
Private—Keep Out? Understanding How Developers
Account for Code Visibility in Unit Testing

Muhammad Firhard Roslan, José Miguel Rojas and Phil McMinn
University of Sheffield, UK

Abstract—Regression test maintenance costs can be reduced by
striving to write tests that will require as few changes as possible
in the future. Writing unit tests against behavior, as opposed
to implementation, is one way to try to achieve this, because
as long as the public API remains constant, units can be safely
refactored without the need to also change the tests. However,
in a study on 4,801 open-source Java projects reported in this
paper, we found that 28% of projects contradict this advice, with
tests that side-step the public API by directly calling non-public
methods. We investigated why developers do not solely test public
APIs—potentially increasing future test maintenance costs—by
surveying 73 developers and conducting a systematic review
of 60 StackOverflow posts dating from 2008–2023. Through
numerical and thematic analyses, we uncover several findings,
including (1) developers are disunited on whether to test only
through public APIs or not; (2) those in favor of only testing
through the public API tend to be more experienced and believe
the need or desire to break with this is borne out of poor
software design; while (3) those that test non-public methods
directly are concerned about untested code complexity and overly
intricate tests. Our findings provide multiple implications for
future work, including automated developer support in the form
of automated non-public method sequence replacement, and
automated refactoring of production code using problematic
public API-avoiding tests.

Index Terms—Test Maintenance, Test Smells, Unit Testing,
Access Modifiers, Developer Survey, Unit Testing Practices.

I. INTRODUCTION

Regression test suites need to be maintained as the software
applications they test evolve [57], [68]. While new tests need
to be written to test new functionality, and old ones pruned for
behaviors that no longer exist, existing tests can be brittle and
may break due to small changes in the application code [55].
Ensuring these tests are updated and pass again can be a time-
consuming process for developers [58]. Firstly, they have to
understand each existing test and why it broke, so that they can
then, secondly, update it so that it compiles and passes again
with the new implementation. Often the effort involved is so
great that developers simply decide to discard broken tests,
potentially weakening the test suite in the long-term [55].

Since test maintenance is such a costly process that adds
no immediate visible benefit to a software product, good
software engineering practice suggests that developers should
set out to write tests that, inasmuch as possible, are unlikely
to need to change again in the future [57]. That is, they should
focus on writing tests that are concentrated on the software’s
behaviors as opposed to its implementation details [41], [46],
[57]. In practice, this means confining calls from unit tests
to the externally visible API of the class under test; i.e., its

public methods [63]. This means that developers can safely
refactor application code without having to be concerned about
breaking its tests and then having to fix them [57].

However, in this paper, we found that developers do not
always follow this principle in practice. We collected data
about public and non-public API calls made in 226,915 JUnit
tests of 4,801 open-source Java projects collected from the
Maven Central Repository [12]. While the tests of the majority
of projects are restricted to the public API of the units
they test, a not insignificant proportion of 28% involved at
least one direct call to a non-public method. In these cases,
developers write assertions against smaller parts of the internal
implementation of a class, rather than its overall behavior. This
raises the question as to what the original developer’s intent
and motivations for doing this were, given the potential future
costs of maintaining those tests.

To address this, we present the first qualitative study of
why developers choose to test through a unit’s public API, or
decide to write tests that directly test its non-public methods,
at the risk of making the test suite harder to maintain in the
future. We conducted a developer survey, with 73 participants
and a systematic analysis of 60 threads dating from 2008 [25]
to 2023 [30] related to the topic on StackOverflow. Through
numerical and thematic analysis of questionnaire responses
and StackOverflow posts, we identify a number of findings.

Approximately two-thirds of developers in our survey
strictly test public APIs only. These developers, plus those
posting on StackOverflow, believe the need or desire to test
non-publics is borne out of poor code design in the first
instance and suggest refactoring of production code is needed
instead. Those willing to test non-public methods directly, in
contrast, cite the need to ensure complex implementation de-
tails are well-tested, and the undesirable complexity involved
in having to write tests solely using the unit’s public API.
They employ a variety of means to avoid this, including
raising the visibility of methods so they become accessible
to test frameworks for testing. Our study of open-source
Java projects particularly supports this last finding, with a
large number of non-publics being called directly from tests,
including a disproportionate number designated as “package-
private” — i.e., with just enough visibility that they can be
invoked by JUnit tests, but not so much visibility that they
actually become part of the unit’s public API. Our findings
provide several implications for future work, including how to
provide automated support to developers to help them avoid
the temptation of bypassing public APIs.

The contributions of this paper, therefore, are as follows:
1) An empirical analysis of the visibility of methods called

directly from the tests of 4,801 Java projects taken from
the Maven Central Repository (§V-A)

2) A numerical and thematic analysis of 73 responses to
a developer survey and 60 StackOverflow threads to
identify developer attitudes and approaches to testing
public APIs versus testing non-public methods directly
(§V-B–V-D);

3) A discussion of our findings, summarizing the current
state of practice (§VI), and implications of our results
that inform future research (§VII).

II. BACKGROUND AND RELATED WORK

A. Encapsulation, Visibility and Access Modifiers
Object-oriented programming languages support the idea of

encapsulation, which enables developers to provide interfaces
so that their code can be used without the need for others to see
or understand its underlying implementation [42]. The method
or variables of some class A that some other class B can
directly access are said to be visible to the class B. Developers
specify these visibility rules by applying access modifiers
defined by their programming language, which take the form
of explicit keywords or other programming constructs.

The top level of visibility — i.e., all methods/variables
are accessible to all other classes, including those in other
applications or APIs — is referred to as the “public” level
of access. While all programming languages facilitate public
visibility so that developers can create interfaces for their units
of code, each language tends to have its own rules pertaining
to “non-public” levels of access. Many languages (e.g., C++,
C#, Java, PHP and Ruby) have a “private” keyword to declare
methods and variables that cannot be accessed from anywhere
except the same class, together with a “protected” keyword
for declaring methods and variables that can only be accessed
by code residing in the same class or its subclasses. Moreover,
some languages provide a level of access that is private to code
in the same class and the logical grouping of classes or files
that the class is organized into. For example, Java organizes
groups of classes into “packages”, with methods and variables
having “package-private” visibility when they are declared
without one of the public, protected or private access mod-
ifiers [4], [50]. Kotlin shares a similar concept in the form of
the “internal” keyword, which developers use to declare code
that is private to files organized in the same module [23]. In
contrast to other languages, Go has no notion of a completely
“private” level of access. Public member names are capitalized,
while those that are uncapitalized are at the package-private
level of access [6]. While JavaScript is to gain a private
construct in its official standard [16], Python [17] does not
have a built-in notion of non-public. Where mechanisms do
not exist, developers may adopt conventions such as prefixing
method and variable names with underscores to communicate
intended privacy, though these are not enforced.

Despite the restrictions on non-public code by the languages
that allow developers to set them, there is usually a means for

the protection to be overridden, e.g., by using reflection APIs
in languages such as Ruby [47], Java [59], and C# [34]; while
in C++, special access can be granted to methods and variables
of certain classes using the “friend” keyword [43].

B. Empirical Studies of Test Maintenance

Labuschagne et al. [58] studied 61 software projects and
found that tests require maintenance for a variety of rea-
sons, including invalid assumptions, dependencies on other
tests, and changes in production code functionality, noting
that test maintenance costs associated with these aspects
could be avoided with better software development processes.
Pinto et al. [68] studied the evolution of test suites for six
programs, finding that of all changes to tests, 29% corre-
sponded to modifications and 22% of these were repairs
to broken tests. Of these repairs, 50% involved changes to
method call sequences, i.e., additions or deletions of method
calls and updates to parameters. However, neither of these
works specifically investigated whether test suites required
maintenance due to tests making direct calls to non-public
API production code methods that were then refactored.

C. Test Smells

Test smells are poor testing practices that are observable in
the source code of test suites and which hinder their main-
tenance [40], [75]. Various test smells have been identified
relating to tests that prefer to test non-public implementation
over the behavior of units. Firstly, Yang et al. identified the
“Private Method Test” smell [76], which characterizes tests
that access private methods in Java. Since private methods
in Java are not visible outside of their class, they are not
visible to JUnit tests either. This means that testers must resort
to using Java Reflection to override the access restriction so
that these methods can be invoked from test suites. The “Anal
Probe” smell, referenced in a study by Martins et al. [60], more
generally characterizes a test that “has to use insane, illegal
or otherwise unhealthy ways to perform its task” [2] including
accessing private methods and fields (using mechanisms such
as Java Reflection to do, since they would not normally be
visible), or that has to resort to “extending a class to access
protected fields/methods or having to put the test in a certain
package to access package global fields/methods” [2]. The
“X-Ray Specs” smell [24], discussed by Garousi et al. [49],
refers to tests that access or modify the internal states of
units that they should not be able to access. Finally, Van
Deursen et al. [75] identified the “For Testers Only” smell,
where developers write production code methods specifically
to support testing, and in doing so, allow testers to test a unit’s
implementation rather than behavior via its public API.

D. Studies into Public API vs Non-Public Method Testing

There is much literature advising that tests should strive
to test behavior rather than implementation, citing the costs
of test maintenance that may be incurred should production
code be refactored (e.g., Bowes et al. [41], Google [57],

and Microsoft [63]). However, there has been no work, hith-
erto, that investigates the issue of public API testing versus
non-public method testing from a quantitative or qualitative
perspective. Spadini et al. [74] interviewed 12 developers,
in which participants mentioned not writing tests that are
purely focussed on testing implementation details. However,
this point arose as part of a larger study and discussion of test
code quality during code review, rather than being focussed
exclusively on the issue. Yang et al. [76] studied Java tests that
specifically call private methods (e.g., using Java Reflection),
having implemented a study of StackOverflow posts to identify
the issue in the first instance. However, they do not address the
issue of non-public methods in general, and do not perform
qualitative studies with developers. Martins et al. [60] mined
StackExchange posts to discover the challenges faced and the
corrective actions taken by developers when they encounter
test smells, but do not focus on public API vs non-public
method testing. Several works perform developer surveys
and/or mine StackOverflow, as we do, but focus on other
topics; e.g., flaky tests [52], [65], continuous integration [54],
regular expressions [62], and engineering test cases [37].

