Empirical Evaluation of a Nesting Testability
Transformation for Evolutionary Testing

PHIL MCMINN

University of Sheffield
DAVID BINKLEY

Loyola College in Maryland
and

MARK HARMAN

King's College London

Evolutionary testing is an approach to automating test data generation that uses an evolutionary
algorithm to search a test object’s input domain for test data. Nested predicates can cause
problems for evolutionary testing, because information needed for guiding the search only becomes
available as each nested conditional is satisfied. This means that the search process can over-fit
to early information, making it harder, and sometimes near impossible, to satisfy constraints that
only become apparent later in the search. The paper presents a testability transformation that
allows the evaluation of all nested conditionals at once. Two empirical studies are presented. The
first study shows that the form of nesting handled is prevalent in practice. The second study
shows how the approach improves evolutionary test data generation.

Categories and Subject Descriptors: D.2.5 [Software Engineering]: Testing and Debugging—
Testing Tools; 1.2.8 [Artificial Intelligence]: Problem Solving, Control Methods, and Search—
Heuristic Methods

General Terms: Verification, Algorithms, Experimentation, Measurement, Performance

Additional Key Words and Phrases: Evolutionary testing, test data generation, testability trans-
formation, search-based software engineering

Authors’ addresses: Phil McMinn, University of Sheffield, Department of Computer Science,
Regent Court, 211 Portobello Street, Sheffield, S1 4DP, UK. Email: p.mcminn@dcs.shef.ac.uk
David Binkley, Loyola College, 4501 North Charles Street, Baltimore, MD 21210-2699, USA.
Email: binkley@cs.loyola.edu Mark Harman, CREST, King’s College, Strand, London, WC2R
2LS, UK. Email: mark.harman@kcl.ac.uk

This work was supported as follows. Phil McMinn received support from DaimlerChrysler Re-
search & Technology. David Binkley is supported by National Science Foundation grant CCR-
0305330. He is also jointly supported with Mark Harman by EPSRC grant EP/F010443. Mark
Harman is further supported in part by EPSRC grants EP/F012535, EP/E002919, EP/D050863,
GR/T22872 and GR/S93684 and by the EU-funded project EvoTest.

Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright /server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.

© 20YY ACM 1049-331X/YY/00-0001 $5.00

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, 20YY, Pages 1-26.



2 . Phil McMinn et al.

1. INTRODUCTION

The application of metaheuristic search techniques, for example evolutionary al-
gorithms, to the automatic generation of software test data has been shown to be
an effective approach for functional [Jones et al. 1995; Tracey et al. 1998a; Tracey
2000], non-functional [Wegener et al. 1996; Puschner and Nossal 1998; Wegener
and Grochtmann 1998], structural [Korel 1990; 1992; Ferguson and Korel 1996;
Xanthakis et al. 1992; Jones et al. 1996; Pargas et al. 1999; Wegener et al. 2001;
McMinn and Holcombe 2006; McMinn 2004], and grey-box [Korel and Al-Yami
1996; Tracey et al. 2000] testing criteria. The search space is the input domain of
the test object. A fitness function provides feedback as to how ‘close’ input data
are to satisfying the test criteria. This information is used to provide guidance to
the search.

For structural testing, each individual program structure of the coverage criteria
(for example each individual program statement or branch) is taken as the individ-
ual search ‘target’. The effects of input data are monitored through instrumentation
of the branching conditions of the program. A fitness function is computed, which
decides how ‘close’ an input was to executing the target. This is based on the val-
ues of variables appearing in the branching conditionals that lead to its execution.
For example, if a branching statement ‘if (a == b)’ needs to be true for a tar-
get statement to be covered, the fitness function returns a ‘branch distance’ value
of abs(b - a) to the search. The fitness values fed back are critical in directing
the search to potential new input vector candidates that might execute the desired
program structure.

However, it is possible for the search to encounter problems when a target is
nested within more than one conditional statement. In this case, there are a suc-
cession of branching statements which must be evaluated with a specific outcome
in order for the target to be reached. For example, in Figure 1, the target is nested
within three conditional statements. Each individual conditional must be true in
order for execution to proceed onto the next one. Therefore, for the purposes of
computing the fitness function, it is not known that b <= ¢ must be true until
a >= b is true. Similarly, until b <= c is satisfied, it is not known that a == ¢
must also be satisfied. This gradual release of information causes difficulty for the
search, which is forced to concentrate on satisfying each predicate individually. In
this example, all the input variables have to be the same value in order to exe-
cute the target, however, this is not reflected in the fitness function until the final
branching predicate.

