Flake It ‘Till You Make It:
Using Automated Repair to Induce and Fix Latent Test Flakiness

Owain Parry
University of Sheffield

Michael Hilton

Carnegie Mellon University

ABSTRACT

Since flaky tests pass or fail nondeterministically, without any code
changes, they are an unreliable indicator of program quality. De-
velopers may quarantine or delete flaky tests because it is often
too time consuming to repair them. Yet, since decommissioning too
many tests may ultimately degrade a test suite’s effectiveness, devel-
opers may eventually want to fix them, a process that is challenging
because the nondeterminism may have been introduced previously.
We contend that the best time to discover and repair a flaky test
is when a developer first creates and best understands it. We refer
to tests that are not currently flaky, but that could become so, as
having latent flakiness. We further argue that efforts to expose and
repair latent flakiness are valuable in ensuring the future-reliability
of the test suite, and that the testing cost is greater if latent flaki-
ness is left to manifest itself later. Using concrete examples from
a real-world program, this paper posits that automated program
repair techniques will prove useful for surfacing latent flakiness.

ACM Reference Format:

Owain Parry, Gregory M. Kapfhammer, Michael Hilton, and Phil McMinn.
2020. Flake It “Till You Make It: Using Automated Repair to Induce and Fix
Latent Test Flakiness. In IEEE/ACM 42nd International Conference on Software
Engineering Workshops (ICSEW’20), May 23-29, 2020, Seoul, Republic of Korea.
ACM, New York, NY, USA, 2 pages. https://doi.org/10.1145/3387940.3392177

1 INTRODUCTION

Flaky tests are software tests that appear to exhibit an element
of randomness in their outcome despite covering code that has
not changed [2, 3]. Developers report that such tests represent a
frequent and non-negligible problem [3]. This paper proposes a
technique, named FITTER (Flakiness Inducing TesT crEation and
Repair), that uses Automated Program Repair (APR) techniques to
expose and assist in the fixing of latent sources of test flakiness, i.e.,
those not currently manifest but that may later become so. Focused
on surfacing two critical sources of latent flakiness — test order
dependencies and test resource leaks [3, 10, 18] — the proposed tech-
nique aims to automatically generate a flakiness-inducing test (FIT)
that reveals the latent flakiness within some developer-written test

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ICSEW’20, May 23-29, 2020, Seoul, Republic of Korea

© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-7963-2/20/05....$15.00
https://doi.org/10.1145/3387940.3392177

Gregory M. Kapfhammer
Allegheny College

Phil McMinn
University of Sheffield

@pytest.mark.parametrize(
"config_dir", ["../hydra/test_utils/configs"],
)
@pytest.mark.parametrize(
"config_file, overrides, expected",
r
(None, [1, {}),
(None, ["foo=bar"], {"foo": "bar"}),
("compose.yaml", [], {"foo": 10, "bar": 100}),

("compose.yaml", ["groupl=file2"], {"foo": 20, "bar": 100}),

1,
)
class TestCompose:
def test_compose_decorator(
self, hydra_global_context, config_dir, config_file, overrides, expected
):
with hydra_global_context(config_dir=config_dir):
ret = hydra.experimental.compose(config_file, overrides)
assert ret == expected

Figure 1: An Excerpt from a Test for the Hydra Project

(DWT). We contend that APR techniques will be useful in achiev-
ing this goal. Our position is that by investigating the flakiness
surfaced by the FIT, the developer will better understand the root
cause and will thus be far better equipped to remove it during the
subsequent improvement of the DWT. After repairing the source
of test flakiness, the developer can discard the FIT or keep it as
a support for resolving future test flakiness issues. Although we
anticipate that the technique is most useful when writing new tests,
we judge that it will also be an aid to test maintainers who must
find and fix sources of test flakiness in existing test suites.

We propose to evaluate a FITTER implementation with pro-
grams created in Python since the 2019 StackOverflow Developer
Survey called it “the fastest-growing major programming language
today” [16] and Facebook reports that 21% of its infrastructure code-
base, “comprising millions of lines of code, thousands of libraries
and binaries”, is in Python [4]. Since much of the current work
on flaky tests focuses on Java programs (e.g., [1, 2, 5, 7, 10, 15]),
targeting FITTER for Python will both help to avoid overfitting
research in this field while also supporting experiments that can
identify how a programming language influences test flakiness.