III. RESEARCH QUESTIONS

A unit will typically have a number of publicly accessible
methods, constituting its “public API”, that may be called
from other units. Developers also write non-public methods
into units, for implementation that is not to be freely invoked
externally. Instead, these methods tend to contain useful rou-
tines that can be used in multiple places inside the bodies of
other methods (public or otherwise). Unless the unit contains
unreachable code, all non-public methods should be invoked at
some point by a public method, meaning that all the methods
of a unit should be testable through its public API.

In this paper, we focus on understanding how developers
account for code with different visibility levels in unit testing.
Given the associated long-term benefits of a maintainable test
suite, do developers rigidly test units through their public API
only? Or, do they side-step public APIs and directly test non-
public methods, and if so, why?

We set out to answer the following four research questions:

RQ1: Open-Source Testing. How frequently are public and
non-public methods directly invoked from tests in open-source
code? Do open-source developers test against public APIs
only, or do they also make direct calls to non-public methods
in their tests?

RQ2: Stance. What proportion of developers believe that tests
should be written against a unit’s public API only, compared
to those willing to test non-public methods directly?

RQ3: Rationale. What are the reasons why developers take
a particular stance on the issue of testing public APIs only
versus testing non-public methods directly?

RQ4: Practice. How do developers go about unit testing code
that contains both public and non-public methods? Do they
test non-public methods directly, for example, or do they test
indirectly via public methods as part of a behavior-driven

testing approach? How do developers test when their language
does not have access modifiers? What, if any, changes to
testing frameworks developers would like to see in the future
in respect of these topics?

IV. METHODOLOGY

A. Open-Source Study (RQ1)

In this RQ, we wrote a tool, named Viscount, to measure
the number of times methods of different visibility levels are
called from tests in open-source software.

We chose open-source Java projects as subjects to evaluate
this, since the Java language has several different levels of
access modifiers (i.e., public, protected, package-private and
private; see §II-A) and is a mature language for which a large
number of publicly available open-source projects exist.

Our dataset of open-source projects is derived from that of
Gruber et al. [53], who collated the URLs of 38,841 Github-
hosted Java projects listed in the index of the Maven Central
Repository (as of 2023-04-13). The Maven Central Repository
is one of the main official software repositories for Java [12],
containing a diverse range of projects, from small to large.
Using scripted automation, we found we could build 7,998
of these projects without error using Java 8 (the most-used
version of the language in 2023 [31]) and Maven 3.9.6.

Viscount starts by statically extracting the access modi-
fiers of each project’s production methods using the Spoon
framework [67]. It uses a dynamic approach to trace methods
called directly from tests so that it can accurately account for
calls made, for example, via Java Reflection or via a mocking
library employing similar techniques. To this end, Viscount
instruments each project’s bytecode, using Javassist [7] to
insert log statements at the points of constructor/method entry
and exit (i.e., return statements and throw exceptions). It then
executes the project’s test suites to collect logging information
and derive all direct calls made from any test. We set a budget
of three hours for the execution of Viscount per each project
and discarded projects for which it did not terminate within
this budget. We also discarded projects that failed to produce
any logs, which was usually due to a lack of test suites.
Viscount further discards any tests that exercise multi-threaded
code, due to the difficulty in capturing accurate traces, evident
through interleaving entry and exit points of the same method
in the collected logs (a frequent issue affecting other tools,
e.g., [51]). Viscount then statically analyzes each project’s
source code to ensure that the production methods logged were
indeed being called directly from tests, rather than via third-
party libraries or the Java API itself (possible, for example,
through Java’s Serialization libraries). The first author manu-
ally inspected any cases of ambiguity that Viscount could not
resolve automatically. For the interested reader, more detailed
information about Viscount is available in reference [69].

Our final sample for RQ1 consisted of 226,915 tests from
4,801 Java projects. Statistics for the projects are shown in
Figure 1, indicating a range of projects that are large to small
in size. The mean lines of code for the sample was 5841.02,
the mean number of tests was 47, and the mean number of

10
2

10
3

10
4

10
5

10
6

(a) Lines of Code

0

100

200

300

N
um

be
r o

f p
ro

je
ct

s

10
0

10
1

10
2

10
3

(b) Number of tests

0

100

200

300

400

N
um

be
r o

f p
ro

je
ct

s

10
0

10
1

10
2

10
3

10
4

(c) Number of stars

0

200

400

600

N
um

be
r o

f p
ro

je
ct

s

0 50 100 150
(d) Months since last commit

0

200

400

600

800

N
um

be
r o

f p
ro

je
ct

s

Fig. 1. Statistics of the Maven open-source projects studied in RQ1.

GitHub stars was 54.9. The mean time elapsed since the last
commit at the point of collection was 43 months.

B. Developer Survey (RQs 2–4).

We created a questionnaire featuring a mixture of multiple-
choice and open-ended questions. We trialed our survey with
professionals and academic colleagues, and undertook several
trials with a small number of PhD students, refining its design
following each iteration.

Our final survey included questions from four different
angles. Demographic questions included the number of years
of experience in development/testing the developer had and
their main programming language. Questions related to stance
explored the opinions the developer held on testing through
public APIs only vs testing non-public methods directly,
which we used to answer RQ2. Questions related to rationale
focussed on the reasons behind why developers held the
opinions they did, which we used to answer RQ3. Finally, we
included a series of practical questions, aimed at finding out
about the approaches developers took in everyday development
practice. We used the responses to these questions to answer
RQ4. While space does not permit us to reproduce the entire
questionnaire as part of this paper, we have made it available
in full as part of our replication package [32]. We provided
participants with a background information sheet containing
a language-agnostic definition for the notion of “non-public”
methods, including details of access modifiers and common
conventions to denote visibility in several languages, from
C++, C#, Java, Go, Kotlin, and Rust, to dynamically typed
languages such as JavaScript, Python, and Ruby, and those
extended with enforced type annotations, e.g., TypeScript.

We kept the questionnaire open for three weeks using
Google Forms, and distributed it via LinkedIn, X (formerly
known as Twitter), regional technology forums, and personal
industrial contacts — asking them to share it with their

colleagues. To mitigate the risk of bot infiltration, we required
each participant to sign in to their Google account, which
also effectively prevented multiple submissions from the same
person. We did not collect their account information or track
their identity.

We received 73 responses in total. In terms of development
experience, 10-15 years was the median response (mode 15+
years); for unit testing experience, the median and mode
were 5–10 years. We asked developers what their main
programming language was. The responses were Java (25),
Python (15), TypeScript (9), C# (7), PHP (6), Kotlin (4),
C++ (2), JavaScript (2), Ruby (2), and Scala (1). We analyzed
the frequency of choices for questions with fixed responses,
using Kendall’s tau-b correlation coefficient to assess the
strength of the relationship between different answers [9]. We
applied inductive thematic analysis [44] to answers to our
open-ended questions, assigning codes to each response that
summarized its key concepts. Given that free-text responses to
open-ended questions frequently contain multiple components,
we divided the responses into distinct elements if they are
using conjunctions such as “and”, “or”, and “but”. We
conducted this analysis collaboratively to keep our coding as
consistent as possible and to minimize any individual biases.
We then grouped similar codes into a set of overarching
themes. As part of our results (§V) we discuss the major
themes to which we attributed more than two comments.

C. StackOverflow Analysis (RQs 2–4)

To further capture a range of different perspectives and
develop a robust understanding of developers’ perspectives
towards testing non-publics, we employed triangulation [66]
to complement the outcomes of our developer questionnaire
with an analysis of online discussions on the question and
answer website for software developers, StackOverflow [20].

We formulated the following four StackOverflow search
queries: “test non-public method”, “test private method”,
“test protected method”, and “test package-private method”.
The intuition behind these queries was to retrieve threads
discussing the testing of non-public methods in the general
sense, as well as threads discussing the testing of specific types
of non-public methods, hence the inclusion of the “private”,
“protected”, and “package-private” keywords as search terms.
To narrow down the scope of the search results, we appended
the “[unit-testing]” tag to each query term. We purposefully re-
frained from tightening our search queries any further so as not
to miss relevant threads in our search results. In the same spirit,
we did not explicitly mention any programming language
in our queries. The keywords “private” and “protected” are
included because they signify different levels of visibility in
different programming languages, e.g., C#, C++, Java, Kotlin,
and PHP. While “package-private” is Java-specific, including
it allows us to triangulate these results with those from our
empirical study of Java projects for RQ1 (§IV-A).

We executed our search queries on November 16, 2023,
and collected the top 25 threads for each query, sorted by
relevance. We removed duplicates across queries and also

removed insubstantial threads; i.e., threads where a genuine
discussion did not materialize, resulting in fewer than two
responses. This left us with 60 threads in total, including
original posts from between 2008–2023.

All authors manually analyzed these 60 threads in collabo-
rative in-person sessions. Firstly, we categorized each thread
as either “Debate” or “Practical” depending on the style of
the question. “Practical” threads, used to answer RQ4, mainly
pertained to posters asking specific questions relating to testing
non-public methods in the context of a specific programming
language or testing framework. “Debate” threads, used to
answer RQs 2–3 were more general and/or conceptual in
nature, where the poster’s intent was mainly to ask the
community’s opinions on testing non-publics, occasionally in
the context of the particular scenario presented in the question.
The categorizations we made were mostly obvious from the
text of the thread, with some posters keen for their technical
question not to devolve into a discussion about the pros and
cons of directly testing non-publics (e.g., [27], “I would not
like to discuss whether I should test privates or not but [. . .]
focus on how to test it.”). In the case of “Practical” threads,
we only focus on the top answer — i.e., the one with the
highest number of up-votes, whereas for “Debate” threads,
we extended this to the top three answers to take into account
a variety of opinions and a more complete understanding of
the discussion. We did not extend our analysis to further posts
to both control the quality and the number of posts we had
to manually examine. In the case of “debate” threads, some
posts did not contain as many as three answers, in which case
we analyzed just the one or two responses that it did have. We
then applied inductive thematic analysis to the questions and
answers in these threads, as we did for free-text responses in
the developer questionnaire.

D. Threats to Validity

We discuss threats to validity and our mitigating strategies.
1) Questionnaire Participants: The sampling of partici-

pants may influence the external validity of our study, as with
most questionnaires. Since we have no means to quantify the
entire population of software developers, we used the non-
probability purposive sampling method to recruit participants
most likely to provide useful responses for our study [39];
we distributed our questionnaire widely via social media and
professional networks to reach a large number of participants.