Furthermore, the search is restricted when seeking inputs to satisfy ‘later’ condi-
tionals, because satisfaction of the earlier conditionals must be maintained. If when
searching for input values for b <= c, the search chooses input values so that a is
not greater than or equal to b, the path taken through the program never reaches
the latter conditional, and thus the search never finds out if b <= c is true or not.
Instead it is held up again at the first conditional, which must be made true in
order to reach the second conditional again. This inhibits the test data search, and
the possible input values it can consider in order to satisfy predicates appearing
‘later’ in the sequence of nested conditionals. In severe cases the search may fail to
find test data.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, 20YY.



Empirical Evaluation of a Nesting Testability Transformation for Evolutionary Testing

Node
void example(int a, int b, int c, ...

) |
{ true false
(1) if (a >=b) " TARGET MISSED
{ Approach Level =2

) if (b <= ¢) true o false Branch Distance = b-a

{ "« TARGET MISSED
(3) if (a == ¢) Approach Level = 1

{ true .. false Branch Distance=b - ¢
// target "« TARGET MISSED

Approach Level =0
Branch Distance = abs(a- ¢)

Fig. 1. Nested targets require the succession of branching statements to be evaluated by the fitness
function one after the other

Ideally, all branch predicates are evaluated by the fitness function at the same
time. This paper presents an approach that achieves this goal by transforming the
original program. The type of transformation used, a ‘testability transformation’
[Harman et al. 2004], is a source-to-source program transformation that seeks to
improve the performance of an existing test data generation technique. Here, the
transformed program produced is merely a ‘means to an end’, rather than an ‘end’
in itself, and can be discarded once it has served its intermediary purpose as a
vehicle for generating test data.

Test data generation is a costly process when performed by hand; thus techniques
such as testability transformations that can automate the generation of even a
subset of the necessary test data are extremely valuable. Even if only one structure
is covered using a transformation that cannot be covered using the original version
of the program, human costs associated with the testing process will have been
lowered. Therefore, the approach does not have to improve test data generation
100% of the time in order to be useful.

Two empirical studies are used to investigate the impact of the proposed nesting
testability transformation. The first examines nesting in 43 real-world programs,
establishing that the type of nesting handled by the transformation is prevalent in
practice. The second study compares test data generation with and without the
nesting transformation, showing that the effectiveness and efficiency of the search
can be improved in many cases with significant performance gains, confirmed by
applying statistical t—tests.

The primary contributions of this paper are therefore as follows:

(1) The paper introduces a testability transformation designed to improve evolu-
tionary structural test data generation for nested program structures.

(2) The paper presents empirical results that show the forms of nesting handled by
the approach are highly prevalent in practice.

(3) The paper presents empirical results with 33 different functions taken from
7 production programs that illustrate the way in which the transformation
improves the performance of evolutionary testing.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, 20YY.



4 . Phil McMinn et al.

The rest of this paper is organized as follows. Section 2 briefly outlines evolu-
tionary structural test data generation. Section 3 states the research problem to
be addressed, while Section 4 describes the testability transformation used to ad-
dress the problem. Section 6 presents results that indicate that the type of nesting
handled is prevalent in practice, whilst Section 7 presents results that show that
the approach is useful in improving the performance of evolutionary testing on pro-
duction code. Section 8 discusses some practical issues with the transformation.
Section 9 reviews related work and Section 10 concludes with directions for future
work.

2. EVOLUTIONARY STRUCTURAL TEST DATA GENERATION

Several search methods have been proposed for the automation of structural test
data generation, including the alternating variable method [Korel 1990; 1992; Fer-
guson and Korel 1996], simulated annealing [Tracey et al. 1998; Tracey et al. 1998b)]
and evolutionary algorithms [Xanthakis et al. 1992; Jones et al. 1996; Pargas et al.
1999; Wegener et al. 2001; McMinn and Holcombe 2006; McMinn 2004]. This paper
concerns the application of evolutionary algorithms to the problem, an approach
known as evolutionary testing [Xanthakis et al. 1992; Jones et al. 1996; Pargas
et al. 1999; Wegener et al. 2001; McMinn and Holcombe 2006; McMinn 2004]. Evo-
lutionary algorithms [Whitley 2001] combine characteristics of genetic algorithms
and evolution strategies, using simulated evolution as a search strategy, employing
operations inspired by genetics and natural selection.

