 144.48 5752.11 5896.59

POSIX locale identifier 15.32 654.87 670.18 5.09 477.53 482.61

2 letter country code 10.19 60.66 70.85 32.67 250.23 282.90

IBAN 7.64 38.68 46.32 0.01 1.56 1.56

LGOL

Date (dd/mm/yyyy) 12.25 558.83 571.08 1.53 46.50 48.03

Integer 7.42 523.69 531.11 17.30 348.68 365.98

UK Postcode 8.10 503.50 511.59 19.04 837.77 856.81

OpenSymphony

Email Address 9.78 57.21 66.99 34.61 331.81 366.43

SSN 5.84 45.60 51.43 0.46 54.98 55.44

PuzzleBazar

Email Address 10.92 520.94 531.86 195.87 1302.04 1497.91

T™™MG

Isbn 11.05 570.65 581.70 0.97 311.80 312.78

Month 10.56 129.34 139.90 2.19 95.70 97.88

Year 8.09 531.51 539.59 53.21 385.00 438.22

WIFE

BIC 8.65 207.64 216.29 12.98 23.82 36.80

IBAN 6.87 319.29 326.15 67.53 331.94 399.47

Average 8.72 314.36 323.08 40.88 653.38 694.26
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For dynamic symbolic execution, Symbolic PathFinder (SPF) [9] was used,
which performs symbolic execution of Java bytecode with model checking and
constraint solving. The default options were used for the decision procedure:
Choco [29], and for the string solving approach: automata. SPF was run until
either the timeout occurred, or terminated due to the tool’s internal error.

For search-based testing, an improved version of eToc [10], called eToct|2]
was used. The tool performed evolutionary searches for 100 generations of
randomly-generated values with a population size of 100 for each branch. For
an uncovered branch, eToct continued searching until there had been no im-
provement in the best fitness value found in the last 1000 generations, i.e., the
search had stagnated. Thus, each uncovered branch received at least 100,000
fitness evaluations, possibly more, if progress did not stagnate.

The experiments with eToc™ and SPF were repeated for 10 times to mini-
mize the effect of randomness. Later, the values from the test cases generated
by each tool for each class were collected for analysis. Table 8 provides the
average percentage of valid values verified by using the oracles. Evidently, these
tools produced a very low number of valid values on average in comparison with
the proposed approach. Although these tools are primarily test case generation
tools aiming to achieve a specific type of coverage, they were used as a base-
line comparison to measure the effectiveness of the proposed approach for valid
values generation in the following way.

Let a be an approach and s be a string type in the case studies, the effec-
tiveness function ef f of a for s is calculated as

% of wvalid values for s given by a
Maximum % of wvalid values for s

eff(a,s) = (4)

When the denominator is zero, i.e., no valid values were generated by any
approach for a specific s, the effectiveness of all approaches is zero for that s.
Table 8 shows the average effectiveness computed for all approaches and for
all s. Clearly, the proposed approach has been the most effective in produc-
ing valid values on average compared to other approaches. eToct generated a
number of values but only 0.01% values were valid, with the average effectiv-
ness of 0.0035. SPF generated few values were valid, and therefore, the average
effectiveness was 0. The main reason is that string constraint solving in SPF is
currently work in progress’, and does not recognize complex object types (e.g.,
java.text.SimpleDateFormat, java.lang.Integer), and throws exceptions during
test generation.

Another comparison was performed regarding the error exposing capabilities
of these approaches. The values generated by eToc™ and SPF were inputted to
oracles to check for disagreement with the respective validation routines. There
were in total 19 routines that contained known errors. eToc™ exposed errors in
8 routines, whereas SPF exposed errors only in 1 routine. In comparison, the

"http://babelfish.arc.nasa.gov/trac/jpf/wiki/projects/jpf-symbc/doc
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Table 8: Comparison with other test data generation approaches

The proposed approach is compared with eToct and SPF tools. The experiments with these tools
were repeated for 10 times for each string type. The second column states the average percentage
of valid values for each string type over 10 runs. The figure for the proposed approach has been
repeated from Table 4 for this column (which was run only once). The third column states the
effectiveness of the approaches calculated according to Eq. 4.

Approach % of Valid Values (Av.) Effectiveness
Dynamic Symbolic Execution (SPF [9]) 0.00% 0.0000
Search-Based Testing (eToc™ [10, 2]) 0.01% 0.0035
Proposed Approach 33.8% 0.8750

approach presented exposed errors in 17 routines (see RQ3).

In conclusion, the proposed approach has been the most effective in i) gen-
erating valid values, and ii) exposing errors, in the empirical study compared to
the selected tools in dynamic symbolic execution and search-based testing.

9. Threats to Validity

Threats to validity might come from how the empirical evaluation was car-
ried out. One possible threat is the choice of case studies, which is common for
any empirical analysis. Naturally, it is impossible to capture the full diversity
of all possible programs. However, the case studies were obtained from differ-
ent open source portals in a variety of domains that contain different levels of
expressiveness. Also in some cases, more than one program in a similar domain
but from different sources were considered.

A threat to validity that might come from the random mutation of regular
expressions. In order to reduce the bias, 50 mutants were generated for each
collated regular expression, and the procedure was repeated 10 times for each
case study to generalise the results. Another threat is linked to the mutation
algorithm that did not consider all possible characters in the regular expres-
sion grammar (cf. Table 1). However, the experimental results in Table 5 show
that the algorithm has produced regular expressions that achieved ~99% of in-
valid values and also exposed errors in the case studies. There were only three
cases where a high number of false positives (> 100) was found. But this was
mainly due to the generic contexts inferred from the identifier names.