2) Questionnaire Evaluation: The internal validity of our
study relies on the design of our questionnaire. Following em-
pirical software engineering guidance [56], prior to releasing
our questionnaire, we conducted a pilot study with a total of
four iterations and ten respondents from different backgrounds
(CS PhD students and professional developers). This pilot
study was useful to mitigate potential researcher biases and
to refine the questionnaire’s format, length, and clarity.

3) Thematic Analyses: For both the free-text responses in
the questionnaire (§IV-B) and StackOverflow threads (§IV-C),
we opted for a collaborative thematic analysis between three

authors to ensure our interpretations are valid (construct va-
lidity) and mitigate any individual researcher bias.

4) Programming Language: In our open-source study, we
only considered Java projects hosted on GitHub which use
Maven as the build automation tool — a potential threat to
external validity. While Java remains one of the most popular
programming languages [29] and Maven is the main build
automation tool for Java [31], further replications are needed to
establish how our results would generalize to other languages.
Furthermore, we only used projects that were we able to build
with Java 8, the most popular version of the language in
2023 [29]. While we believe this to be a good representation
of Java projects, further work is needed to establish whether
our results generalize to more recent versions of the language.

5) Test Instrumentation: Gathering data from open-source
projects requires implementing a test instrumentation mecha-
nism to capture the execution trace of existing tests. As with
any study of this nature, there is the risk of implementation er-
rors affecting the results which may have an impact on internal
validity. We mitigate this by careful reviewing, debugging and
testing of the implementation and thorough discussions of the
results. We also acknowledge certain limitations in our current
instrumentation: it cannot handle multi-threading tests (similar
to java-callgraph [51]) or some obscure method invocation
mechanisms used in a small number of projects. These features
are orthogonal to the use of access modifiers, therefore we do
not expect them to affect our analysis. We mitigate this further
by using a sufficiently large number of projects and tests.

6) Triangulation: The nature of the problem under in-
vestigation in this paper led us to use three complementary
methods: a questionnaire, an analysis of online discussions,
and a quantitative experiment on open-source code. This
triangulation allows us to mitigate threats to validity across
research methods, e.g., self-reporting biases, to develop a
comprehensive understanding of the problem and provide
more confident answers to our research questions [66].

7) Reproducibility and Replicability: We make our research
materials available online to foster reproducibility and replica-
bility [32], including our questionnaire, its responses, analysis
spreadsheets, and experiment scripts for open-source projects.

V. RESULTS

A. RQ1: Open-Source Testing

Figure 2 breaks down the proportion of open-source Java
projects in terms of how often unit tests directly call produc-
tion code methods with different access modifiers.

Out of 4,801 projects, 3,455 (72%) have tests which
call public methods exclusively, meaning the remaining
1,346 projects (28%) have tests which make at least one call
to a non-public method. Among these, projects with tests
directly calling package-private methods were most frequent
(828 projects), followed by those with direct calls to protected
(698 projects) and private (42 projects) methods. The tests
in 64 projects (1.3%) call non-public methods exclusively, of
which 37, 23, and 1 projects’ tests make exclusive calls to
package-private, protected, and private methods respectively

TABLE I
Numbers of production code methods, by access modifier, directly invoked
from test suites (“Invoked”) out of the total number of methods (“Total”) in
all 4,801 Java projects studied in RQ1.

Access Modifier Invoked Total Percentage

public 179,640 1,468,185 12.2%
protected 2,601 70,579 3.7%
package-private 4,243 27,459 15.5%
private 116 132,701 0.1%

and 3 projects have calls to both package-private and pro-
tected methods. The one project calling only private methods
contains only one test [14], which exclusively tests a private
method directly, using Java Reflection [13] to achieve this. In
terms of tests directly calling private methods, as shown by the
data in Table II, 68 used Java Reflection to override visibility
restrictions to make the method accessible for invocation. The
remaining 48 used third-party utilities to achieve the same
effect, including mechanisms in mocking frameworks such as
PowerMock Whitebox [15] and EasyMock ReflectionUtils [5].

While the Venn diagram gives a useful overview of method
testing on a per-project basis, varying project sizes could give
a false impression of overall frequencies. We therefore tracked
the number of production methods being called by access
modifier type across all projects, as shown in Table I. We
counted a production method as executed if directly called at
least once, by at least one test. The vast majority of direct
calls tests make are to public methods. The number of calls to
package-private is greater than that of protected and private,
and overall the proportion of package-private directly-called
methods is greater than that for public.

Since package-private methods may be accessed by JUnit
tests without breaking the encapsulation of the method outside
of its package1, this might suggest that developers deliberately
make methods package-private to test them, as opposed to
leaving them private. However, we do not know the original
intentions of the developers of these projects, so we return to
this issue as part of our developer survey and StackOverflow
analysis in the next research questions.

Conclusion (RQ1: Open-Source Testing). Open-source
developers call both public and non-public methods directly
in tests. 72% of the projects studied have tests that call public
methods only, meaning the remaining 28% contain at least
one call to a non-public method. The raw number of non-
public methods invoked from tests is small compared to the
number of public methods, but this is due to the number of
public methods being an order of magnitude higher in the
first place. Proportionally, package-private methods are the
most frequently called type of method by access modifier.

1Although Maven organizes production code and tests into separate direc-
tories, the same logical package names can be used, meaning that tests can
be in the same package as the classes that they test despite being in different
directories on the file system [11], [21].

public

protected package-private

private

3455
(71.96%)

23
(0.48%)

37
(0.77%)

1
(0.02%)

464
(9.66%)

587
(12.23%)

18
(0.37%)

3
(0.06%)

0
(0%)

0
(0%)

190
(3.96%)

12
(0.25%)

5
(0.1%)

0
(0%)

6
(0.12%)

Number of Projects: 4801

Fig. 2. Venn diagram of open-source Java projects, grouped by visibility of
production code methods called directly from their tests.

TABLE II
Mechanisms used to directly invoke private methods in tests, by numbers of
tests (“# Tests”) and projects (“# Projects”), in our dataset of Java projects.

Framework # Tests # Projects

Java Reflection [13] 68 31
JMockit Deencapsulation [8] 14 1
PowerMock Whitebox [15] 13 5
Apache Commons Lang3 MethodUtils [3] 12 4
Manifold Jailbreak [10] 6 1
EasyMock ReflectionUtils [5] 1 1
Spring Framework ReflectionTestUtils [19] 1 1
tvd12 test-util MethodInvoker [22] 1 1

B. RQ2: Stance

We asked developers if they agreed with the statement “In
general, developers should write unit tests that only invoke
public methods, avoiding direct calls to non-public methods”.
Figure 3 summarizes their responses. Almost two-thirds (64%)
of participants either agreed or strongly agreed; 30% disagreed
or strongly disagreed, while the remaining 6% were unsure.

We also asked developers “How often do you write tests that
directly invoke non-public methods?” “Never” and “Rarely”
were selected most by participants, as shown in Figure 4. This
figure also shows that the frequencies of answers (“Always”,
“Often”, “Sometimes”, “Rarely”, “Never”) are consistent with
the different levels of agreement observed earlier in Figure 3,
with Kendall’s tau-b indicating a significant strong association
between these sets of answers (τb = 0.463, p < 0.01).

We also analyzed the 18 StackOverflow threads we classed
as being “Debate”-based (§IV-C). We categorized each of the
top three responses in each thread as being either in favor of
testing public APIs only (19; ∼40%), in favor of testing non-
public methods directly (17; 35%), or neutral in stance (12;
∼25%). Similar to the developer survey, we observe more
advocacy for testing public APIs only, albeit by a smaller
margin. These posts were also more likely to receive more
upvotes by users of the site, and consequently be ranked first
in the list of answers to the original poster’s question.

29181664

Not sure Strongly disagree Disagree Agree Strongly agree

Fig. 3. Developer responses to the question “To what extent do you agree with
the following statement? ‘In general, developers should write unit tests that
only invoke public methods, avoiding direct calls to non-public methods.’”

31211182

Always Often Sometimes Rarely Never

Fig. 4. Developer responses to the question: “How often do you write tests
that directly invoke non-public methods?”

Conclusion (RQ2: Stance). Among our developer survey
participants, almost two-thirds prefer to test public APIs
only, while the remaining third will test non-public methods
directly. We observed a similar pattern in the answers in
StackOverflow “Debate” threads, where responses arguing
to test only via public APIs were more often the top answer
than those in favor of testing non-publics directly.

C. RQ3: Rationale

To understand developer stances more deeply, let us cluster
participants into two groups, namely “agree” and “disagree”,
based on their answers to the statement “In general, devel-
opers should write unit tests that only invoke public methods,
avoiding direct calls to non-public methods” (Figure 3). The
“agree” group comprises participants agreeing or strongly
agreeing with the statement — i.e., those who prefer to test
through public methods only — while the “disagree” group
includes those who disagreed or strongly disagreed.

We asked developers how much they valued eight different
qualities of test suites, listed in Table IV. The table shows
some interesting differences between the two groups. Partici-
pants in the “agree” group most frequently marked all the pos-
sibilities as “Very Important”, except code coverage which was
just “Important”. This was in contrast to the “disagree” group,
who marked code coverage as “Very Important”. This seems
to suggest that testers in the “disagree” group place more
emphasis on exercising implementation — to obtain higher
coverage, one might need to directly invoke a non-public from
a test to execute a statement that is hard to cover otherwise;
whereas members of the public-only (“agree”) group are more
concerned with testing behavior. Some participants made this
point explicitly in free-text responses in our survey. Participant
P49 commented, for example, “It’s important that unit tests test
the behaviour and not the implementation”, while P72 said “I
think that testing public rather than non-public methods leans
more towards testing behaviour rather than implementation
which is usually preferable”.

We also asked developers the extent to which they agreed
with the statement “Testing non-public methods leads to more
tests failing spuriously when modifications are made to those
methods.” We found those in the “agree” group also tended
to agree or strongly agree with this statement. Kendall’s tau-b
test indicated a strong and significant association (τb = 0.53,

TABLE III
Classification of posters’ answers to StackOverflow “Debate” threads as either
arguing to test public APIs only or test non-public methods directly, or were
neutral in stance. “Rank” refers to whether the answer was first, second, or
third in the list of responses to the original post, depending on its “upvotes”.
(NB: Some posts received fewer than three responses.)

Classification # Answers Mean Rank Mode Rank

Test public APIs only 19 1.89 1
Test non-public methods directly 17 1.94 2
Neutral 12 1.83 2

TABLE IV
Developer responses to the question “To what extent do you value the follow-
ing aspects when writing unit tests?”, where participants could choose from
the options “No opinion” , “Not Important” , “Somewhat Important” ,
“Important” , and “Very Important” .

