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ABSTRACT
Testability transformations are source-to-source program transfor-
mations that are designed to improve the testability of a program.
This paper introduces a novel approach in which transforma-
tions are used to improve testability of a program by generating
a pseudo-oracle. A pseudo-oracle is an alternative version of
a program under test whose output can be compared with the
original. Differences in output between the two programs may
indicate a fault in the original program. Two transformations
are presented. The first can highlight numerical inaccuracies in
programs and cumulative roundoff errors, whilst the second may
detect the presence of race conditions in multi-threaded code.

Once a pseudo-oracle is generated, techniques are applied from
the field of search-based testing to automatically find differences in
output between the two versions of the program. The results of an
experimental study presented in the paper show that both random
testing and genetic algorithms are capable of utilizing the pseudo-
oracles to automatically find program failures.

Using genetic algorithms it is possible to explicitly maximize
the discrepancies between the original programs and their pseudo-
oracles. This allows for the production of test cases where the ob-
servable failure is highly pronounced, enabling the tester to estab-
lish the seriousness of the underlying fault.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging; I.2.8
[Artificial Intelligence]: Problem Solving, Control Methods, and
Search—Heuristic Methods

General Terms
Experimentation, Measurement, Performance

Keywords
Search-based software testing, oracle, pseudo-oracle, non-testable
program, program transformation, testability transformation
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1. INTRODUCTION
Software testing is an extremely costly and laborious process,

and as such its automation continues to be a burgeoning interest to
software engineering researchers.

Search-based testing [27] is one approach to automating soft-
ware testing by reformulating the problem as a fitness function, the
optima of which is sought by optimizing search techniques such
as genetic algorithms. Search-based testing has been applied to a
number of areas, including functional [5] and non-functional [42]
testing, mutation testing [3, 21], exception testing [39], finite state
machine testing [11], interaction testing [8], regression testing [44],
stress testing [4] and test case prioritization [25, 40]. The majority
of work to date, however, has concentrated on automatic test data
generation, and structural test data generation in particular [32, 23,
36, 26, 41, 38, 31, 18, 19].

Although it is possible to generate inputs for certain classes of
program using search-based techniques, the problem of automati-
cally determining whether the corresponding outputs are correct re-
mains a significant problem; one that is not limited to search-based
testing but of major concern for the entire field of software test-
ing. This is because an oracle, a mechanism for checking that the
output of a program is correct given some input (e.g. via a formal
specification), is seldom available.

The frequent non-existence of an oracle threatens to undo much
of the progress made in automating test data generation, because a
human tester is required to perform the task manually. The prac-
tical effort in doing this is potentially as great as if the tester had
manually generated inputs to the program in the first place. For
some programs, it may represent an impossible or highly imprac-
tical task. Such programs were referred to by Weyuker as non-
testable [43].

Davis and Weyuker [10] proposed the use of a ‘pseudo-oracle’ to
alleviate this problem. A pseudo-oracle is a program that has been
produced to perform the same task as its original counterpart. The
two programs, the original and its pseudo-oracle, are run using the
same input and their respective outputs compared. Any discrep-
ancy may represent a failure on the part of the original program
or its pseudo-oracle. Traditionally the pseudo-oracle is written in-
dependently, perhaps by a different programming team. However,
writing programs is itself a costly activity, and producing multiple
versions more so.

This paper proposes the automatic generation of pseudo-oracles
from a program under test through the use of program transforma-
tions. In the context of testing, program transformations used to
aid testing or make a program more ‘testable’ are more commonly
referred to as testability transformations [16, 17]. The testability
transformations proposed in this paper transform an aspect of the
program under test into an alternative version, with the intention



of being able to compare outputs from the two versions so as to
uncover potential failures in the original program.

Even if a pseudo-oracle can be generated using a testability
transformation, it is useless if differences in output cannot be
easily found. This paper therefore proposes to utilize the power of
meta-heuristic search-based testing techniques to generate inputs
that result in such discrepancies. From attempting to maximize
differences in output, the tester can be provided with an indication
of the potential seriousness of the underlying fault. Since minor
inaccuracies may be tolerable for the application concerned, the
size of discrepancy found may affect the decision as to whether the
underlying fault is one that is worth fixing.