An evolutionary algorithm maintains a population of candidate solutions referred
to as individuals. Individuals are iteratively recombined and mutated in order to
evolve successive generations of potential solutions. The aim is to generate ‘fitter’
individuals within subsequent generations, which represent better candidate solu-
tions. Recombination forms offspring from the components of two parents selected
from the current population. Mutation performs low probability random changes to
solutions, introducing next genetic information into the search. The new offspring
and mutated individuals form part of the new generation of candidate solutions.
At the end of each generation, each individual is evaluated for its fitness with only
the fittest individuals surviving into the next generation.

In applying evolutionary algorithms to structural test data generation, the indi-
viduals of the search are input vectors. The fitness function to be minimized by the
search is derived from the current structure of interest. Thus lower values represent
fitter input vectors that are closer to executing the target structure. When a zero
fitness value has been found, the required test data has also been found.

Fitness values incorporate two factors. The first, the branch distance, is taken
from the point at which execution diverged from the target structure for the indi-
vidual. The branch distance is computed for the alternative branch (i.e. the branch
having the opposite truth value to the one taken in the course of execution). For
example in Figure 1, if execution flows down the false branch from node 1 for an
individual, the branch distance is computed using b - a. The smaller this value
is, the closer the desired true branch is to being taken. The second factor incorpo-
rated in the fitness function is a metric known as the approach level [Wegener et al.
2001], which records how many conditional statements are left unencountered by

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, 20YY.



Empirical Evaluation of a Nesting Testability Transformation for Evolutionary Testing

the individual en route to the target. If the execution path resulting from an input
vector corresponding to some individual reaches node 1 but diverges away down the
false branch, the approach level is 2, since there are two further branching nodes to
be encountered (nodes 2 and 3). If the input vector evaluates node 1 in the desired
way, its fitness value is formed from the true branch distance at node 2, and the
approach level value is 1. At node 3, the approach level is zero and the branch
distance is derived from the true branch predicate.
Formally, the fitness function for an input vector is computed as follows:

fitness = approach_level + normalize(dist) (1)

where the branch distance dist is normalized into the range 0-1 using the following
function [Baresel 2000]:

normalize(dist) = 1 — 1.001~ %t (2)

This formula ensures the value added to the approach level is close to 1 when the
branch distance is very large, and zero when the branch distance is zero.

The approach level can therefore be thought of as adding a value for each branch
distance that remains unevaluated. Since these values are not known, as the path
of execution through the program has meant they have not been calculated, the
maximum value is added (i.e., 1). This ‘approximation’ to real branch distances
is why the approach level is sometimes referred to as the ‘approximation level’ in
the literature [Baresel et al. 2002; Wegener et al. 2001]. As will be seen in the next
section, the addition of this rough value rather than actual branch distance can
inhibit search progress.

3. THE NESTED PREDICATE PROBLEM

The dependence of structural targets on one or more nested decision statements can
cause problems for evolutionary testing, and even failure in severe cases [McMinn
et al. 2005]. The problem stems from the fact that information valuable for guiding
the search is only revealed gradually as each individual branching conditional is
encountered. The search is forced to concentrate on each branch predicate one
at a time, one after the other. In doing this, the outcome at previous branching
conditionals must be maintained, in order to preserve the execution path up to
the current branching statement. If this is not achieved, the current branching
statement will never be reached. In this way, the search is restricted in its choice
of possible inputs, i.e. the search space is artificially narrowed.

For example, consider the code shown in Figure 2a, where the target of the search
is node 4, the fact that ¢ needs to be zero at node 3 is not known until a ==
is true at node 1. However, in order to evaluate node 3 in the desired way, the
constraint a == b needs to be maintained. If the values of a and b are not -1, the
search has no chance of making node 3 true, unless it backtracks to reselect values
of a and b again. However, if it were to do this, the fact that ¢ needs to be zero
at node 3 will be ‘forgotten’, as node 3 is no longer reached, and its true branch
distance is not computed.

This phenomenon is captured in a plot of the fitness function landscape (Fig-

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, 20YY.



