
Viscount: A Direct Method Call Coverage Tool
for Java

Muhammad Firhard Roslan, José Miguel Rojas, and Phil McMinn
University of Sheffield, UK

Abstract—Writing unit tests against implementation detail
in production code, often embodied in non-public methods, is
considered bad practice in formal and gray literature. This is
because it leads to fragile tests that break easily when underlying
implementation details change. For this reason, tests that focus
on behavior are encouraged. One way to achieve this is to
test units exclusively through their public API. However, our
recent developer survey shows that this advice is not always
followed in practice. Moreover, code coverage tools do not provide
a way to determine which methods were called directly from
tests, meaning there is no easy way to identify whether units
make calls to non-public methods, other than through manual
examination. To address this problem, we developed Viscount, a
tool that can determine direct method call coverage for Java tests
written in JUnit. Viscount reports the percentage of methods
invoked directly from tests, according to their visibility — i.e.,
public or non-public (protected, package-private, or private).
This can help developers and researchers identify tests that
potentially need to be refactored or rewritten. In this paper, we
describe Viscount’s overall architecture, its core features, and
how to use it. Viscount is also publicly available on GitHub:
https://github.com/unittesting-nonpublic/viscount. A demo video
of Viscount is available at: https://youtu.be/ZUyRtiUnbsU.

Index Terms—Access Modifiers, Code Coverage, Test Smells,
Unit Testing.

I. INTRODUCTION

Writing high-quality, effective unit tests is a challenging task
for software developers. When deciding which tests to write,
developers must consider a number of factors, including what
parts of the production code to test and how to test them. In
doing this, developers often aim to achieve high code coverage
and to capture implemented behavior through meaningful
assertions. Guidance and advocacy for writing good unit tests
are plentiful in both formal [15] and gray literature [1].

Among the vast amount of advice available, testing behavior
(i.e., through public methods) instead of implementation de-
tails (often embodied in non-public methods) is a common rec-
ommendation. This is because directly testing the implemen-
tation details underpinning a class leads to tests that are fragile
and prone to breaking when that implementation changes.
Writing tests that call non-public methods that are tightly
coupled to the implementation details of production code has
been documented as a bad practice by researchers in the liter-
ature [16], and also reported as a test “smell” [9], [20], [21].

Despite the existing advice against testing non-public meth-
ods directly, in a previous study we found that 28% of 4,801
open-source Maven projects contained at least one test that
directly calls a non-public production method (i.e., one that
has protected, package-private, or private visibility) [19]. In

@Test
public void testResize() {

Wallet wallet = new Wallet(2);
Method method = wallet.getClass().getDeclaredMethod
("resize"); // method-under-test
method.setAccessible(true);
method.invoke(wallet);
assertEquals(3, wallet.capacity());

}

Fig. 1. A JUnit test for the resize method of the Wallet class (Fig. 3).

@Test
public void testAddCard() {

Wallet wallet = new Wallet(1);
wallet.addCard(new Card("VISA"));
wallet.addCard(new Card("AMEX"));
assertEquals(2, wallet.size());

}

Fig. 2. A JUnit test for the addCard method of the Wallet class (Fig. 3).

the same study, we also performed a developer questionnaire
survey, finding that approximately a third of the 73 participants
are not against the practice of testing non-public methods di-
rectly. Figure 1 exemplifies what this anti-pattern can look like
in practice. Here, the JUnit test testResize uses reflection
to gain access to and execute a private method resize in an
object of a Java class called Wallet. As shown by Figure 3, it
is plausible that the implementation of the Wallet class could
change in the future to use a resizable collection instead of
an array (that the Wallet class needs to maintain the size of
itself). In this scenario, the method resize would be removed
and the test would break, requiring refactoring or removal.
Figure 2 presents an alternative test, testAddCard, that also
involves the wallet resizing beyond its initial capacity when
new cards are added. Here, the method resize is still being
exercised, but this time via the execution of the public method
addCard instead. This test is more realistic because it forms
an explicit contract: if it fails, it implies not only that the code
is broken, but that what end users will receive as an output is
incorrect.