Another possible threat to validity comes from the experimental setup that
did not take into account all combinations of parameter settings. In this pa-
per, default settings were considered where possible, e.g., 50 URLs for each web
query, otherwise parameters were chosen intuitively, e.g., mutation rate was set
to one, to mutate all “mutable” characters in a regular expression. In theory,
there might exist parameter settings affecting the generalisation of the current
results. To analyse this issue, more experiments are required with tunable set-
tings to account for different combinations.

Finally, a threat to validity that might come from the time analysis (RQ4).
Sections 4 and 6 provide the generalisation of the cost of the computational time
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required by the approach for valid and invalid values generation. Moreover,
the actual time taken by the approach in the evaluation study has also been
reported in Table 7. In order to perform a realistic time analysis, the approach
was implemented without using concurrency (e.g., multi-threading). This means
that all operations: web searches, downloading, value extraction and mutation,
were conducted in the sequential mode. However, memorisation was used to
avoid re-performing the previously processed web queries, but this could not
affect the extraction of values from the static web pages if those queries had
been repeated.

10. Related Work

The input validation problem has been addressed in the classic software
testing literature [30]. The earlier approaches assume the provision of grammars
from which the inputs can be generated. Beizer [30] has presented approaches
for syntax testing, also called grammar-based testing, where the syntax of the
input is expressed in a formal specification, such as BNF (Backus-Naur Form),
and its equivalent graph. Then the valid inputs are generated by “covering”
the graph. Invalid values can also be generated by employing heuristics such
as interchanging terminal and non-terminal symbols (in the BNF), replacing
numeric with alphabetic values and generating extra delimiters in the valid
values — the so-called “error-condition” rules [31].

There has been a significant progress in the input generation techniques in
the later research; however, dealing with complex string formats has remained a
challenge. Well-known approaches including symbolic execution [4] and search-
based testing [5] have trouble executing path conditions containing string op-
erations. Several improvements have been proposed by reducing the search
exploration space [5][32], or by employing custom grammar based constraint
solvers [33][34].

Contrary to the above techniques, our approach does not assume the pro-
vision of grammars but it searches for inputs on the Internet by inferring the
input formats from the identifier names, which is then formalised with the help
of relevant regular expressions that are also obtained dynamically. The regu-
lar expressions limit the input space for arbitrary strings, as well as produce
relevant data for program testing.

Elbaum et al. [35] have proposed an approach for generating valid values
based on collecting input data from previous user sessions. This technique was
designed for web applications where users normally leave behind the footprints of
their data. Similarly, an approach for using outputs of the existing web services
as inputs to the services under test has been evaluated for service-oriented-
architectures [36]. Contrary to these works, our approach searches input data
from scratch without assuming existing usage data.

One key objective of the current approach is to generate invalid data. Con-
straint based approaches [37] can also be employed for this purpose. This is
similar to generating valid values except that a constraint is inversed, e.g., re-
turning a number less than a threshold while a greater number is expected.
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This is normally practiced in symbolic execution to explore if-else paths of
programs. Other string constraint solvers exist, e.g, HAMPI [38] that uses
context-free grammar to solve strings whose lengths are predetermined. It per-
forms a bitvector encoding of all positional shifts for each regular expression in
a constraint in order to find an optimal solution. It was observed that much
of that encoding work is unnecessary if the goal is to find a single string as-
signment as quickly as possible [39]. Recently, Java String Testing (JST) tool
[40] has been proposed that enhanced the symbolic execution engine of the SPF
platform [9] to tackle complex data structures. The tool implements a hybrid
approach that searches solutions for string variables using both numeric and
string solvers for fast convergence. Furthermore, special rules and heuristics are
devised for different kinds of string constraints in Java language, which helped
in achieving better coverage in an evaluation study. However, it is known that
solving arbitrary constraints is an undecidable problem [41].

Fuzzing [34] has been popular in generating malformed inputs using random-
ized techniques. This technique is more popular in attacking system vulnera-
bilities such as crashes or failing assertions. An important difference with our
approach is that fuzzing mutates the given valid values to generate invalid ones,
whereas our approach mutates a regular expression that matches valid values
to produce invalid ones. Also, fuzzing requires the provision of valid values but
our approach searches for values on the web.

In search-based testing, an approach has been proposed to generate test data
for the purpose of raising specified exceptions in a program [41]. This approach
employs meta-heuristic techniques and uses directed search methods that aim
to find optimal solutions for specific fitness functions. On the contrary, our
approach does not use program structure to target exceptions, instead it uses
only identifiers to extract information about input formatting.

The foundation of this approach has been laid by our previous work [2]
that presented the original idea of harvesting the Internet for finding test data.
There, the objective was to enhance branch coverage in search-based testing
by seeding web values. But achieving high coverage does not imply generating
valid and invalid data (cf. Section 1), which is aimed in the current approach.
Furthermore, the current approach provides a testing framework to find out
program errors which are difficult to detect unless specific data is used.

11. Conclusion

This paper has presented an approach for generating valid string values by
using tailored web searches and regular expressions, which are also collated
dynamically from different web sources. Furthermore, the approach generates
invalid string values by using mutated regular expressions. Finally, testing is
performed using the valid and invalid values to find potential program errors.
The empirical study showed a number of errors were exposed in 17 out of 19
validation routines known to contain faults. These faults were related to viola-
tions in the required input format which can easily go undetected unless they
are unveiled by specific test data.
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One benefit of the approach is that the generated values are realistic, rather
than the arbitrary-looking strings typically produced by automatic test data
generation techniques. The strings generated are realistic because they are
sourced from the Internet, a rich source of human-readable data. Furthermore,
when there is no automated oracle, test cases utilizing such values help to reduce
so-called human oracle cost [6]—that is, reducing the time and effort required
of a human in interpreting the test inputs.
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