6 . Phil McMinn et al.

ure 2c), which uses the output of Equation 1 for fitness. The shift from satisfying
the initial true branch predicate of node 1 to the secondary satisfaction of the true
branch predicate of node 2 is characterized by a sudden drop in the landscape down
to spikes of local minima. Any move to input values where a is not equal to b jerks
the search up out of the minima and back to the area where node 1 is evaluated
as false again. The evolutionary algorithm has to change both values of a and b in
order to traverse the local minima down to the global minimum of (a=-1, b=-1).

Example 2 (Figure 3a) further demonstrates the problems of nested targets, with
the fitness function for the target (node 7) plotted in Figure 3c. The switch from
minimizing the branch distance at node 2 to that of node 6 is again characterized
by a sudden drop. Any move from a value of a = 0 has a significant negative
impact on the fitness value, as the focus of the search is pushed back to satisfying
this initial predicate. In this area of the search space, the fitness function has no
regard for the values of b, which is the only variable which can affect the outcome
at node 6. To select inputs in order to take the true branch from node 6, the search
is constrained in the a = 0 plane of the search space.

4. A TESTABILITY TRANSFORMATION FOR NESTED PREDICATES

A testability transformation [Harman et al. 2004] is a source-to-source program
transformation that seeks to improve the performance of an existing test data gen-
eration technique where the transformed program is merely a ‘means to an end’
rather than an ‘end’ in itself. Thus, it is discarded once it has served its purpose as
an intermediary for generating the required test data. The philosophy behind the
testability transformation proposed in this paper is to remove the constraint that
the branch distances of nested decision nodes must be minimized to zero one at a
time, and one after the other.

The transformation process need not preserve the traditional meaning of a pro-
gram. For example, in order to cover a chosen branch, it is only required that the
transformation preserve the set of test-adequate inputs for that branch. That is, the
transformed program must be guaranteed to execute the desired branch under the
same initial conditions. Testability transformations have also been applied to the
problem of flags for evolutionary test data generation [Baresel et al. 2004; Harman
et al. 2002] and the transformation of unstructured programs for branch coverage
[Hierons et al. 2005].

The transformation, takes the original program and removes decision statements
on which the target is control dependent. In this way, when the program is executed,
it is free to proceed into the originally nested areas of the program, regardless of
whether the original branching predicate would have allowed that to happen. To
capture the removed decisions, assignments are made to a newly introduced variable
_dist. These assignments compute the branch distance based on each of the original
predicates. When the target is reached, the value of _dist reflects the summation
of each of the individual branch distances and is used as the basis of fitness value
computation.

The remainder of this section details the two steps of the testability transforma-
tion.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, 20YY.



Empirical Evaluation of a Nesting Testability Transformation for Evolutionary Testing .

void csl_transformed(double a,
Node . double b)
void csl_original(double a, double _dist = 0;
double b)
{
dist += dist == Db);
1) if (a == b) _dis istance(a )
t double ¢ = b + 1;
(2) double ¢ = b + 1;
3 if =0
®) j': (e ) _dist += distance(c == 0);
4 t t
) ) // targe if (_dist == 0.0)
} {
} // target
}
}
(a) Original program (b) Transformed version

et

w

4

& 400 L

£ Ao
200 4. : ' .

SIS
T
e

0
200 -
200

u}

-100
s 200200 Y

(c) Landscape for original program (d) Landscape for transformed program

Fig. 2. Example 1, showing (a) the original and (b) the transformed versions of the code. The
transformation removes the sharp drop into points of local minima prevalent in the fitness land-
scape of the original program seen in part (c), with the more directional landscape of the trans-
formed program, seen in part (d)

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, 20YY.



8 . Phil McMinn et al.

Node
void cs2_original(double a,
double b)
{
(1) double c;
(2) if (a == 0)
{
3) if (b > 1)
(4) c=b+ b/2;
else
(5) c=b - b/2;
(6) if (c == 0)
{
(7) // target
}
}
}

(a) Original program

0
-100
a 2m 200 b

(c) Landscape for original program

void cs2_transformed(double a,

double b)
{

double _dist = 0;
double c;
_dist += distance(a == 0);
if (b > 1)

c=b+ b/2;
else

c=b-b/2;
_dist += distance(c == 0);

if (_dist == 0.0)
{
// target
}
}

(b) Transformed version

S
i
G

T : <7
I I
\\\\\‘\\“0' :’/?/;/,I/’

P
wonnnenensd S
IRETITTTTT g%g%gf

e
o s

. 200200 b

(d) Landscape for transformed program

Fig. 3. Example 2, showing (a) the original and (b) the transformed versions of the code. The
transformation removes the sharp drops in the fitness landscape of the original program as a result
of nesting, as seen in part (c), with the more directional landscape of the transformed program,

seen in part (d)

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, 20YY.