One of the motivations that leads developers to engage in
the practice of testing non-public methods directly is the goal
of trying to achieve higher coverage [19]. As the practice
is more prevalent than expected, it poses serious threats to
the maintainability of a test suite [13]. We argue that one of
the reasons why this is not being addressed is the lack of
tool support to analyze how existing tests achieve coverage.
Once a project has a large number of tests, there is no easy
way to identify non-public methods being directly called.
Code coverage tools such as JaCoCo [2] provide a way to
measure method coverage. However, tools like JaCoCo cannot

https://github.com/unittesting-nonpublic/viscount
https://youtu.be/ZUyRtiUnbsU

public class Wallet {
// ... omitted ...
public Wallet(int initialCapacity) {

cards = new Card[initialCapacity];
size = 0;

}

public void addCard(Card card) {
if (isCardPresent(card)) return;
if (size == cards.length) resize();
cards[size++] = card;

}

private void resize() {
// ... omitted implementation details ...

}
protected int capacity() {

// ... omitted implementation details ...
}
protected boolean isCardPresent(Card card) {

// ... omitted implementation details ...
}
// ... omitted ...

}

Fig. 3. Example of a class named Wallet that can store multiple Card
objects. The public method addCard adds Card objects into the Wallet.
It will not add existing cards (checked via a call to isCardPresent), and
updates the size field, queried to check whether the internal array used to
store cards needs to be resized — implemented in the resize method.

distinguish direct or indirect calls to non-public methods,
because they do not track call hierarchies from tests [3]. In a
smaller-sized project, it is possible to manually analyze each
test case to identify non-public methods being called directly.
However, it is not feasible to analyze projects with thousands
of test cases. To address this problem, we developed Viscount,
a tool that can determine direct method call coverage — i.e.,
the percentage of methods of each level of visibility in Java
that are directly invoked from JUnit tests. Our tool is designed
to help developers identify tests that call non-public methods
directly to facilitate the refactoring of tests and their ongoing
maintenance. Viscount’s core features include:
1) Retrieving every method’s visibility in the production code;
2) Retrieving production methods that are called directly in

test code; and
3) Summarizing direct method call coverage in a clear format.

II. VISCOUNT

Viscount is a tool that allows testers, developers, and
researchers to identify methods directly invoked in their test
suites within a Maven project. It is primarily written in Java
and is invoked through a command-line interface.

Viscount works with Maven projects, parsing the project’s
source code to find every production method’s visibility. It then
installs the Surefire Report plugin to the Maven project (if the
project does not already include it), and sets up an execution
environment with a Java agent that applies instrumentation to
production code and test code. It then runs the project’s test
suite to collect direct method call coverage information about
the tests using this instrumentation. Viscount outputs details
about each production code method’s visibility, the methods
invoked directly by the project’s tests, and a direct method call
coverage report. Viscount is available on GitHub for evaluation
and extension [12].

TABLE I
Production code methods and their visibility for square-javapoet, as outputted
by Viscount in a TSV file.

METHOD VISIBILITY

com.squareup.javapoet.TypeName.isPrimitive() public
com.squareup.javapoet.ClassName.simpleName() public
com.squareup.javapoet.CodeBlockJoiner.join() package-private
com.squareup.javapoet.Builder.isNoArgPlaceholder(char) private

.

.

.

.

.

.