Aspect “Agree” group “Disagree” group

Code coverage 161910 1057
Capturing behavior via assertions 369 173
Ease of debugging 23165 6105
Robustness after refactoring 3211 1183
Sensitivity to change 2814 1073
Realism 28710 1154
Confidence in code 386 1533
Conciseness 1713106 398

p < 0.01). There was no such correlation for the “disagree”
group. Public-only testers are concerned therefore about tests
breaking during an internal refactoring if they are highly
coupled to non-public methods via direct invocations, further
evidencing that this group prefer to test behavior rather than
implementation. This was backed up by a handful of comments
made by these participants in free-text responses in our survey.
P65 said, for example, “Writing tests that are coupled to the
private implementation of a class hurts the ability to refactor
in the future”. The “agree” group also pointed to likely process
or design problems with the code, e.g., P21 said “If you have
to do it, that means you probably have a code smell. . . ”; P43
agreed with this, stating “. . . that may be a sign that there
is a design/decomposition problem”, while P58 commented it
could be “a sign of a leaky abstraction”. P25 said that not
testing through public methods could lead to unrealistic tests:
“even if a private method CAN handle a variety of inputs, it’s
pointless to test for every possible combination, because you
know the code that is calling the private method will never
present those possibilities”.

In contrast, developers who disagree with the public-only
approach cited the complexity of logic in non-public methods,
and the need to thoroughly test them, e.g., P55: “If the logic
within the non-public is complex and critical, then do what you
need to do to test them”. P31 also highlighted that testing non-
publics directly is often less verbose and potentially clearer:
“. . . if its [sic] clearer/easier to test an internal part of a flow
rather than setting up for testing the public method then that’s
a better idea”.

Finally, we performed a thematic analysis on the original
poster questions that started the 18 “debate” threads we
retrieved from StackOverflow. These gave further insights into

the motivations of developers considering testing non-public
methods, revealing the following themes:
– Avoiding breaking encapsulation for testability’s sake:Avoiding breaking encapsulation for testability’s sake:Avoiding breaking encapsulation for testability’s sake:Avoiding breaking encapsulation for testability’s sake:Avoiding breaking encapsulation for testability’s sake:Avoiding breaking encapsulation for testability’s sake:Avoiding breaking encapsulation for testability’s sake:Avoiding breaking encapsulation for testability’s sake:Avoiding breaking encapsulation for testability’s sake:Avoiding breaking encapsulation for testability’s sake:Avoiding breaking encapsulation for testability’s sake:Avoiding breaking encapsulation for testability’s sake:Avoiding breaking encapsulation for testability’s sake:Avoiding breaking encapsulation for testability’s sake:Avoiding breaking encapsulation for testability’s sake:Avoiding breaking encapsulation for testability’s sake:Avoiding breaking encapsulation for testability’s sake: This
theme included question posts whereby the original posters
who — in contrast to developer survey respondents who said
that the need to directly test non-publics was a code design
problem — felt they would have to compromise code design to
avoid direct testing of non-public methods. One poster wrote
“If I wrote my class this way, I could have unit tests [. . .]
but I feel like this pattern is not correct. Is there a better
way?” [28].
– Curiosity:Curiosity:Curiosity:Curiosity:Curiosity:Curiosity:Curiosity:Curiosity:Curiosity:Curiosity:Curiosity:Curiosity:Curiosity:Curiosity:Curiosity:Curiosity:Curiosity: This theme portrayed posters that are curious as
to whether testing non-public methods is good practice or not.
– Complex logic:Complex logic:Complex logic:Complex logic:Complex logic:Complex logic:Complex logic:Complex logic:Complex logic:Complex logic:Complex logic:Complex logic:Complex logic:Complex logic:Complex logic:Complex logic:Complex logic: Echoing participants in our developer sur-
vey, this theme characterized posters who wanted to test non-
publics directly due to their inherent complexity.
– Complexity of testing through the public interface:Complexity of testing through the public interface:Complexity of testing through the public interface:Complexity of testing through the public interface:Complexity of testing through the public interface:Complexity of testing through the public interface:Complexity of testing through the public interface:Complexity of testing through the public interface:Complexity of testing through the public interface:Complexity of testing through the public interface:Complexity of testing through the public interface:Complexity of testing through the public interface:Complexity of testing through the public interface:Complexity of testing through the public interface:Complexity of testing through the public interface:Complexity of testing through the public interface:Complexity of testing through the public interface: Posters
described a further reason that the developer survey did
not surface as an explicit theme: they felt testing through
public methods was too laborious and repetitive, leading to
duplicated code across tests — “the method contains logic
shared between other methods in the class and it’s tidier to
test the logic on its own” [26]; or just too complex in its own
right: “I want to test logic used in synchronous threads without
having to worry about threading problems” [26].

Conclusion (RQ3: Rationale). Public API testers believe
testing behavior is important, while developers who test non-
public methods directly are more concerned with the correct-
ness of implementation. Public API testers believe the urge
to directly test non-publics is down to code design problems
that will lead to maintainability and refactoring difficulties
in the future. Implementation-driven testers are concerned
about complex parts of non-public code going untested and
about the complexity of test code, since testing non-public
methods through the public API is a more complex task that
may require a lot of shared setup between tests.

D. RQ4: Practice
1) Access Modifiers in Programming Languages: We asked

developers “If your main language does not have access
modifiers, do you follow any conventions to denote visibility of
methods and instance variables?” 54 participants responded
that their programming language has access modifiers, 19
said theirs did not, and 16 of those 19 said they followed
conventions to denote visibility instead. We asked, as a free-
text follow-up question to those who said they followed
conventions, which ones they used. Our thematic analysis of
responses revealed the following major themes:
– Underscore prefixes:Underscore prefixes:Underscore prefixes:Underscore prefixes:Underscore prefixes:Underscore prefixes:Underscore prefixes:Underscore prefixes:Underscore prefixes:Underscore prefixes:Underscore prefixes:Underscore prefixes:Underscore prefixes:Underscore prefixes:Underscore prefixes:Underscore prefixes:Underscore prefixes: Almost all respondents said they use
underscores to indicate non-public methods.
– Project-specific:Project-specific:Project-specific:Project-specific:Project-specific:Project-specific:Project-specific:Project-specific:Project-specific:Project-specific:Project-specific:Project-specific:Project-specific:Project-specific:Project-specific:Project-specific:Project-specific: Participants use different conventions de-
pending on the project.
– Visibility is irrelevant for understanding:Visibility is irrelevant for understanding:Visibility is irrelevant for understanding:Visibility is irrelevant for understanding:Visibility is irrelevant for understanding:Visibility is irrelevant for understanding:Visibility is irrelevant for understanding:Visibility is irrelevant for understanding:Visibility is irrelevant for understanding:Visibility is irrelevant for understanding:Visibility is irrelevant for understanding:Visibility is irrelevant for understanding:Visibility is irrelevant for understanding:Visibility is irrelevant for understanding:Visibility is irrelevant for understanding:Visibility is irrelevant for understanding:Visibility is irrelevant for understanding: Some participants
questioned the need for such mechanisms at all, e.g., P50: “Vis-
ibility is usually irrelevant for understanding the code”.

TABLE V
Responses to the question: “How do you go about testing non-public
methods?”, where the participant could choose from the options “Not sure” ,
“Not a feature in my language” , “Never” , “Rarely” , “Sometimes” ,
“Often” , and “Mostly” .

Means “Agree” group “Disagree” group

Via public methods only 36 610
By directly invoking 1225 45533
Using reflection / mocks 61620 3936
Adding test code in production 733 413
Temporary switch to public 40 18
Permanent change to public 61426 514

– Conventions increase maintenance:Conventions increase maintenance:Conventions increase maintenance:Conventions increase maintenance:Conventions increase maintenance:Conventions increase maintenance:Conventions increase maintenance:Conventions increase maintenance:Conventions increase maintenance:Conventions increase maintenance:Conventions increase maintenance:Conventions increase maintenance:Conventions increase maintenance:Conventions increase maintenance:Conventions increase maintenance:Conventions increase maintenance:Conventions increase maintenance: Participants observed
that encoding visibility in the name of methods (e.g., by
using underscores) increases maintenance/refactoring effort —
P50: “encoding it in the name increases the work required to
change visibility.”

2) Approaches to Testing Non-Public Methods: We asked
developers “How do you go about testing non-public meth-
ods?”, and analyzed the responses in the two groups defined
in the last RQ. Unsurprisingly, those in the “agree” group
(i.e., those with the stance of testing through public APIs
only) respond most frequently to “mostly” for “via public
methods only”, and “never” to the other possibilities (Table V).
The “disagree” group most frequently only ranked “via public
methods only” as “often” and “sometimes” for testing by direct
invocation and using reflection or mocks.

We asked developers about any other means they use to test
non-public methods. In our thematic analysis of their free-text
responses, the major themes, in order of prevalence, were:
– Refactor:Refactor:Refactor:Refactor:Refactor:Refactor:Refactor:Refactor:Refactor:Refactor:Refactor:Refactor:Refactor:Refactor:Refactor:Refactor:Refactor: Developers think that directly testing non-publics
is a code smell related to its design and that it needs refactoring
(P21: “If you HAVE TO test non-public methods, maybe they
are in the wrong place (i.e. maybe they should be extracted
elsewhere)”).
– Elevate access modifier:Elevate access modifier:Elevate access modifier:Elevate access modifier:Elevate access modifier:Elevate access modifier:Elevate access modifier:Elevate access modifier:Elevate access modifier:Elevate access modifier:Elevate access modifier:Elevate access modifier:Elevate access modifier:Elevate access modifier:Elevate access modifier:Elevate access modifier:Elevate access modifier: Developers elevate the visibility of
a method so that it is accessible and therefore callable directly
from a unit test. P39 said “Mostly what I do (in Java) is
have the method be ‘package private’ (the default visibility)”),
optionally using test framework annotations to mark the reason
for the visibility (P39: “. . . and use an annotation (@Visible-
ForTesting) to mark the reason for the visibility”).
– Via public methods:Via public methods:Via public methods:Via public methods:Via public methods:Via public methods:Via public methods:Via public methods:Via public methods:Via public methods:Via public methods:Via public methods:Via public methods:Via public methods:Via public methods:Via public methods:Via public methods: Developers underlined that non-publics
should be tested indirectly by calling public methods.