Two pseudo-oracle testability transformations are presented.
The first transformation can be used to check programs containing
numerical calculations. Numerical calculations and numerical type
conversions are a common source of error in computer programs
that can go easily undetected during testing. The explosion of the
Ariane 5 rocket in 1996 was caused by arguably one of the most
high-profile and expensive bugs in history, costing an estimated
370 million US dollars [12]. The on-board control software, in-
cluded a program statement which assigned a 64-bit floating point
value to a 16-bit integer. However, after launch, the floating point
variable contained a value too large to be converted to the integer
type, the cascading effect of which resulted in the destruction of
the craft. In addition to problems of type conversion, the IEEE
standard floating point type is notoriously unreliable [13], whilst
cumulative rounding errors remain another common source of
error in programs that have been exploited for fraudulent financial
gain [22] in the past.

The second transformation involves multi-threaded computation.
The order of thread execution can potentially have an impact on the
integrity of data and the outputs from programs. The transforma-
tion imposes serialization constraints on blocks of program state-
ments, therefore any difference between the output of the program
under test and the pseudo-oracle produced by this transformation
may indicate the presence of a race condition.

The primary contributions of this paper are as as follows:

1. The presentation of two program transformations (testability
transformations) for the production of two different types of
pseudo-oracle.

2. An approach which uses search-based testing techniques to
maximize the difference in output between a program and its
pseudo-oracle.

3. The results of an experimental study which applies the search-
based approach to find differences between a program and the
pseudo-oracles produced by the testability transformations.
The results show that both random testing and genetic algo-
rithms are capable of revealing differences in behaviour; whilst
the genetic algorithm can maximize the difference further,
and hence demonstrate the potential effects of any underlying
faults.

This paper is organized as follows. Section 2 provides back-
ground information on search-based testing, testability transforma-
tions and pseudo-oracles. Section 3 presents two pseudo-oracle
producing testability transformations, whilst Section 4 introduces
the approach for finding failures using search-based testing tech-
niques. Section 5 presents the results of the experimental study
performed using search-based techniques with the pseudo-oracles
produced. Section 6 discusses related work whilst Section 7 con-
cludes and relates future work to be undertaken.

2. BACKGROUND
Search-based testing automates a testing activity, such as test

data generation, by restating the problem as a fitness function, the
optimum of which is sought by a meta-heuristic search technique,
e.g. a genetic algorithm. Structural test data generation has been by
far the most studied form of search-based testing [27]. The search
space is formed from the input domain of the program under test,
and the goal of the search is to find test data to cover a structure; for
example a specific program branch or statement. If, for example,
the execution of a specific statement requires a condition in the pro-
gram a == b to be evaluated as true, the fitness function is |a − b|.
This fitness function is to be minimized, thus, the lower the output
of this formula, the closer the values of a and b are to one another,
and the ‘closer’ the predicate is to being satisfied.

The fitness function provides the search with a sense of ‘direc-
tion’ for navigating a potentially very large input domain. If for ex-
ample a = 5 and b = 10, the search knows by virtue of fitness val-
ues assigned to input vectors that a small increase of a is a ‘good’
move, which takes it closer to the optima and the required test data;
whereas increasing b is a ‘bad’ move, because the resulting fitness
value is worse.

For certain types of program structure, the fitness function does
not offer any guidance to search. For example, when a boolean
‘flag’ variable is a branching condition, there are only two fitness
values representing the entire input domain; one value where the
flag is true, and the other where the flag is false. With such coarse
fitness information a meta-heuristic search will become random.
Harman et al. [16, 17] introduced a type of program transformation
called a testability transformation to address this problem. The pur-
pose of a testability transformation is to change a program in order
to make it more ‘testable’, in this case easing the process of auto-
matic test data generation by removing the flags that are obstructing
the search process. In the transformed version of the program, the
flag is replaced by the conditions that lead to the flag becoming true
or false. When the fitness function is based on these flag-free con-
ditions, useful fitness information can be retrieved for guiding the
search to the required inputs. Once test data has been successfully
generated, the transformed program is discarded; its purpose as an
intermediary for improving the testing process served.