The main entry point of Viscount is a script, viscount.sh.
As part of the tool requirement, the user needs to include the
Maven project’s name, its path, and a directory to output the
results. Suppose the project name is javapoet, the project
is located in the directory /path/to/javapoet, and the
output of the results in the directory /path/to/results.
The command to run the tool would be:
./viscount.sh javapoet /path/to/javapoet /path/to/results

III. DEPENDENCIES

Viscount is primarily built on top of two Java libraries. The
first of these is Spoon [18], a meta-programming library to
analyze and transform Java source code. Spoon parses the
source code to build an abstract syntax tree (AST) meta-model
for performing AST analyses and transformations. It also
provides its own Launcher (application runner), specifically
for Maven-built projects, called MavenLauncher. It loads a
Maven project by reading the pom.xml file and setting up
the project dependencies. Viscount uses Spoon to extract
the visibility of production code methods and to distinguish
between production code and test code. Secondly, we used
Javassist [6], a Java-bytecode analysis library to transform
bytecode at compile or load time. Javassist parses class files
into objects representing the classes, methods, and fields, and
can be used to modify the objects. Modifications can be
done by inserting, deleting, or replacing bytecode instructions,
similar to other Java bytecode frameworks such as ASM [10].
Viscount uses Javassist to instrument production methods and
constructors, and test methods and helpers (inserting probes at
entry and exit points) during test execution.

IV. VISCOUNT’S ARCHITECTURE

Figure 4 depicts the overall architecture of Viscount. We
discuss the tool’s main features, and how it works, in the
following sections. Viscount’s main steps are to:

A. Extract production code method visibility;
B. Include the Surefire Report plugin in the Maven project;
C. Perform runtime instrumentation of the project during test

execution; and
D. Analyze the test reports.

To illustrate the operation of Viscount, we will use the
following two projects as running examples:
1) square-javapoet [5], a Java API to generate .java source

files; and
2) viscount-example, an example project that we created to

demonstrate the tool based around the Wallet class and its
tests, partially shown in Figures 1–3, and which is located
in Viscount repository.

Insert probes:
at the start and end of each

production method/constructor,
and test method/helper

Output ReportsA. Production Code Extractor
Gather every method's visibility in

the production code

B. Modify POM:
Include Maven Surefire

Report Plugin
D. Test Result AnalysisJUnit Surefire Reports

Maven-based Project

C. Execute Tests
('mvn test')
with javaagent

Project info

1. Class Names
2. Test Class Names

Parse JUnit Report

Keep direct calls
from tests

Validate in Test Code

Production Code Method Visibility TSV

Assets

method name visibility

1 method1 public

2 method2 protected

Assets

method invoked test name access modifier

method1 test1 public

method2 test2 protected

Invoked Methods in Test Code TSV

Fig. 4. Overall architecture of Viscount

A. Extracting Production Code Method Visibility

The first step investigates the visibility of each method in
the production code. Viscount starts the analysis by using
Spoon’s MavenLauncher to build the AST of the production
code. This collects every method name and its visibility in all
classes (including nested classes) in the production code (using
Spoon’s CtMethod). It also includes the parameters of each
method to ensure method overloading is correctly handled.
Table I shows an example of the TSV file output of this
step. Since Spoon’s MavenLauncher distinguishes between
production classes and test classes, Viscount stores the names
of each class and its type (production/test) in a temporary file.
This is important information for later execution of the tests
(see Section IV-C).

B. Including Surefire Report Plugin

Before executing the tests, Viscount automatically includes
the Surefire Report plugin [8] as part of the project. This plugin
generates reports for the executed unit tests. Viscount does this
by adding the report plugin to the project’s parent POM.xml file
(a build configuration file used in Maven projects). The plugin
generates test reports, in .xml format, which Viscount uses to
analyze test suites.