We also asked developers “Are there any guidelines, best
practices, or specific rules you follow when testing non-public
methods?”, from which we identified two new themes not
present in responses to the previous question:
– Apply good software engineering process:Apply good software engineering process:Apply good software engineering process:Apply good software engineering process:Apply good software engineering process:Apply good software engineering process:Apply good software engineering process:Apply good software engineering process:Apply good software engineering process:Apply good software engineering process:Apply good software engineering process:Apply good software engineering process:Apply good software engineering process:Apply good software engineering process:Apply good software engineering process:Apply good software engineering process:Apply good software engineering process: In this theme,
developers additionally pointed out that if a good process or
design had been followed, one shouldn’t need to directly test
non-publics. These sentiments are similar to the previously
identified “refactor” theme.
– Test non-public methods directly if necessary:Test non-public methods directly if necessary:Test non-public methods directly if necessary:Test non-public methods directly if necessary:Test non-public methods directly if necessary:Test non-public methods directly if necessary:Test non-public methods directly if necessary:Test non-public methods directly if necessary:Test non-public methods directly if necessary:Test non-public methods directly if necessary:Test non-public methods directly if necessary:Test non-public methods directly if necessary:Test non-public methods directly if necessary:Test non-public methods directly if necessary:Test non-public methods directly if necessary:Test non-public methods directly if necessary:Test non-public methods directly if necessary: This theme
captured developers who believe non-publics need to be tested
directly when they are complex.

We asked participants if they took a different approach for
different levels of visibility for non-public methods, with the
majority (59) answering “No”, and the remaining 14 replying
“Yes”. In a follow-up free-text question we gave participants
the opportunity to explain further. From these responses, we
identified the following themes:
– Test what the tests have access to:Test what the tests have access to:Test what the tests have access to:Test what the tests have access to:Test what the tests have access to:Test what the tests have access to:Test what the tests have access to:Test what the tests have access to:Test what the tests have access to:Test what the tests have access to:Test what the tests have access to:Test what the tests have access to:Test what the tests have access to:Test what the tests have access to:Test what the tests have access to:Test what the tests have access to:Test what the tests have access to: Respondents tested non-
publics that were visible to tests. For example, with JUnit,
tests can access protected and package-private methods but
not private ones (P56: “In Java at least, protected methods
can be called from classes in the same package (production
and test sources can have the equivalent packages)”; P47: “I
would look at it as non-private and private. Any method with
accessibility outside of it’s [sic] own class can be accessed by
a unit test, and thus *could* be unit tested”).
– Test via public methods only:Test via public methods only:Test via public methods only:Test via public methods only:Test via public methods only:Test via public methods only:Test via public methods only:Test via public methods only:Test via public methods only:Test via public methods only:Test via public methods only:Test via public methods only:Test via public methods only:Test via public methods only:Test via public methods only:Test via public methods only:Test via public methods only: Respondents further under-
lined developers should test through public methods only.
– Make it visible:Make it visible:Make it visible:Make it visible:Make it visible:Make it visible:Make it visible:Make it visible:Make it visible:Make it visible:Make it visible:Make it visible:Make it visible:Make it visible:Make it visible:Make it visible:Make it visible: Similar to the previously identified “elevate
access modifier” theme, if the method cannot be accessed
by the tests, increase its visibility level (e.g., P36: “I elevate
private to package private, and leave the others as is”), or
make it visible for testing through a wrapper class (e.g.,
P56: “Private methods cannot [be directly accessed], so the
class must be extended to put a public wrapper around the
private method.”)

Finally, we analyzed StackOverflow answers in “Practical”
threads (§IV-C) where posters specifically ask how to test a
non-public method in a given scenario. Our thematic analysis
revealed similar types of responses, but in a different order of
prevalence, largely because the original poster was asking how
to test non-publics, and the responses tended to be a mix of
direct answers along with opinion-based ones that accounted
for the bigger picture:
– Use language-specific mechanism:Use language-specific mechanism:Use language-specific mechanism:Use language-specific mechanism:Use language-specific mechanism:Use language-specific mechanism:Use language-specific mechanism:Use language-specific mechanism:Use language-specific mechanism:Use language-specific mechanism:Use language-specific mechanism:Use language-specific mechanism:Use language-specific mechanism:Use language-specific mechanism:Use language-specific mechanism:Use language-specific mechanism:Use language-specific mechanism: Posters discussed a va-
riety of mechanisms to gain access to non-publics normally
inaccessible for testing, including using reflection (e.g., in
Java) to override access controls, and C++’s “friend” construct.
We also identified themes that we had previously seen in re-
sponses to our developer survey, thereby helping to corroborate
its results:
– Test via public methods only:Test via public methods only:Test via public methods only:Test via public methods only:Test via public methods only:Test via public methods only:Test via public methods only:Test via public methods only:Test via public methods only:Test via public methods only:Test via public methods only:Test via public methods only:Test via public methods only:Test via public methods only:Test via public methods only:Test via public methods only:Test via public methods only: Posters advised testing solely
via the public API; i.e., not to test non-public methods directly.
– Refactor:Refactor:Refactor:Refactor:Refactor:Refactor:Refactor:Refactor:Refactor:Refactor:Refactor:Refactor:Refactor:Refactor:Refactor:Refactor:Refactor: Posters advised to refactor production code to
avoid the need to test non-publics directly.
– Elevate access modifier:Elevate access modifier:Elevate access modifier:Elevate access modifier:Elevate access modifier:Elevate access modifier:Elevate access modifier:Elevate access modifier:Elevate access modifier:Elevate access modifier:Elevate access modifier:Elevate access modifier:Elevate access modifier:Elevate access modifier:Elevate access modifier:Elevate access modifier:Elevate access modifier: Posters in favor of side-stepping the
public API advising raising the access level of the non-public
so that it is visible for testing.

3) Tooling: Finally, we asked developers if they would like
to see features or improvements to unit testing frameworks to
facilitate testing non-public methods, from which we identified
the following themes:
– None:None:None:None:None:None:None:None:None:None:None:None:None:None:None:None:None: Respondents did not believe any new features were
necessary. This was the most prevalent response.
– Less support in current tools:Less support in current tools:Less support in current tools:Less support in current tools:Less support in current tools:Less support in current tools:Less support in current tools:Less support in current tools:Less support in current tools:Less support in current tools:Less support in current tools:Less support in current tools:Less support in current tools:Less support in current tools:Less support in current tools:Less support in current tools:Less support in current tools: Respondents believed current
test frameworks made it too convenient to test non-publics

directly (using the mechanisms featured in Table II, for exam-
ple), and should instead do more to discourage or even prevent
the practice.
– Support for inaccessible methods:Support for inaccessible methods:Support for inaccessible methods:Support for inaccessible methods:Support for inaccessible methods:Support for inaccessible methods:Support for inaccessible methods:Support for inaccessible methods:Support for inaccessible methods:Support for inaccessible methods:Support for inaccessible methods:Support for inaccessible methods:Support for inaccessible methods:Support for inaccessible methods:Support for inaccessible methods:Support for inaccessible methods:Support for inaccessible methods: Respondents wanted
more test framework support for testing inaccessible methods
(e.g., private methods in Java) without resorting to tricks like
reflection to override access controls.

Conclusion (RQ4: Practice). The majority of developers
whose languages do not have visibility modifiers adopt
conventions, such as underscores in method names, to denote
they are intended to be non-public. Testers preferring to test
through a unit’s public API only see the desire to test non-
public methods as indicative of a code smell indicating poor
process or the need to refactor production code. Developers
who do test non-public methods use different “back-door”
means, one of the most popular being to elevate the method’s
visibility to make it accessible to the tests.

VI. DISCUSSION

1) Further Analyses: We investigate possible correlations
between developer experience and our survey results, and
between the size of a project and the number of direct calls
to non-publics in tests studied in RQ1.

As part of our demographic survey questions, we asked
developers how many years of experience of development
and testing they had. Figure 5 shows a stacked bar chart
of testing experience, where the bars are split according
to whether they are in the group that “agree” with testing
through public APIs only or the “disagree” group from RQ3,
or were not sure — based on their answers shown to the
question in Figure 3. The chart shows an increase in the
proportion of those in the “agree” group as the number of
years of testing experience increases. Kendall’s tau-b showed
a moderate positive association between these two traits, which
is significant at α = 0.05 (τb = 0.240, p = 0.014). Overall
this implies that the more experience a tester has, the more
likely they are to be opposed to directly testing non-publics,
and suggests that more organizational guidance is needed
for more junior members if development teams are to avoid
side-stepping the public API and directly testing non-public
methods. We found less evidence that development experience
has a similar relationship; Kendall’s tau-b test shows only a
weak association that is not significant (τb = 0.135, p = 0.17).

We also looked into whether the size of the project was
somehow correlated with specific practices regarding testing of

Ye
ar

s
of

te
st

in
g

ex
pe

rie
nc

e 13 (20%)11 (73.3%)>15

12 (18.2%)8 (72.7%)10–15

7 (31.8%)15 (68.2%)5–10

16 (35.3%)10 (58.8%)2–5

14 (50%)3 (37.5%)
of participants (%)

0–2

Agree / Strongly Agree Disagree / Strongly Disagree Not Sure

Fig. 5. Participants’ years of testing experience, grouped by stance on testing
through public methods only (distribution shown in Figure 3).

non-publics. It would be conceivable that directly testing non-
publics is less prevalent in larger projects due to having larger
development teams with potentially more development/testing
experience and more rigorously defined software engineering
processes. However, Kendall’s tau-b showed only a weak
association between the number of tests and the proportion of
non-publics directly called from them (τb = 0.179, p < 0.01).
While the tests of both projects considered big and small
relative to our dataset tended to focus on exercising public
methods (in accordance with the data presented in Table I),
they also tended to include direct calls to non-public methods.

2) Summary of Findings: Our results show that the majority
of developers agree with testing solely through public APIs,
but not overwhelmingly so, with a third disagreeing and in
favor of testing through non-public methods — albeit de-
pending on the circumstances (RQ2). In summary, developers
in the “agree” group, oppose directly testing non-publics,
commenting that it will make code harder to refactor and
maintain in the future, and that the temptation to test non-
publics stems from poor code design, suggesting refactoring
as the solution instead (RQ3, RQ4). However, this needs to be
done with care, since it could lead to repetition in tests that
need to keep calling the same public methods — another topic
of debate in the literature suggested to be a code smell in its
own right [40]. Some literature suggests such tests themselves
would need refactoring [75] in keeping with the DRY principle
(“Don’t Repeat Yourself”), with others preferring to keep tests
“DAMP” (“Descriptive And Meaningful Phrases”); e.g., [57].
Another issue in refactoring might be the temptation to make
parts of the implementation visible solely for the purposes of
testing, also considered a test smell (referred to as “For Testers
Only” [35], [40], [75], discussed in §II-C).