Although search-based testing can generate test data, an oracle
is seldom available. An oracle is used to verify that the outputs
produced by the inputs are the correct ones. A human is required
to perform the role, a task which is almost as time consuming and
costly as generating test data in the first place. For some programs
this is almost an impossible task, programs which Weyuker labelled
‘non-testable’ [43]. Davis and Weyuker suggested the creation of a
pseudo-oracle, an alternative program written to perform the same
task. The alternative program is pseudo in the sense that it does not
guarantee that the outputs of the original program are ‘wrong’, but
where the pseudo-oracle and the original program differ, the causes
should at least be investigated further, because at least one of the
programs must be faulty.

Writing a program multiple times is itself costly. This paper
introduces testability transformations to automatically generate
pseudo-oracles from certain classes of program. Search-based
techniques are then used to try and generate inputs that cause the
program and its pseudo-oracle to give different outputs.

3. PSEUDO-ORACLE GENERATION VIA
TESTABILITY TRANSFORMATION

This section details two testability transformations used in this
paper to generate two types of pseudo-oracle.



Using the double primitive type Using the java.math.BigDecimal class
Java statement: System.out.println(0.1 + 0.1 + 0.1); System.out.println(new BigDecimal("0.1").add(

new BigDecimal("0.1")).add(

new BigDecimal("0.1")));

Output: 0.30000000000000004 0.3

Figure 1: Comparing floating-point arithmetic in Java (version 6) using double compared to BigDecimal

3.1 Numerical calculations
Numerical errors can subtly manifest themselves into programs

in a variety of ways with potentially disastrous consequences. In
Java, the int and long integer types are subject to silent overflow
errors [20]. The special error values INF (infinity) and NaN (‘not a
number’), returned by floating-point operations, can also propagate
through a program without exceptions being thrown. Further prob-
lems can arise as a result of using floating-point representations
conforming to the IEEE standard, used by both C and Java, which
is incapable of representing certain numbers of finite decimal repre-
sentation, such as 0.1 [13]. For example in Java, the operation 0.1
+ 0.1 + 0.1 yields ‘0.30000000000000004’ rather than simply
0.3 (Figure 1). If allowed, resulting inaccuracies can accumulate
into serious discrepancies during the course of the program.

Small numerical errors can also accumulate into larger errors
through premature rounding. This type of fault is present in the
class of Figure 2a, which is intended to represent a bank account1.
The programmer is aware of the perils of representing the amount
in the account using a double variable, and instead decides to
use the long integer type to represent the amount in the account
as pennies. The problems begin when interest is added to the
account. Values added in the addInterest method are silently
cast back to the long type of the amount variable, with fractional
penny amounts inadvertently rounded down in the process. These
fractional differences may have the long term effect of a customer
losing out on compound interest. For example if £1,000 were
deposited at an interest rate of 25%, the account is a penny down
after three of applications of addInterest, and over £2 out
after the 25th. Despite the amount not being stored as a double,
the class still suffers from the occasional inaccuracies resulting
from the intermediate implicit double calculation involving the
interestRate variable in the addInterest method.

The Convert-to-BigDecimal Transformation
The BigDecimal class in Java, which resides in the java.math
package [46], can alleviate some of the above problems, and is
the basis for the pseudo-oracle transformation proposed here.
BigDecimal objects are capable of accurately representing num-
bers of finite decimal representation with arbitrary precision.
Arithmetic is performed by using class methods (e.g. the add,
subtract and multiply methods). When faced with illegal op-
erations, the class will throw exceptions rather than using special
error values, which will terminate the program (unless handled
appropriately).

The cost behind using BigDecimal is verbose code (Figure 1)
and a more inefficient program. The verbosity of code in partic-
ular presents readability and inevitable maintenance issues. Thus,
BigDecimal may not be a natural choice if speed or ease of read-
ability and maintenance is more important than program accuracy.
Or, the developers may believe that accuracy is not an issue; and
thus may be unaware of potential and possibly very subtle faults
in their code that may be brought to their attention by tests using
a pseudo-oracle. Of course, maintenance and code readability are
not issues for testability transformations, which are automatically
generated and thrown away when testing is complete.
1Example adapted from Sedgewick and Wayne [37]

The Convert-to-BigDecimal transformation produces a pseudo-
oracle for unit testing by taking a Java class and replacing variables
of primitive numerical types with instances of the BigDecimal
class. Operations involving the original variables (e.g. +, -, * and
so on) are replaced with the appropriate method invocations (i.e.
add, subtract, multiply etc.) on the BigDecimal object.