C. Runtime Instrumentation and Test Execution

Next, Viscount runs the command “mvn test” to execute
the project’s tests. It attaches a Java agent [11] that dy-
namically inserts instrumentation (probes) into the production
methods and test code using Javassist [6] before the Java Vir-
tual Machine loads the class. Since Viscount is only interested
in direct method call coverage of the production code, it will
only insert probes into methods and constructors for the classes
that are part of the project, and not imported libraries or Java’s
own APIs. The agent uses the information collected in the
previous step to distinguish between the production classes and
test classes, inserting a probe at the beginning and end of each
constructor and method. Viscount does this by using Javaas-
sist’s CtMethod class (representing a method in Java) and
CtConstructor (representing a constructor), and their corre-
sponding insertBefore / insertAfter methods. For each

108 public String newName(String suggestion, Object tag) {
logStartMethod("newName(String,Object)");

109 checkNotNull(suggestion, "suggestion");
110 checkNotNull(tag, "tag");
111 // ... omitted ...
123 return suggestion;

// This is conceptually after the return, but
actually runs before the return in bytecode

logEndMethod("newName(String,Object)");
124 }

Fig. 5. Example of added probes at entry/exit points in a production method.

52 @Test
public void characterMappingSubstitute() throws

Exception {
logStartTest("characterMappingSubstitute()");

53 NameAllocator nameAllocator = new NameAllocator();
54 assertThat(nameAllocator.newName("a-b", 1)).isEqualTo

("a_b");
logEndTest("characterMappingSubstitute()");

55 }

Fig. 6. Example of added probes at entry/exit points in a test method.

production constructor and method, the probe logs its name,
the types of its parameters, and its visibility modifier, on its en-
try and exit points (Figure 5). Since a constructor/method may
exit abnormally upon an exception, Viscount further logs an
exit when an exception is thrown (via the addCatch method
in Javassist’s CtMethod and CtConstructor classes). In the
test code, the agent inserts a probe at the beginning and end of
each test method and helper (Figure 6). During the execution
of the tests, these logs will be included in the test reports
generated by Surefire Report, which will be used in the final
step (discussed in Section IV-D).

The overall process of instrumentation is similar to that
employed by java-callgraph [4] when generating a call graph
dynamically. The current limitation of Viscount, similar to
that of java-callgraph, is that it does not work reliably for
multi-threaded and concurrent programs. This is because the
logs made by probes to denote the start and end of each
method can interleave between threads, causing inaccuracies in
later processing. Therefore, Viscount skips any tests involving
concurrent execution in the analysis, as discussed next.

D. Analyzing Test Reports

The final step for Viscount is to analyze the JUnit XML
test reports generated by the Surefire Report plugin. Since

TABLE II
Production methods directly called by tests for square-javapoet, as outputted by Viscount in a TSV file.

PROJECT TEST CASE (TC) METHOD NAME VISIBILITY ...

javapoet com.squareup.javapoet.TypeNameTest.isPrimitive() com.squareup.javapoet.TypeName.isPrimitive() public ...
javapoet com.squareup.javapoet.UtilTest.characterLiteral() com.squareup.javapoet.Util.characterLiteralWithoutSingleQuotes(char) package-private ...
javapoet com.squareup.javapoet.ClassNameTest.peerClass() com.squareup.javapoet.ClassName.get(java.lang.Class) public ...

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

<testcase name="isPrimitive" classname="TypeNameTest" ...>
<system-out>

START TEST: com.squareup.javapoet.TypeNameTest.isPrimitive()
Start method call: 1 com.squareup.javapoet.TypeName.isPrimitive()
End method call: 1 com.squareup.javapoet.TypeName.isPrimitive()
Start method call: 137 com.squareup.javapoet.ClassName.get(...)

Start constructor call: 2 com.squareup.javapoet.ClassName(...)
// ... omitted ...

End constructor call: 2 com.squareup.javapoet.ClassName(...)
End method call: 137 com.squareup.javapoet.ClassName.get(...)
// ... omitted ...
Start method call: 137 com.squareup.javapoet.ClassName.get(...)

Start constructor call: 2 com.squareup.javapoet.ClassName(...)
// ... omitted ..
End constructor call: 2 com.squareup.javapoet.ClassName(...)