2 EXAMPLE OF STATE POLLUTING TESTS

As a motivating example this paper envisages how FITTER could
exploit a latent source of flakiness in the form of an opportunity
for state pollution. The Python code in Figure 1 is an excerpt of a
test class from the open-source Facebook Research project called
Hydral. Hydra aims to provide a framework that simplifies the de-
velopment of Python programs by giving developers the facilities to
compose and override configurations. Hydra’s test suite leverages
the PyTest? framework that supports the parameterisation of an

!https://github.com/facebookresearch/hydra
Zhttps://docs.pytest.org/en/latest/

W o e

ICSEW’20, May 23-29, 2020, Seoul, Republic of Korea

overrides.append("fooooooooo=bhar")

with hydra_global_context(config_dir=config_dir):
ret = hydra.experimental.compose(config_file, overrides)
assert ret == expected

Figure 2: A FIT Generated from DWT by Inserting Line 13

individual test or a test suite. In this case, the class is parameterised
such that a single argument is provided for config_dir and four
sets of arguments are provided for config_file, overrides, and
expected. This results in four parameterised runs for each test
within the class. Since some of the arguments to these shared pa-
rameters are mutable objects (i.e., the lists for overrides), they
establish a shared state accessible to all the tests in this class.

Since any test may modify this globally shared state, there is the
potential for latent test flakiness whenever test cases inadvertently
depend on the existence of any mutable data created by a previously
run test. As in the example furnished by Figure 2, a generated FIT
may exploit this insight by transplanting a single line of code from
later in the test class into the existing DWT 3. Here, FIT modifies
overrides and, since the variable is shared amongst the other tests,
this creates a discrepancy with the expected value, thereby causing
the DWT to fail when the FIT is executed before it. In order to detect
and take advantage of such instances of improper state-sharing,
FITTER will take inspiration from previous approaches applied
to Java programs [7]. This process highlights to the developer the
potential problem of this particular shared variable, for which a fix,
in this case, is to replace the list type with an immutable tuple.

3 EXPOSING TEST FLAKINESS WITH FITTER

Without modifying the code of either the existing tests or the pro-
gram, FITTER attempts to generate a FIT that causes the DWT to
execute in a different, and potentially flaky, fashion. It will con-
struct a FIT from program statements similar to those used in the
DWT, the rest of the tests, and the program, in a style similar to
current work in the area of APR [11, 12] — but rather with the goal
of revealing latent flakiness so as to highlight repairs.

Attempting to induce flaky behaviour, FITTER will perform three
types of fitness evaluations upon a candidate FIT with respect to
some targeted DWT, following an approach in the generate-and-
validate style [12]. The first fitness evaluation considers the number
of modifying operations performed by the FIT upon mutable objects
that are also referenced by the DWT. A FIT that maximises this
property is more likely to pollute the shared state, an action com-
monly associated with test-order-related flakiness [5]. We envision
the further extension of this evaluation to also handle, for instance,
files and web sockets. The second fitness evaluation considers how
“close” assertions in the tests are to being evaluated differently (e.g.,
how close an assertion, that usually passes as true, is to being ren-
dered as false), and the third how “close” the path through the code
under test is to being different from the default. The latter of these
two would be calculated from runs before and after introducing
the candidate FIT before some targeted DWT in the test suite, the
basis of these being the traditional branch distance functions used
in search-based testing [14]. FITs that maximise these two metrics
ought to induce different behaviour during execution of the DWT
and are more likely to produce a different outcome [8].