In accordance with these rules, the BankAccount class of Fig-
ure 2a can be automatically transformed to the class of Figure 2b,
BankAccount BigDecimal, a more accurate version that will be
used in the experimental study presented in Section 5 as a pseudo-
oracle.

3.2 Race Conditions
A race condition exists in a piece of code when the order of ex-

ecution of two or more threads affects the value of a variable in a
program or an output.

In the BankAccount example, a race condition exists on the
value of the amount instance variable2. Suppose the account has
£500 in it. An execution thread attempts to withdraw £400, satisfy-
ing the ‘amount > withdraw’ condition appearing in the if state-
ment of the withdraw method. Before the condition is fully evalu-
ated, however, a second execution thread invocates the method with
an instruction to withdraw a further £400. Since the first thread
has not actually deducted its amount from the account, the second
thread also passes the same condition, as at this point there are still
adequate funds in the account. Both threads are then free to con-
tinue to execute the true branch of the if statement, withdrawing
a combined figure of £800. This leaves the account overdrawn,
and in an illegal state, since the class is programmed such that the
account is clearly not supposed to be in deficit.

The solution to this problem is to serialize access to the
method involving the race condition, so that a thread can not
execute it at the same time as another. This is achieved using the
synchronized keyword in Java (Figure 2c). This is the basis of
the Add-Synchronization pseudo-oracle transformation.

Add/Remove-Synchronization Transformation
The Add-Synchronization pseudo-oracle transformation simply
takes a class and adds the synchronization keyword to its
methods. In Figure 2, the BankAccount class (part a of the figure)
is transformed to the BankAccount Synchronized class of part
c. If the pseudo-oracle produces a different result to the original in
the presence of threaded code, a race condition may be present.

The inverse of this transformation (remove-synchronization)
may also be useful in determining whether the synchronization
points added to a class are strictly necessary. Synchronization is
an inherent bottleneck in code, since threads must wait for other
threads to release their lock on an object, method or block in the
code. Synchronization can also be responsible for deadlocking
issues. A remove-synchronization transformation may help deter-
mine whether these locks are actually needed in practice. A further
usage of the add/remove-synchronization transformation may also
be the dynamic validation of the results of static model checkers.

2Example adapted from Oaks and Wong [33]



public class BankAccount {

private long amount;

private int interestRate;

public BankAccount() {

amount = 0;

interestRate = 0;

}

public void deposit(long depositAmount) {

amount += depositAmount;

}

public void withdraw(long withdrawalAmount) {

if (amount > withdrawalAmount)

amount -= withdrawalAmount;

}

public void addInterest() {

amount *= (1 + interestRate / 100.0);

}

public void setInterestRate(int newRate) {

if (newRate >= 0 && newRate <= 25)

interestRate = newRate;

}

public int getInterestRate() {

return interestRate;

}

public long getAmount() {

return amount;

}

}

Figure 2: The BankAccount Java class and two
pseudo-oracles generated by two different testability
transformations

(a) The original version of the class. Aware of prob-
lems with the double type, the programmer uses the
long type to store amounts in pennies. This can lead
to a cumulative rounding error when interest is cal-
culated

(b) Pseudo-oracle produced by the Convert-to-
BigDecimal transformation. The pseudo-oracle uses
BigDecimal for the instance variables of the class,
and is capable of exposing rounding error problems

(c) Pseudo-oracle produced by the Add-
Synchonization transformation. In the pseudo-oracle
all methods are marked as synchronized, enabling
exposure of race conditions where the class is used
in a multi-threaded environment

(a) Original version

import java.math.BigDecimal;

public class BankAccount_BigDecimal {

private BigDecimal amount;

private BigDecimal interestRate;

public BankAccount_BigDecimal() {

amount = new BigDecimal("0");

interestRate = new BigDecimal("0");

}

public void deposit(BigDecimal depositAmount) {

amount = amount.add(depositAmount);

}

public void withdraw(BigDecimal withdrawalAmount) {

if (amount.compareTo(withdrawalAmount) > 0)

amount = amount.subtract(withdrawalAmount);

}

public void addInterest() {

amount = amount.multiply(interestRate.divide(

new BigDecimal("100")).add(new BigDecimal("1")));