End method call: 137 com.squareup.javapoet.ClassName.get(...)
// ... omitted ...
END TEST: com.squareup.javapoet.TypeNameTest.isPrimitive()

</system-out>
</testcase>

Fig. 7. Output of TypeNameTest.isPrimitive() test from
square-javapoet in Surefire Report

Viscount inserts the probes to log methods called in both
production and test code, as described previously, it can now
extract the methods that are directly called in the test code
from the logs produced. Figure 7 shows an example of the
output from one test case in the JUnit XML report. To analyze
the report, Viscount parses the XML file and extracts method
names immediately following tests. It discards any methods or
constructors called from other production methods, as these are
not directly invoked. The highlighted methods from Figure 7
are examples of those directly invoked from tests. Finally,
to verify that each method is directly invoked from a test,
Viscount performs a textual search of the tests’s source code
to find a match for the method name. This cross-checks both
regular method calls as well as those made using reflection,
while also revealing any potential unsoundness caused by
concurrent thread execution [4]. The reason Viscount cannot
just employ this simple text check on its own (i.e., without
performing dynamic analysis) is because we cannot reliably
statically determine method calls made using reflection —
performed either directly or via third-party libraries [17].
Finally, Viscount does not include any test cases that failed
or were skipped. It also discards any test for which it could
not find matching entry and exit points or where the points
are interleaved between methods (due to concurrent threads).

Table II shows an example Viscount’s output. Using this
information, Viscount can now calculate the direct method
call coverage. The direct method call coverage is calculated
by dividing the number of unique methods being directly
invoked in the test code by the total number of methods in
the production code, grouped by each type of access modifier,
as shown in Figure 8 for square-javapoet and Figure 9
for viscount-example. In the ideal case, direct method call
coverage for non-public methods will be zero.

public protected package-private private
Visibility

0

20

40

60

80

100

Pe
rc

en
ta

ge
 (%

)

250
(75.5%)

2
(0.6%)

54
(16.3%) 25

(7.6%)

199
(60.1%)

0
7

(2.1%) 0

production method
method directly covered in test

Fig. 8. Direct method call coverage of square-javapoet

TABLE III
The visibility of each production method in viscount-example.

METHOD VISIBILITY

wallet.Wallet.capacity() protected
wallet.Wallet.addCard(wallet.Card) public
wallet.Wallet.isCardPresent(wallet.Card) protected
wallet.Wallet.size() public
wallet.Wallet.resize() private
wallet.Example.main(java.lang.String[]) public
wallet.Card.toString() public
wallet.Wallet.toString() public
wallet.Wallet.latestCard() package-private

V. APPLYING THE TOOL

To demonstrate the capability of the tool, we replicate the
analysis on viscount-example. In this example project, there
are two test cases, testResize (Figure 1) and testAddCard

(Figure 2). The production methods and their visibility are
shown in Table III and the methods directly invoked from the
tests are shown in Table IV. As shown by Figure 9, there are
two non-public methods being called directly in the test suite,
indicating to developers that they have tests that are coupled
to implementation details.

We have also applied Viscount on a larger scale (4,801
projects) to evaluate the tool [19]. These projects are Maven-
built projects from the Maven Central Repository [7] that
contain at least one passing test with source code available
on GitHub. We extracted the visibility of each method in the
production code and identified the methods directly called in
the test code. We were able to analyze 226,915 tests from
4,801 projects. We found that 28% of the projects have at
least one direct call to a non-public method in the test code.
Overall, 3.73% of methods directly called in the tests across
all projects are non-public methods.

VI. CURRENT LIMITATIONS

As discussed in Section IV-C, Viscount cannot compute
direct method call coverage for test cases that execute multi-
threaded code. This is because it cannot guarantee the entry

TABLE IV
Production methods directly called by tests for viscount-example, as out-
putted by Viscount in a TSV file.

... TEST CASE (TC) METHOD NAME VISIBILITY ...

... ...testAddCard() ...addCard(wallet.Card) public ...

... ...testAddCard() ...size() public ...

... ...testResize() ...resize() private ...