Some of the drawbacks of the alternatives to testing non-
publics directly are exactly those expressed by participants
in our survey and those on StackOverflow who are in favor
of testing non-publics, often depending on the circumstances.
Others further cited the complexity of the code in the non-
public method itself — perhaps with code coverage of tests
in mind — and the difficulty of exercising it indirectly, citing
the resultant complexity of the tests and/or the problem of
isolating the aspects of the code they want to exercise (RQ3).
Participants in our survey and posters on StackOverflow
proposed a variety of remedies, some of the most prevalent
being using language-specific mechanisms to bypass access
modifiers or elevating access modifiers — a change equivalent
to making internals more visible for testing. Our results to RQ1
suggest that developers do make methods package-private in
Java for the purposes of testing, thereby not rigidly testing
exclusively through the public API only.

Finally, the majority of developers responding to our ques-
tionnaire did not believe further tooling support is needed
to address the problem (RQ4), but perhaps were unaware of
potential future research techniques that could help convert
direct calls to non-publics into those that solely exercise the
public API, or be used to manage other perceived negatives
of testing non-publics over the public API, such as repetition

in tests. We discuss this implication as part of our ideas for
future work in the next section.

VII. IMPLICATIONS AND FUTURE WORK

A. Software Testing Education

Our survey results indicated that different attitudes were
prevalent based on level of experience. Instead of learning
the “hard way”, we propose that educators are made aware of
some of these opinions and seek to ensure that they emphasize
the best software engineering practices in their teaching.

1) Behavioral-Driven Testing: Our survey results show that
less experienced developers and testers tend to be in favor of
testing non-publics directly, suggesting that better education
and materials are needed around behavioral-driven approaches
to development and testing. This would give developers clearer
incentives to avoid the practice by studying the longer-term
downsides, such as less maintainable test suites.

2) Attitudes to Coverage: While there is healthy skepticism
amongst developers regarding coverage in general (e.g., [18]),
coverage was correlated with favoring testing non-publics
directly in our study. Increasing coverage may therefore be a
motive behind testing implementation as opposed to behavior
(as also observed by Bowes et al. [41]). Ideally, coverage
should be used by developers to identify untested behaviors
instead of individual lines that tests execute in their production
code. As such, testers should be less concerned with coverage
as a quality metric of their test suites, as tests that are tightly
coupled to implementation are not of high quality since they
will be more costly to maintain in the future.

3) Identifying and Discouraging Testing Anti-Patterns: Our
findings indicate ways in which developers sometimes take
shortcuts to test non-public implementation or to make it
accessible, including elevating access levels of methods, using
language-specific mechanisms like the “friend” keyword in
C++, or other means to access code normally inaccessible to
tests like using Reflection in Java or using functionality in
mocking libraries to achieve the same effect. These practices
should be identified in education materials as anti-patterns to
be avoided in software tests.

B. Automated Techniques

The results of this paper reveal that there is extensive scope
for automated techniques to assist with the problem of testing
non-public methods.

1) Automated Support To Replace Direct Non-Public Calls:
In our survey, some developers described the complexity or la-
borious nature of testing exclusively through public interfaces.
Future research therefore could concentrate on techniques that
refactor existing developer tests to remove direct calls to non-
public methods and replace them with call sequences that
rely on public methods only. This could be done with the
help of existing test generation tools, such as EvoSuite [48].
For example, once a non-public call is found, a search-based
technique [61] could be used to find the equivalent set of
public calls that lead to the non-public method being invoked
in the same way. However, the resulting generated tests might

suffer from readability issues [33], [45], [70]. For this reason,
applying a large language model to assist may therefore also
prove fruitful, in a similar style to recent work by Alshahwan
et al. [36] and Yaraghi et al. [77].

2) Refactoring Production Code Based on Problematic
Tests: In our survey, several developers noted that the desire to
side-step the public API and test a non-public method directly
is because the production code is poorly designed in the
first place. This means that tests that call non-public methods
could indicate production code that needs refactoring. These
refactorings would of course be more intricate than simply
making non-public methods visible to tests, as that would
defeat the purpose. While there has been work on refactoring
tests to remove test smells (e.g., [73]), to our knowledge,
poorly written tests have not been used as the basis of work in
automated refactoring production code before. Calls to non-
public methods in tests could be one direction in which to
drive automated refactoring tools towards better code design
so that tests only need to invoke the public API to better effect.

3) Improved Automated Test Smell Detection Tools: Ex-
isting test smell detection tools focus on private methods
only [76], however direct calls to all non-public methods
couple tests to implementation that will make them hard to
maintain in the future. We therefore argue that these tools need
to be extended to detect calls to other non-public methods,
e.g., package-private. Furthermore, detecting when non-public
methods are called by tests is a surprisingly non-trivial task.
Static methods miss cases when mocking libraries are used
to bypass visibility restrictions to call private methods. In our
study, we resorted to dynamic methods, and even then still, we
found cases that were hard to analyze due to the tests calling
threaded code or starting threads themselves (both indicative
of further test smells). Furthermore, callbacks are possible
through external APIs. We checked these cases by hand or
excluded them entirely from our study. Future work needs to
focus in these areas.

4) Automatic Test Generation and Non-Public Methods:
The developers in our survey or those using StackOverflow
did not comment on automatically generated test suites (such
as those produced by EvoSuite [48], Randoop [64], or Agi-
tarOne [1]). These tools retain the option to call non-publics
with the goal of increasing coverage [38], [72], meaning tests
generated by these tools will be hard to maintain. Further
work needs to establish what the longevity is of automatically
generated test suites, since this might not be a problem if the
tests are to be thrown away and regenerated anyway [71].

C. Developer Support

The answers to our survey imply different ways in which
existing tools may be improved to assist developers in ensuring
their tests avoid making calls to non-publics directly.

1) Stricter Test Frameworks / Build Tools: As already
mentioned, developers often employ shortcuts in their tests
to exercise non-public methods, but these practices could
be stopped entirely by stricter test frameworks. JUnit, for
example, encouraged by build tools like Maven and Gradle,

organizes unit tests so that they exist in the same package
as the classes they test, making certain non-public methods,
like those declared package-private visible to tests. We found
these types of calls particularly to be prevalent in our study
of open-source Java projects. Placing test suites outside of
the package of classes they are designed to test, however,
would render these direct calls impossible by virtue of the
visibility rules of the Java language. This suggestion comes
directly from developer responses to our survey in RQ4
(§V-D3). Similarly, mocking tools should deprecate or remove
functionality allowing developers to access private methods
through Java Reflection.

2) IDE support: Integrated Development Environments
(IDEs) could build in support for some of the suggestions
for future work on automated techniques outlined above.
Whenever a developer is tempted to call a non-public method
directly, the IDE could auto-suggest a sequence of calls that
call the public interface of the class instead. Similarly, these
tools could implement bad smell detectors to give developers
more useful indicators of test suite quality rather than just
code-based metrics like coverage.

VIII. CONCLUSIONS

Test suites that directly test internal implementation re-
quire maintenance when that implementation changes — a
cost that could be avoided if testers stuck to testing public
APIs only. In this paper, through a developer survey and an
analysis of relevant StackOverflow threads, we presented the
first qualitative study of developer opinions, rationale, and
practice when faced with the decision of how to test units
with methods of different visibility levels. We support our
qualitative study with a quantitative analysis of 4,801 open-
source Java projects, which we obtained from the Maven
Central Repository. Among several findings, our work revealed
that while the majority of testers prefer to test the public API
of a unit only, a significant proportion are willing to side-
step it and directly test a non-public method, particularly if
it is complex, including raising its visibility level if needed.
While many developers suggested that such code needs to be
refactored so that it can be tested via its public methods, others
employ various means to access non-public methods directly
if needed, including making these methods visible to tests.
This behavior was supported by the results of our open-source
Java code study, where a seemingly disproportionate number
of methods directly tested were declared “package-private” —
i.e., not fully private but with just “enough” visibility to make
them accessible to unit tests. We proposed several lines of
research and ways to support developers in reducing the need
to test non-publics directly, with the aim of improving test
maintainability in the future.

ACKNOWLEDGEMENTS

Muhammad Firhard Roslan receives PhD funding from the
Majlis Amanah Rakyat (MARA). Phil McMinn is supported,
in part, by the EPSRC grant “Test FLARE” (EP/X024539/1).

REFERENCES

[1] Agitar One. http://www.agitar.com/solutions/products/automated junit
generation.html. Accessed: 4/2024.

[2] Anal probe — test smells catalog. https://test-smell-catalog.readthedo
cs.io/en/latest/Test%20semantic-logic/Other%20test%20logic%20relate
d/Anal%20Probe.html. Accessed: 4/2024.

[3] Apache commons lang3 — Class MethodUtils. https://commons.apac
he.org/proper/commons-lang/apidocs/org/apache/commons/lang3/reflect
/MethodUtils.html. Accessed: 7/2024.

[4] Controlling access to members of a class, the Java tutorials. https:
//docs.oracle.com/javase/tutorial/java/javaOO/accesscontrol.html.
Accessed: 4/2023.

[5] EasyMock — Class ReflectionUtils. https://easymock.org/api/org/eas
ymock/internal/ReflectionUtils.html. Accessed: 7/2024.

[6] Exported identifiers — Go: The Go programming language. https:
//go.dev/ref/spec#Exported identifiers. Accessed: 4/2024.

[7] Javassist. https://www.javassist.org. Accessed: 4/2024.
[8] JMockit — Class Deencapsulation. https://javadoc.io/doc/com.googl

ecode.jmockit/jmockit/latest/mockit/Deencapsulation.html. Accessed:
7/2024.

[9] Kendall’s Tau — Simple Introduction. https://www.spss-tutorials.com
/kendalls-tau/. Accessed: 7/2024.

[10] Manifold Systems — Annotation Type Jailbreak. https://javadoc.io/sta
tic/systems.manifold/manifold-ext-rt/2020.1.41/manifold/ext/rt/api/Jail
break.html. Accessed: 7/2024.