}

public void setInterestRate(BigDecimal newRate) {

if (newRate.compareTo(new BigDecimal("0")) >= 0

&& newRate.compareTo(new BigDecimal("25")) <= 0)

interestRate = newRate;

}

public BigDecimal getInterestRate() {

return interestRate;

}

public BigDecimal getAmount() {

return amount;

}

}

public class BankAccount_Synchronized {

private long amount;

private int interestRate;

public BankAccount_Synchronized() {

amount = 0;

interestRate = 0;

}

public synchronized void deposit(long depositAmount) {

amount += depositAmount;

}

public synchronized void withdraw(long withdrawalAmount) {

if (amount > withdrawalAmount)

amount -= withdrawalAmount;

}

public synchronized void addInterest() {

amount *= (1 + interestRate / 100.0);

}

public synchronized void setInterestRate(int newRate) {

if (newRate >= 0 && newRate <= 25)

interestRate = newRate;

}

public synchronized int getInterestRate() {

return interestRate;

}

public synchronized long getAmount() {

return amount;

}

}

(b) Convert-to-BigDecimal transformation (c) Add-synchonization transformation



4. FAILURE DISCOVERY VIA SEARCH-
BASED TECHNIQUES

Using the pseudo-oracles, this paper proposes to apply search-
based testing with the intent of answering the following questions:

1. Does a fault exist? When executed with the same input, does
the output from the original and its pseudo-oracle transforma-
tion diverge? If yes, the discrepancy could represent a failure
in the original program and thus the presence of a fault.

2. If so, how severe is it? Whilst discovering a failure is gener-
ally sufficient for a test to be deemed successful, severity of the
fault is also an important concern in practice. Any indication of
fault severity may help prioritize bug fixes that may need to be
carried out. If the failure that results from the fault is relatively
minor, the bug might not even be worth fixing. Some degree of
numerical inaccuracy, for example, may be tolerable for the ap-
plication concerned. Search-based testing in combination with
a pseudo-oracle may be able to assist in answering questions of
severity by maximizing differences in output between the two
versions of a program.

Existing structural test data generation techniques could be used
in attempt to uncover differences, however it is unlikely that the
resulting test data would be able to ‘maximize’ the effect of a po-
tential fault, and thus demonstrate its severity. For example, cumu-
lative rounding implies a certain amount of repetition, yet branch
coverage test data is generated for a loop if it is entered once or not
at all. Likewise, race conditions are not represented by structures
that the search must attempt to ‘cover’.

Therefore, in this paper, the search attempts to generate test data
that attempts to expose the maximum difference in output between
the two programs in order to demonstrate fault severity (conse-
quently allowing a programmer to decide if the fault is worth fix-
ing). The fitness function is responsible for evaluating how ‘differ-
ent’ the outputs are. If the outputs are identical for some input, its
fitness value is zero.

The pseudo-oracle transformations presented in this paper oper-
ate at the level of a Java class, ‘output’ is considered to be the val-
ues returned by instance methods of the class. Therefore, difference
in output is considered to be the difference in the return values of
‘accessor’ methods for an object of the original class and the trans-
formed version of the class, given an identical method call sequence
and associated parameter values. In accordance with this, fitness
is computed using the following formula for the BankAccount
example of Figure 2:

f itness =
|orac.getAmount() − orig.getAmount()|

+|orac.getInterestRate() − orig.getInterestRate()| (1)

where orac is an instance of the transformed pseudo-oracle class
and orig is an instance of the original BankAccount class.

To the casual observer, it may seem a strange choice to include
all accessor methods in the fitness function for BankAccount.
getInterestRate, for example, will not have an effect on fitness
with the Convert-to-BigDecimal transformation. However, in
general, this would not be known a priori.

The search space is not just the input domain of an individual
method or function, as is usually the case in search-based testing
[36, 26, 41, 18, 19], but rather sequences of calls to objects that
are required for testing the class, such as those generated in the
object-oriented approach of Tonella [38]. The scheme applied for
experiments in this paper is detailed in the next section.

5. EXPERIMENTAL STUDY
The experimental study took the BankAccount example pre-

sented in Figure 2a, and applied random search and a genetic al-
gorithm to find method call sequences which maximized the fitness
function of Equation 1. The call sequences are applied first to an
object constructed from the class under test (i.e. BankAccount),
and then to an object of its transformed pseudo-oracle class (i.e.
BankAccount BigDecimal or BankAccount Synchronized).