... ...testResize() ...capacity() protected ...

public protected package-private private
Visibility

0

20

40

60

80

100

Pe
rc

en
ta

ge
 (%

)

5
(55.6%)

2
(22.2%)

1
(11.1%)

1
(11.1%)

2
(22.2%)

1
(11.1%)

0

1
(11.1%)

production method
method directly covered in test

Fig. 9. Direct method call coverage of viscount-example

and exit points of each method do not interfere with other
methods. Additionally, since Viscount executes a project’s tests
with instrumentation (inserting probes at entry and exit points)
to both production code and test code, the execution time of
the tests can take a long time for projects that include recursive
calls. One potential solution to each of these limitations is to
statically analyze the call graph of each test method/helper to
determine the direct method calls [14]. However, as already
noted, most techniques based on static call graphs cannot
identify methods invoked through reflection [17]. Finally, as
we used Spoon’s MavenLauncher to analyze the source code,
the tool does not support other build systems, such as Gradle
or Ant. We leave these as items for future work.

VII. RELATED TOOLS

JaCoCo [2], a popular code coverage tool for Java pro-
vides a way to measure method coverage. Since it works
independently and does not rely on any build tools (e.g.
Maven, Gradle), it cannot distinguish direct or indirect calls
to production methods as it does not track call hierarchies [3],
and therefore cannot be used to find direct calls to non-public
methods in tests or be used to compute direct method call
coverage. Yang et. al. [21] developed a test smell detector that
can statically detect direct invocation of a private method in
test code. Unlike Viscount, their test smell detector could only
detect private methods that are being directly called in the test
code, whereas Viscount can detect all levels of visibility in the
Java language.

VIII. CONCLUSIONS AND FUTURE WORK

This paper presents Viscount, a tool to help developers
analyze which methods are being directly called from tests. It
can aid in identifying tests that exercise non-public methods
directly (i.e., protected, package-private, and private methods
in Java), which is considered a bad practice in unit testing.
The general aim is to help developers identify tests that
focus on implementation details as opposed to behavior when
maintaining tests. In summary, Viscount:

1) Retrieves every production method and its visibility;
2) Identifies directly called methods in the test code; and
3) Calculates direct method call coverage of the production

code by the tests for each visibility modifier.
Future work could improve Viscount’s report generation and

enhance its handling of different types of members (which
include fields, constructors, and classes) that are directly called
from the test code. It could also extend the tool by incor-
porating static analysis (Spoon [18]) and bytecode analysis
(SootUp [14]) to identify methods directly invoked by the tests,
complementing or replacing aspects of dynamic test execution.
This could improve the tool’s efficiency and reduce the time
taken to analyze test code.

ACKNOWLEDGEMENTS

Muhammad Firhard Roslan receives PhD funding from the
Majlis Amanah Rakyat (MARA). Phil McMinn is supported,
in part, by the EPSRC grant “Test FLARE” (EP/X024539/1).

REFERENCES

[1] Google Testing Blog — The advantages of unit testing early. https:
//testing.googleblog.com/2009/07/by-shyam-seshadri-nowadays-when-i
-talk.html. Accessed: 8/2024.

[2] JaCoCo code coverage tool. https://www.jacoco.org/jacoco/. Accessed:
8/2024.

[3] JaCoCo Coverage of methods being invoked directly from a test case.
https://groups.google.com/g/jacoco/c/x4OGEGPyi3E. Accessed: 8/2024.

[4] Java-callgraph: Programs for producing static and dynamic (runtime) call
graphs for Java programs. https://github.com/gousiosg/java-callgraph.
Accessed: 8/2024.

[5] JavaPoet. https://github.com/square/javapoet. Accessed: 8/2024.
[6] Javassist. https://www.javassist.org. Accessed: 8/2024.
[7] Maven Central Repository. https://repo.maven.apache.org/maven2/.