3Link to the source code line in the GitHub repository: https://bit.ly/2TK5DWt

Owain Parry, Gregory M. Kapfhammer, Michael Hilton, and Phil McMinn

In contrast to previous methods (e.g., [1, 2, 5, 7, 18]), FITTER
automatically generates tests, using APR techniques, that act as
witnesses to latent flakiness. While prior work highlighted the vari-
ability of test coverage when executing nondeterministic tests [6, 8,
13, 15, 17], FITTER will exploit these differences to generate a FIT
that gives developers actionable insights. Although FITTER will
be evaluated using Python, the technique is generalisable to other
languages and environments, unlike previous work (e.g., [1, 2, 5]),
which carry platform-dependencies by requiring access to the com-
ponents in a run-time environment like the JVM heap. Although
prior work showed that it is time-consuming to manifest test flaki-
ness by repeatedly running tests [1, 18], FITTER will not be ham-
pered by this issue since it normally runs small portions of the test
suite containing the DWT and a FIT. Since it uses test outcomes and
coverage information to drive a search-based repair-like process
responsible for generating a FIT, it will not mislead developers by
reporting false positives about flakiness. Since we propose that the
evaluation of genetic material, including the code under test, is to
be performed, the scope of repairs is not limited to program state-
ments from existing tests (as with [15]), which may be insufficient
for resolving flakiness. Rephrasing a well-known aphorism to “flake
it ‘till you make it”, we argue that the technique proposed in this
paper represents a novel and practical approach — designed with
developer preferences in mind [9] — that will help to expose and
fix latent flakiness with methods inspired by APR. Simulating test
suite evolution by generating new tests from existing material will
offer developers a way to address flakiness before it manifests.

REFERENCES

[1] J. Bell, G. Kaiser, E. Melski, and M. Dattatreya. 2015. Efficient Dependency
Detection for Safe Java Test Acceleration. In Proc. of ESEC/FSE.

[2] J.Bell, O.Legunsen, M. Hilton, L. Eloussi, T. Yung, and D. Marinov. 2018. DeFlaker:
Automatically Detecting Flaky Tests. In Proc. of ICSE.

[3] M. Eck, F. Palomba, M. Castelluccio, and A. Bacchelli. 2019. Understanding Flaky
Tests: The Developer’s Perspective. In Proc. of ESEC/FSE.

[4] Facebook. 2016. Python in Production Engineering, https://code.fb.com/
production-engineering/python-in-production-engineering.

[5] A.Gambi, J. Bell, and A. Zeller. 2018. Practical Test Dependency Detection. In
Proc. of ICST.

[6] Z.Gao, Y. Liang, M. B. Cohen, A. M. Memon, and Z. Wang. 2015. Making System
User Interactive Tests Repeatable: When and What Should We Control?. In Proc.
of ICSE.

[7] A. Gyori, A. Shi, F. Hariri, and D. Marinov. 2015. Reliable Testing: Detecting
State-Polluting Tests to Prevent Test Dependency. In Proc. of ISSTA.

[8] M. Hilton, J. Bell, and D. Marinov. 2018. A Large-Scale Study of Test Coverage
Evolution. In Proc. of ASE.

[9] P.S.Kochhar, X. Xia, and D. Lo. 2019. Practitioners’ Views on Good Software
Testing Practices. In Proc. of ICSE-SEIP.

[10] W.Lam, R. Oei, A. Shi, D. Marinov, and T. Xie. 2019. IDFlakies: A Framework for
Detecting and Partially Classifying Flaky Tests. In Proc. of ICST.

[11] C. Le Goues, M. Dewey-Vogt, S. Forrest, and W. Weimer. 2012. A Systematic
Study of Automated Program Repair: Fixing 55 out of 105 Bugs for $8 Each. In
Proc. of ICSE.

[12] K. Liu, A. Koyuncu, D. Kim, and T. F. Bissyandé. 2019. TBar: Revisiting Template-
Based Automated Program Repair. In Proc. of ISSTA.

[13] P.Marinescu, P. Hosek, and C. Cadar. 2014. Covrig: A Framework for the Analysis
of Code, Test, and Coverage Evolution in Real Software. In Proc. of ISSTA.

[14] P. McMinn. 2004. Search-Based Software Test Data Generation: A Survey. Soft-
ware Testing, Verification and Reliability (2004).

[15] A. Shi, W. Lam, R. Oei, T. Xie, and D. Marinov. 2019. iFixFlakies: A Framework
for Automatically Fixing Order-Dependent Flaky Tests. In Proc. of ESEC/FSE.

[16] StackOverflow. 2019. Developer Survey Results, https://insights.stackoverflow.

com/survey/2019.

H. Zhai, C. Casalnuovo, and P. Devanbu. 2019. Test Coverage in Python Programs.

In Proc. of MSR.

S. Zhang, D. Jalali, J. Wuttke, K. Muslu, W. Lam, M. D. Ernst, and D. Notkin. 2014.

Empirically Revisiting the Test Independence Assumption. In Proc. of ISSTA.

(17

[18