The exact representation of the call sequence optimized by the
search methods is specific to each pseudo-oracle (non-threaded and
threaded) and is detailed in the sections below.

The random search simply generated 10,000 call sequences at
random. The genetic algorithm used a population size of 100, and
tournament selection for reproduction with a tournament size of
2. Discrete recombination was used for crossover, with Gaussian
mutation applied at a rate pm =

1
len (where len refers to the length

of the individual’s chromosome). Reinsertion was applied using an
elitist strategy; with 90% of the least-fit individuals of the previous
generation replaced with the best 90% of the offspring.

Both algorithms were terminated after 10,000 call sequence
evaluations, i.e. 10,000 executions of the original program and
its transformed pseudo-oracle counterpart. Each experiment
performed was repeated 20 times using distinct random seeds.

5.1 Convert-to-BigDecimal Transformation
Four versions of this experiment were carried out using each

search method. Two fixed call sequence sizes were optimized by
each search; a length of 10 and a length of 20. Each individual
method call in the sequence is represented as a pair of integer num-
bers (m, p), where 0 ≤ m ≤ 3 is an identification number that refers
to one of the four methods to be called (the getInterestRate
and getAmount methods, which do not mutate the state, were not
included), whilst p, 0 ≤ p ≤ 1000, represents an optional param-
eter to the method. In addition, two versions of fitness assessment
were used. In the first, the fitness function was computed after each
method call to the program under test and its pseudo-oracle, with
the maximum value used as the final fitness value for the entire call
sequence. In the second, the fitness function was computed once,
at the end of the sequence.

Figure 3a and 3b plot search progress for call sequence lengths
of 10 and 20 respectively. The graphs plot ‘average best fitness’
against the number of fitness evaluations. Average best fitness is
simply the average of the best fitness values obtained by each of the
20 trials of the search technique at a given point in the search pro-
cess. The plots reveal that the decision as to where fitness should
be computed had very little bearing on the end result, with the same
type of search (random or genetic algorithm) performing in a sim-
ilar fashion. In all cases, the genetic algorithm outperformed ran-
dom search, and perhaps unsurprisingly the longer call sequence
allowed for higher fitness values (i.e. higher numerical discrepan-
cies) to be found for both types of search.

Table 1 shows the maximum, minimum and average fitness val-
ues obtained by the end of each search over each of the 20 trials,
along with their standard deviation. The table shows a large dif-
ference in the maximum and minimum fitness values over the 20
trials and a high standard deviation. It would therefore seem that
the search landscape may not have been particularly smooth, with
both searches making progress through sequences of ‘fortuitous’
moves that allowed them to hop between local optima or navigate
off plateaux.

Overall, the maximum fitness found by the genetic algorithm
was 11,317. The amount instance variable is the single source of
numerical error in the class, meaning that the search was able to



(a) Convert-to-BigDecimal pseudo-oracle, sequence length = 10 (b) Convert-to-BigDecimal pseudo-oracle, sequence length = 20
(The lines for random search appear one on top of the other)

(c) Add-synchronization pseudo-oracle, sequence length = 10 (d) Add-synchronization pseudo-oracle, sequence length = 20

Figure 3: Average best fitness over each set of 20 trails involving each pseudo-oracle transformation and experimental setup

uncover a discrepancy of £113 between accounts represented by
the original class and the pseudo-oracle. The sequence that the
genetic algorithm found achieved this large discrepancy by inter-
esting means. In essence, a small error (a fraction of a penny) is
initially induced between the two versions. The sequence begins
by making a deposit of 701p, setting the interest rate set to 22%,
and then adding interest. The transformed version now has 855.22p
whilst the original has exactly 855p. Next, a method call is made to
withdraw all the money from the account. That is, the withdraw
method is invoked with a parameter that is equal to the number of
complete pennies (855) in the account. Because the transformed
version has a fraction of a penny more in the account, the amount
in the account exceeds the withdrawal amount, and so the request
is granted. In the original class, however, the amount in the account
is exactly the same as the withdrawal amount, and the request is not
granted. The two accounts now differ by 855p - the original hav-
ing 855p exactly and the transformed version having 0.22p. Fur-
ther method calls in the sequence then call addInterest. These
calls will not result in much interest being added to the amount in
the transformed version, with the amount increasing rapidly for the
original version, resulting in a final difference of £113.