Accessed: 8/2024.
[8] Maven Surefire Plugin. https://maven.apache.org/surefire/maven-surefir

e-plugin/. Accessed: 8/2024.
[9] The Open Catalog of Test Smells. https://test-smell-catalog.readthedo

cs.io. Accessed: 8/2024.
[10] OW2. 2024. ASM. https://asm.ow2.io/. Accessed: 8/2024.
[11] Package java.lang.instrument. https://docs.oracle.com/javase/8/docs/api/

java/lang/instrument/package-summary.html. Accessed: 8/2024.
[12] Viscount. https://github.com/unittesting-nonpublic/viscount. Accessed:

8/2024.
[13] Javaria Imtiaz, Salman Sherin, Muhammad Uzair Khan, and Muham-

mad Zohaib Iqbal. A systematic literature review of test breakage
prevention and repair techniques. In IST, 113:1–19, 2019.

[14] Kadiray Karakaya, Stefan Schott, Jonas Klauke, Eric Bodden, Markus
Schmidt, Linghui Luo, and Dongjie He. Sootup: A redesign of the soot
static analysis framework. In TACAS, pages 229–247, 2024.

[15] Lasse Koskela. Effective Unit Testing: A guide for Java developers.
Manning, 2013.

[16] Erik Kuefler. Unit Testing. In Titus Winters, Tom Manshreck,
and Hyrum Wright, editors, Software Engineering at Google: Lessons
Learned from Programming Over Time, chapter 12. O’Reilly, 2020.

[17] Davy Landman, Alexander Serebrenik, and Jurgen J Vinju. Challenges
for static analysis of Java reflection — literature review and empirical
study. In Proc. of ICSE, pages 507–518, 2017.

[18] Renaud Pawlak, Martin Monperrus, Nicolas Petitprez, Carlos Noguera,
and Lionel Seinturier. Spoon: A library for implementing analyses
and transformations of Java source code. In Software: Practice and
Experience, 46(9):1155–1179, 2016.

[19] Muhammad Firhard Roslan, José Miguel Rojas, and Phil McMinn.
Private — keep out? Understanding how developers account for code
visibility in unit testing. In Proc. of ICSME, 2024.

[20] Arie Van Deursen, Leon Moonen, Alex Van Den Bergh, and Gerard
Kok. Refactoring test code. In XP, pages 92–95, 2001.

[21] Yanming Yang, Xing Hu, Xin Xia, and Xiaohu Yang. The lost world:
Characterizing and detecting undiscovered test smells. In TOSEM, 2023.

https://testing.googleblog.com/2009/07/by-shyam-seshadri-nowadays-when-i-talk.html
https://testing.googleblog.com/2009/07/by-shyam-seshadri-nowadays-when-i-talk.html
https://testing.googleblog.com/2009/07/by-shyam-seshadri-nowadays-when-i-talk.html
https://www.jacoco.org/jacoco/
https://groups.google.com/g/jacoco/c/x4OGEGPyi3E
https://github.com/gousiosg/java-callgraph
https://github.com/square/javapoet
https://www.javassist.org
https://repo.maven.apache.org/maven2/
https://maven.apache.org/surefire/maven-surefire-plugin/
https://maven.apache.org/surefire/maven-surefire-plugin/
https://test-smell-catalog.readthedocs.io
https://test-smell-catalog.readthedocs.io
https://asm.ow2.io/
https://docs.oracle.com/javase/8/docs/api/java/lang/instrument/package-summary.html
https://docs.oracle.com/javase/8/docs/api/java/lang/instrument/package-summary.html
https://github.com/unittesting-nonpublic/viscount

	Introduction
	Viscount
	Dependencies
	Viscount's Architecture
	Extracting Production Code Method Visibility
	Including Surefire Report Plugin
	Runtime Instrumentation and Test Execution
	Analyzing Test Reports

	Applying the Tool
	Current Limitations
	Related Tools
	Conclusions and Future Work
	References