[11] Maven — Introduction to the standard directory layout. https://maven.
apache.org/guides/introduction/introduction-to-the-standard-directory-l
ayout. Accessed: 7/2024.

[12] Maven Central Repository. https://repo.maven.apache.org/maven2/.
Accessed: 4/2024.

[13] Package java.lang.reflect. https://docs.oracle.com/javase/8/docs/api/java
/lang/reflect/package-summary.html. Accessed: 7/2024.

[14] password-generator GitHub project. https://github.com/javadev/passwor
d-generator. Accessed: 4/2024.

[15] Powermock — Class Whitebox. https://www.javadoc.io/doc/org.power
mock/powermock-reflect/1.6.4/org/powermock/reflect/Whitebox.html.
Accessed: 7/2024.

[16] Private properties — the modern JavaScript tutorial. https://javascript.i
nfo/private-protected-properties-methods. Accessed: 4/2024.

[17] The Python Language Reference — Private name mangling. https:
//docs.python.org/3/reference/expressions.html#private-name-mangling.
Accessed: 4/2024.

[18] Reddit: Stop using Code Coverage as a Quality metric. https://www.re
ddit.com/r/programming/comments/194htrz/stop using code coverage
as a quality metric. Accessed: 4/2024.

[19] Spring Framework — Class ReflectionTestUtils. https://docs.spring.io/s
pring-framework/docs/current/javadoc-api/org/springframework/test/util
/ReflectionTestUtils.html. Accessed: 7/2024.

[20] Stack Overflow. https://stackoverflow.com. Accessed: 4/2024.
[21] Testing with Maven — Organizing unit and integration tests. https:

//dev.to/rodnan-sol/testing-with-maven-organizing-unit-and-integration
-tests-35oh. Accessed: 7/2024.

[22] tvd12 test-util repository. https://github.com/tvd12/test-util. Accessed:
7/2024.

[23] Visibility modifiers — Kotlin programming language. https://kotlinlang
.org/docs/visibility-modifiers.html. Accessed: 4/2024.

[24] X-Ray Specs — Test Smells Catalog. https://test-smell-catalog.readthe
docs.io/en/latest/Test%20semantic-logic/Other%20test%20logic%20rela
ted/X-Ray%20Specs.html. Accessed: 4/2024.

[25] Stack Overflow: How do I test a class that has private methods, fields
or inner classes? https://stackoverflow.com/questions/34571/, 2008.
Accessed: 4/2024.

[26] Stack Overflow: Making a private method public to unit test it...good
idea? https://stackoverflow.com/questions/7075938/, 2011. Accessed:
4/2024.

[27] Stack Overflow: Unit testing private method — Objective-C. https:
//stackoverflow.com/questions/18354788/, 2013. Accessed: 4/2024.

[28] Stack Overflow: Should a concrete class that implements an interface
have extra public methods for testing? https://stackoverflow.com/questi
ons/57632038/, 2019. Accessed: 4/2024.

[29] Stack Overflow: Developer survey results. https://survey.stackoverflow.
co/2023, 2023. Accessed: 4/2024.

[30] Stack Overflow: Unit testing a overridden protected method from a class
that does not have default constructors. https://stackoverflow.com/ques
tions/76868236/, 2023. Accessed: 4/2024.

[31] The state of developer ecosystem 2023. https://www.jetbrains.com/lp/d
evecosystem-2023/java/, 2023. Accessed: 4/2024.

[32] Replication package. https://github.com/unittesting-nonpublic/private-k
eep-out replication-package, 2024.

[33] Sheeva Afshan, Phil McMinn, and Mark Stevenson. Evolving readable
string test inputs using a natural language model to reduce human oracle
cost. In International Conference on Software Testing, Verification and
Validation (ICST), pages 352–361, 2013.

[34] Joseph Albahari. Reflection and Metadata. In C# 12 in a Nutshell,
chapter 18. O’Reilly Media, 2023.

[35] Wajdi Aljedaani, Anthony Peruma, Ahmed Aljohani, Mazen Alotaibi,
Mohamed Wiem Mkaouer, Ali Ouni, Christian D. Newman, Abdullatif
Ghallab, and Stephanie Ludi. Test smell detection tools: A systematic
mapping study. In International Conference on Evaluation and Assess-
ment in Software Engineering (EASE), pages 170–180, 2021.

[36] Nadia Alshahwan, Jubin Chheda, Anastasia Finegenova, Beliz Gokkaya,
Mark Harman, Inna Harper, Alexandru Marginean, Shubho Sengupta,
and Eddy Wang. Automated unit test improvement using large language
models at Meta. In International Symposium on the Foundations of
Software Engineering (FSE), 2024.

[37] Maurı́cio Aniche, Christoph Treude, and Andy Zaidman. How develop-
ers engineer test cases: An observational study. IEEE Transactions on
Software Engineering, 48:4925–4946, 2022.

[38] Andrea Arcuri, Gordon Fraser, and René Just. Private API access and
functional mocking in automated unit test generation. In International
Conference on Software Testing, Verification and Validation (ICST),
2017.

[39] Sebastian Baltes and Paul Ralph. Sampling in software engineering re-
search: a critical review and guidelines. Empirical Software Engineering,
27, 2022.

[40] Gabriele Bavota, Abdallah Qusef, Rocco Oliveto, Andrea De Lucia,
and David Binkley. An empirical analysis of the distribution of unit
test smells and their impact on software maintenance. In International
Conference on Software Maintenance (ICSM), pages 56–65, 2012.

[41] David Bowes, Tracy Hall, Jean Petric, Thomas Shippey, and Burak
Turhan. How good are my tests? In Workshop on Emerging Trends
in Software Metrics (WETSoM), pages 9–14, 2017.

[42] Timothy Budd. Introduction to object-oriented programming. Addison-
Wesley, 2008.

[43] Steve Counsell and Peter Newson. Use of friends in C++ software:
An empirical investigation. Journal of Systems and Software, 53:15–21,
2000.

[44] Daniela S. Cruzes and Tore Dyba. Recommended steps for thematic
synthesis in software engineering. In International Symposium on
Empirical Software Engineering and Measurement (ESEM), pages 275–
284, 2011.

[45] Ermira Daka, José Miguel Rojas, and Gordon Fraser. Generating unit
tests with descriptive names or: would you name your children thing1
and thing2? In International Symposium on Software Testing and
Analysis (ISSTA), pages 57–67, 2017.

[46] Michael Feathers. Working effectively with legacy code. Prentice Hall
Professional, 2004.

[47] David Flanagan and Yukihiro Matsumoto. Reflection and Metaprogram-
ming. In The Ruby Programming Language: Everything You Need to
Know, chapter 8. O’Reilly Media, 2008.

[48] Gordon Fraser and Andrea Arcuri. EvoSuite: Automatic Test Suite
Generation for Object-Oriented Software. In 19th ACM SIGSOFT
Symposium and the 13th European Conference on Foundations of
Software Engineering (ESEC/FSE), 2011.

[49] Vahid Garousi and Barış Küçük. Smells in software test code: A
survey of knowledge in industry and academia. Journal of Systems
and Software, 138:52–81, 2018.

[50] James Gosling. The Java language specification. Addison Wesley, 2000.
[51] Georgios Gousios. Java-callgraph: Programs for producing static and

dynamic (runtime) call graphs for Java programs. https://github.com/g
ousiosg/java-callgraph. Accessed: 4/2024.

[52] Martin Gruber and Gordon Fraser. A survey on how test flakiness affects
developers and what support they need to address it. In International
Conference on Software Testing, Verification and Validation (ICST),
pages 82–92, 2022.

http://www.agitar.com/solutions/products/automated_junit_generation.html
http://www.agitar.com/solutions/products/automated_junit_generation.html
https://test-smell-catalog.readthedocs.io/en/latest/Test%20semantic-logic/Other%20test%20logic%20related/Anal%20Probe.html
https://test-smell-catalog.readthedocs.io/en/latest/Test%20semantic-logic/Other%20test%20logic%20related/Anal%20Probe.html
https://test-smell-catalog.readthedocs.io/en/latest/Test%20semantic-logic/Other%20test%20logic%20related/Anal%20Probe.html
https://commons.apache.org/proper/commons-lang/apidocs/org/apache/commons/lang3/reflect/MethodUtils.html
https://commons.apache.org/proper/commons-lang/apidocs/org/apache/commons/lang3/reflect/MethodUtils.html
https://commons.apache.org/proper/commons-lang/apidocs/org/apache/commons/lang3/reflect/MethodUtils.html
https://docs.oracle.com/javase/tutorial/java/javaOO/accesscontrol.html
https://docs.oracle.com/javase/tutorial/java/javaOO/accesscontrol.html
https://easymock.org/api/org/easymock/internal/ReflectionUtils.html
https://easymock.org/api/org/easymock/internal/ReflectionUtils.html
https://go.dev/ref/spec#Exported_identifiers
https://go.dev/ref/spec#Exported_identifiers
https://www.javassist.org
https://javadoc.io/doc/com.googlecode.jmockit/jmockit/latest/mockit/Deencapsulation.html
https://javadoc.io/doc/com.googlecode.jmockit/jmockit/latest/mockit/Deencapsulation.html
https://www.spss-tutorials.com/kendalls-tau/
https://www.spss-tutorials.com/kendalls-tau/
https://javadoc.io/static/systems.manifold/manifold-ext-rt/2020.1.41/manifold/ext/rt/api/Jailbreak.html
https://javadoc.io/static/systems.manifold/manifold-ext-rt/2020.1.41/manifold/ext/rt/api/Jailbreak.html
https://javadoc.io/static/systems.manifold/manifold-ext-rt/2020.1.41/manifold/ext/rt/api/Jailbreak.html
https://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout
https://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout
https://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout
https://repo.maven.apache.org/maven2/
https://docs.oracle.com/javase/8/docs/api/java/lang/reflect/package-summary.html
https://docs.oracle.com/javase/8/docs/api/java/lang/reflect/package-summary.html
https://github.com/javadev/password-generator
https://github.com/javadev/password-generator
https://www.javadoc.io/doc/org.powermock/powermock-reflect/1.6.4/org/powermock/reflect/Whitebox.html
https://www.javadoc.io/doc/org.powermock/powermock-reflect/1.6.4/org/powermock/reflect/Whitebox.html
https://javascript.info/private-protected-properties-methods
https://javascript.info/private-protected-properties-methods
https://docs.python.org/3/reference/expressions.html#private-name-mangling
https://docs.python.org/3/reference/expressions.html#private-name-mangling
https://www.reddit.com/r/programming/comments/194htrz/stop_using_code_coverage_as_a_quality_metric
https://www.reddit.com/r/programming/comments/194htrz/stop_using_code_coverage_as_a_quality_metric
https://www.reddit.com/r/programming/comments/194htrz/stop_using_code_coverage_as_a_quality_metric
https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/test/util/ReflectionTestUtils.html
https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/test/util/ReflectionTestUtils.html
https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/test/util/ReflectionTestUtils.html
https://stackoverflow.com
https://dev.to/rodnan-sol/testing-with-maven-organizing-unit-and-integration-tests-35oh
https://dev.to/rodnan-sol/testing-with-maven-organizing-unit-and-integration-tests-35oh
https://dev.to/rodnan-sol/testing-with-maven-organizing-unit-and-integration-tests-35oh
https://github.com/tvd12/test-util
https://kotlinlang.org/docs/visibility-modifiers.html
https://kotlinlang.org/docs/visibility-modifiers.html
https://test-smell-catalog.readthedocs.io/en/latest/Test%20semantic-logic/Other%20test%20logic%20related/X-Ray%20Specs.html
https://test-smell-catalog.readthedocs.io/en/latest/Test%20semantic-logic/Other%20test%20logic%20related/X-Ray%20Specs.html
https://test-smell-catalog.readthedocs.io/en/latest/Test%20semantic-logic/Other%20test%20logic%20related/X-Ray%20Specs.html
https://stackoverflow.com/questions/34571/
https://stackoverflow.com/questions/7075938/
https://stackoverflow.com/questions/18354788/
https://stackoverflow.com/questions/18354788/
https://stackoverflow.com/questions/57632038/
https://stackoverflow.com/questions/57632038/
https://survey.stackoverflow.co/2023
https://survey.stackoverflow.co/2023
https://stackoverflow.com/questions/76868236/
https://stackoverflow.com/questions/76868236/
https://www.jetbrains.com/lp/devecosystem-2023/java/
https://www.jetbrains.com/lp/devecosystem-2023/java/
https://github.com/unittesting-nonpublic/private-keep-out_replication-package
https://github.com/unittesting-nonpublic/private-keep-out_replication-package
https://github.com/gousiosg/java-callgraph
https://github.com/gousiosg/java-callgraph