5.2 Add-Synchronization Transformation
In order to experiment with the Add-Synchronization transforma-

tion, two execution threads were created to act simultaneously on
the objects created from the original BankAccount class and the
BankAccount Synchronized pseudo-oracle.

Two fixed call sequence sizes were used, one of 10 method calls
per thread, and another of 20 calls per thread. Each method call is
represented as a triple (m, p,w), with m and p corresponding to a
method number and a parameter as for the Convert-to-BigDecimal
experiment; whilst w represents a number of milliseconds the

thread should wait before proceeding to the next call. The overall
sequence is arranged such that the first half corresponded to method
calls for the first thread, with the second half reserved for the sec-
ond thread. The two threads executed their call sequences simulta-
neously, with both first acting on the instance of BankAccount and
then on the instance of BankAccount Synchronized. As calls to
the program under test and pseudo-oracle were not performed in
a discrete fashion, as for the Convert-to-BigDecimal experiment,
fitness was solely measured at the end of each call sequence.

Figure 3c and 3d plot search progress on a logarithmic scale,
with the genetic algorithm clearly outperforming random search.
Significant differences in output were found, as further recorded
through maximum fitness values reported in Table 1. Again, a high
variance was found amongst the 20 repetitions of the experiments,
perhaps indicating again that the search landscape was far from
smooth, but nonetheless conducive to the discovery of large dis-
crepancies, particularly in the case of the genetic algorithm.

5.3 Conclusions from the Experimental Study
The results of the above experiments show that search-based

techniques are indeed capable of finding differences in output be-
tween a program under test and the pseudo-oracle transformations
detailed in this paper, revealing failures caused by the faults present
in the BankAccount class, which were originally discussed in Sec-
tion 3. The failures could also be accentuated by the genetic al-
gorithm. This may provide the programmer with an indication of
fault severity. This is useful information when a degree of inaccu-
racy may be tolerable for the application concerned, or, bug fixes
need to be prioritized. Given the variance of the results, it would
seem that the fitness landscape is not particularly smooth, with ‘for-
tuitous’ jumps sometimes required for the search to make progress.
This is an issue for future work.



Table 1: Minimum, maximum and average fitness found using each pseudo-oracle transformation in each experimental setup
Sequence length = 10 Sequence length = 20

Min Max Average Standard Min Max Average Standard
Deviation Deviation

Pseudo-oracle generated by the Convert-to-BigDecimal transformation
Fitness assessed after each call
Random 2 554 31 120 9 970 500 344
Genetic Algorithm 3 1,439 230 420 39 11,317 2,690 344
Fitness assessed at end of sequence
Random 2 554 31 120 9 966 450 344
Genetic Algorithm 3 1,436 230 420 39 11,317 2,541 344

Pseudo-oracle generated by the Add-Synchronization transformation
Random 1,420 3,835 2,228 717 2,914 19,386 9,144 4,158
Genetic Algorithm 4,340 75,020 32,763 18,039 71,408 5,434,587 1,699,271 1,269,800

6. RELATED WORK
The idea of a pseudo-oracle was first introduced by Davis and

Weyuker [10] as a means of tackling non-testable programs [43],
i.e. those without an oracle or involving insurmountable difficulty
in checking the correctness of outputs. The pseudo-oracle was in-
tended to be an alternative version of the program produced inde-
pendently, e.g. by a different programming team or written in a
different programming language. The premise of producing mul-
tiple versions of a program was used prior to this in fault-tolerant
computing, where it was referred to as multi- or N-versioning [1, 2].
In this approach a highly critical piece of software would be imple-
mented in multiple ways and executed in parallel. Where the out-
puts differed, a ‘voting’ mechanism was proposed to decide which
output would be used.

Metamorphic testing [6, 45] is an alternative approach to the or-
acle problem that does not involve multiple implementations of a
program. In metamorphic testing, future outputs are predicted us-
ing knowledge of previous outputs and the use of a series of meta-
morphic relations which are derived from properties inherent in the
program under test. Metamorphic testing differs from the approach
presented in this paper, since it is past outputs from the program
that are ‘transformed’, as opposed to the program itself. Clark and
Hierons have investigated the possibility of combining metamor-
phic testing with search-based approaches [7].

It is interesting to relate the idea of producing a pseudo-oracle
via program transformation to mutation testing [34]. In some as-
pects the transformations presented in this paper could be viewed
as higher-order mutants [21]. However, the intention behind using
transformations to generate pseudo-oracles is not ostensibly to in-
troduce faults, as the pseudo-oracle is intended to fulfill the same
specification as the original. Conversely, the pseudo-oracle is not
intended to be an equivalent mutant [35] either. If equivalence were
always preserved, the technique would be useless, as there would
never be a difference in output, and failures would never be discov-
ered.

The idea of using a program transformation to improve the testa-
bility of a piece of code was first introduced by Harman et al. [16,
17]. Testability transformations have traditionally been used to im-
prove test data generation [15]. The transformation replaces the
program under test, but the test data produced is still adequate for
the original program. Recently McMinn et al. [30, 29] and Korel
et al. [24] have proposed different types of testability transforma-
tions categorized as probabilistic transformations by Harman [14].
Here, the transformation is not guaranteed to improve the test data
generation process, but may nevertheless do so in many situations,
as shown through empirical studies.

In a previous workshop abstract [28], McMinn proposed a
probabilistic form of transformation called a co-testability trans-
formation, which is intended to work in conjunction with the
original program rather than instead of it (and in conjunction with
other transformations if available). The pseudo-oracles generated
in the present paper are a type of co-testability transformation.
The co-testability transformation abstract presented a variant of
the Convert-to-BigDecimal transformation. For the particular
examples discussed in the abstract, random search and genetic
algorithms were able to uncover discrepancies in program output
between the original and transformed version of the program, how-
ever genetic algorithms were unable to maximize discrepancies
any more than random search due to the choppy and flat nature of
the fitness landscapes for the particular programs involved.

The initial ideas behind search-based testing emerged in the 70s,
with the seminal work of Miller and Spooner who used numeri-
cal maximization techniques to generate test data for path coverage
[32]. These ideas went largely ignored until Korel developed them
further in 1990 [23]. Since then fitness functions have been devel-
oped for different types of structural coverage, e.g. branch coverage
[36, 26, 41], different types of programming paradigm, e.g. object-
oriented languages [38] as well as different forms of search tech-
nique, such as genetic algorithms [36, 26, 41, 38, 18, 19]. Search-
based testing has also been applied to many other forms of testing
[5, 42, 3, 21, 39, 11, 8, 44, 4, 25, 40]. This is the first work, how-
ever, that has applied search-based techniques to discover failures
using pseudo oracles. It is also the first work that has used search-
based testing techniques as a differencing tool in order to discover
where the output from two programs varies.

7. CONCLUSIONS AND FUTURE WORK
This paper has introduced testability transformations for gener-

ating pseudo-oracles. Pseudo-oracles can be used in combination
with search-based testing techniques to automatically find failures
and maximize the effects of an underlying fault in a program un-
der test. ‘Maximization’ of a failure helps give an indication of
fault severity, since a degree of inaccuracy may be tolerable for
the application concerned. Severity information is also useful for
prioritizing work on bug fixes.

An experimental study showed the effectiveness of the approach,
in which random testing and a genetic algorithm were able to high-
light failures of a numerical and synchronous nature. With respect
to maximizing fault severity, the best results were obtained with the
genetic algorithm. The results imply, however, that the fitness land-
scapes produced by the fitness function were not smooth. Improve-
ments may be made by incorporating branch distance calculations



used in search-based structural testing into the fitness function [27],
so as to guide the search to the execution of individual statements
that have been especially transformed for generation of the pseudo-
oracle. This may allow variations in output to be found in a more
effective fashion.

Future work also intends to discover new forms of pseudo-oracle
that can be generated using testability transformations. The use
of search-based techniques as a tool to discover differences in
behaviour between two different versions of a program may also
have further applications; for example the evaluation of different
programming approaches on non-functional requirements (such as
timing, heat generation or power usage in an embedded controller);
evaluating migration strategies and different choices of API; or
improved testing of the integrity of automated refactorings [9].
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