[53] Martin Gruber, Muhammad Firhard Roslan, Owain Parry, Fabian
Scharnböck, Phil McMinn, and Gordon Fraser. Do automatic test
generation tools generate flaky tests? In International Conference on
Software Engineering (ICSE), 2024.

[54] Michael Hilton, Timothy Tunnell, Kai Huang, Darko Marinov, and
Danny Dig. Usage, costs, and benefits of continuous integration in open-
source projects. In International Conference on Automated Software
Engineering (ASE), 2016.

[55] Javaria Imtiaz, Salman Sherin, Muhammad Uzair Khan, and Muham-
mad Zohaib Iqbal. A systematic literature review of test breakage
prevention and repair techniques. Information and Software Technology,
113:1–19, 2019.

[56] Barbara A. Kitchenham and Shari Lawrence Pfleeger. Personal opinion
surveys. In Forrest Shull, Janice Singer, and Dag I. K. Sjøberg,
editors, Guide to Advanced Empirical Software Engineering, pages 63–
92. Springer, 2008.

[57] Erik Kuefler. Unit Testing. In Titus Winters, Tom Manshreck,
and Hyrum Wright, editors, Software Engineering at Google: Lessons
Learned from Programming Over Time, chapter 12. O’Reilly Media,
2020.

[58] Adriaan Labuschagne, Laura Inozemtseva, and Reid Holmes. Measuring
the cost of regression testing in practice: A study of Java projects using
continuous integration. In 11th Joint Meeting on Foundations of Software
Engineering (ESEC/FSE), pages 821–830, 2017.

[59] Yue Li, Tian Tan, and Jingling Xue. Understanding and analyzing Java
reflection. ACM Transactions on Software Engineering and Methodol-
ogy, 28(2):1–50, 2019.

[60] L. Martins, D. Campos, R. Santana, J. Junior, H. Costa, and I. Machado.
Hearing the voice of experts: Unveiling stack exchange communities’
knowledge of test smells. In International Conference on Cooperative
and Human Aspects of Software Engineering (CHASE), pages 80–91,
2023.

[61] Phil McMinn. Search-based software test data generation: A survey.
Software Testing, Verification and Reliability, 14(2):105–156, 2004.

[62] Louis G. Michael, James Donohue, James C. Davis, Dongyoon Lee, and
Francisco Servant. Regexes are hard: Decision-making, difficulties, and
risks in programming regular expressions. In International Conference
on Automated Software Engineering (ASE), pages 415–426, 2019.

[63] Roy Osherove. Unit Testing Tips — Write Maintainable Unit Tests That
Will Save You Time And Tears. MSDN Magazine, pages 107–118, 2006.
Available online: https://learn.microsoft.com/en-us/archive/msdn-magaz
ine/2006/january/unit-testing-writing-maintainable-unit-tests-save-tim
e-and-tears.

[64] Carlos Pacheco and Michael D. Ernst. Randoop: Feedback-directed
random testing for Java. In OOPSLA Companion: Object-Oriented
Programming Systems, Languages, and Applications, 2007.

[65] Owain Parry, Michael Hilton, Gregory M. Kapfhammer, and Phil
McMinn. Surveying the developer experience of flaky tests. In Interna-

tional Conference on Software Engineering — Software Engineering In
Practice track (ICSE-SEIP), 2022.

[66] Michael Quinn Patton. Enhancing the quality and credibility of quali-
tative analysis. Health services research, 34, 1999.

[67] Renaud Pawlak, Martin Monperrus, Nicolas Petitprez, Carlos Noguera,
and Lionel Seinturier. Spoon: A library for implementing analyses and
transformations of Java source code. Software: Practice and Experience,
46(9):1155–1179, 2016.

[68] Leandro Sales Pinto, Saurabh Sinha, and Alessandro Orso. Under-
standing myths and realities of test-suite evolution. In International
Symposium on the Foundations of Software Engineering (FSE), pages
1–11, 2012.

[69] Muhammad Firhard Roslan, José Miguel Rojas, and Phil McMinn.
Viscount: A direct method call coverage tool for Java. In International
Conference on Software Maintenance and Evolution (ICSME): Tool
Demo Track, 2024.

[70] Devjeet Roy, Ziyi Zhang, Maggie Ma, Venera Arnaoudova, Annibale
Panichella, Sebastiano Panichella, Danielle Gonzalez, and Mehdi Mi-
rakhorli. Deeptc-enhancer: Improving the readability of automatically
generated tests. In International Conference on Automated Software
Engineering (ASE), pages 287–298, 2020.

[71] Sina Shamshiri, José Campos, Gordon Fraser, and Phil McMinn. Dispos-
able testing: Avoiding maintenance of generated unit tests by throwing
them away. In International Conference on Software Engineering
(ICSE), pages 207–209, 2017.

[72] Sina Shamshiri, Rene Just, José Miguel Rojas, Gordon Fraser, Phil
McMinn, and Andrea Arcuri. Do automatically generated unit tests
find real faults? an empirical study of effectiveness and challenges. In
International Conference on Automated Software Engineering (ASE),
pages 201–211, 2015.

[73] Elvys Soares, Márcio Ribeiro, Rohit Gheyi, Guilherme Amaral, and
André Santos. Refactoring test smells with JUnit 5: Why should de-
velopers keep up-to-date? IEEE Transactions on Software Engineering,
49(3):1152–1170, 2023.

[74] Davide Spadini, Maurı́cio Aniche, Margaret-Anne Storey, Magiel
Bruntink, and Alberto Bacchelli. When testing meets code review:
Why and how developers review tests. In International Conference on
Software Engineering, pages 677–687, 2018.

[75] Arie Van Deursen, Leon Moonen, Alex Van Den Bergh, and Gerard
Kok. Refactoring test code. In International Conference on eXtreme
Programming and Flexible Processes in Software Engineering (XP),
pages 92–95, 2001.

[76] Yanming Yang, Xing Hu, Xin Xia, and Xiaohu Yang. The lost
world: Characterizing and detecting undiscovered test smells. ACM
Transactions on Software Engineering and Methodology, 2023.

[77] Ahmadreza Saboor Yaraghi, Darren Holden, Nafiseh Kahani, and Lionel
Briand. Automated test case repair using language models. arXiv
preprint arXiv:2401.06765, 2024.

https://learn.microsoft.com/en-us/archive/msdn-magazine/2006/january/unit-testing-writing-maintainable-unit-tests-save-time-and-tears
https://learn.microsoft.com/en-us/archive/msdn-magazine/2006/january/unit-testing-writing-maintainable-unit-tests-save-time-and-tears
https://learn.microsoft.com/en-us/archive/msdn-magazine/2006/january/unit-testing-writing-maintainable-unit-tests-save-time-and-tears

	Introduction
	Background and Related Work
	Encapsulation, Visibility and Access Modifiers
	Empirical Studies of Test Maintenance
	Test Smells
	Studies into Public API vs Non-Public Method Testing

	Research Questions
	Methodology
	Open-Source Study (RQ1)
	Developer Survey (RQs 2–4).
	StackOverflow Analysis (RQs 2–4)
	Threats to Validity
	Questionnaire Participants
	Questionnaire Evaluation
	Thematic Analyses
	Programming Language
	Test Instrumentation
	Triangulation
	Reproducibility and Replicability

	Results
	RQ1: Open-Source Testing
	RQ2: Stance
	RQ3: Rationale
	RQ4: Practice
	Access Modifiers in Programming Languages
	Approaches to Testing Non-Public Methods
	Tooling

	Discussion
	Further Analyses
	Summary of Findings

	Implications and Future Work
	Software Testing Education
	Behavioral-Driven Testing
	Attitudes to Coverage
	Identifying and Discouraging Testing Anti-Patterns

	Automated Techniques
	Automated Support To Replace Direct Non-Public Calls
	Refactoring Production Code Based on Problematic Tests
	Improved Automated Test Smell Detection Tools
	Automatic Test Generation and Non-Public Methods

	Developer Support
	Stricter Test Frameworks / Build Tools
	IDE support

	Conclusions
	References