Empirical Evaluation of a Nesting Testability Transformation for Evolutionary Testing : 9
The Testability Transformation Algorithm

Step 1 - Check that the transformation can be applied to the target

The first step of the algorithm is to check that two applicability conditions are
satisfied. In both, let C' denote the set of predicate nodes on which the target is
control dependent, either transitively or directly.

(1) Structured code involving the target.
The target and each node in C cannot have more than one direct control de-
pendency. All structured code follows this pattern (a node may have several
transitive control dependencies, but only one of these will be a direct depen-
dency). Multiple direct dependencies can be the result of goto statements.
Thus, the transformation is not applicable to the target in the following piece
of code, since it is directly control dependent on both p and q:

if (p) {
goto Xx;

}

if (@) {
X:
// target

}

However, the presence of unstructured code outside of the predicates in C' is
acceptable. For example, the following is permissible as C' does not contain p
or g.

if (p) {
goto x;

}

if (q) {
X:
/] ...
}

if (r) {
// target
}

(2) Loops.
Neither the target nor any of the nodes in C can be a loop predicate. For
example, the transformation is not applicable to the target in the following
piece of code, since it is nested in a loop:

if (p) {
while (q) {
if () {
// target
}
}
}

However, the following is permissible. The loop does not actually control any
of the nodes on which the target is control dependent:

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, 20YY.



10 . Phil McMinn et al.

if (p) {
while (q) {
// ...
¥
if (r) {
// target
¥
}

Step 2 - Perform the transformation on targets satisfying step 1

(1) Code removal
The nodes in C are connected to the target by a sequence of control depen-
dence edges. Each such edge is labelled either true or false depending on the
branch of the associated if statement in which it is found. Statements control
dependent on these predicates, but via the opposite edge label, are removed
from the program. For example, in the following, the statement s2 is removed:

s1;

if (a == b) {

s2;
} else {
s3;
if (c == 4d) {
// target
}

}

(2) Insert uniquely named temporary variable for accumulating branch distances

A new variable, named _dist, is introduced. This variable should be of the
highest floating point precision and initialised as zero at the start of the pro-
gram. For example:

double _dist = 0;

si;

if (a == b) {

} else {
s3;
if (c == 4d) {
// target
}
}

(3) Replace conditionals with branch distance calculations
Each conditional in C' is replaced with the relevant distance calculation that
would have been inserted automatically by the evolutionary testing instrumen-
tation for the target for that predicate. The result of the calculation should be
added to _dist. For example, the above program would be modified as follows:

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, 20YY.



Empirical Evaluation of a Nesting Testability Transformation for Evolutionary Testing

double _dist = 0;

s1;

_dist += distance(a !'= b);
s3;

_dist += distance(c == d);
// target

The relevant distance calculations are denoted by distance(...) and are not
actual C function calls.
(4) Surround target with a new if statement

The target is placed within an if statement whose predicate checks if _dist is
equal to zero. For example:

double _dist = 0;

sl;
_dist += distance(a != b);
s3;
_dist += distance(c == d);

if (_dist == 0) {
// target
}

For sake of presentation, the transformation assumes all the identifiers in the
program are unique (i.e., no two variables at different scopes in the program share
the same name), and there is no variable already in the program with the identifier
_dist. In practice this can easily be ensured through a pre-processing step that
simply renames clashing identifiers.

The transformed program is used instead of the original for test data genera-
tion. The test data generation process itself is left unchanged; instrumentation is
performed as before, and the fitness function calculation is performed in exactly
the same way. The difference using the transformed version is that the approach
level will always be zero, as there is no nesting. Thus, the branch distance for the
target records the difference between the variable _dist and zero. The variable
_dist itself, of course, represents the accumulation of branch distances taken for
each predicate that was nested in the original program.

The effect of the transformation on the example of Figure 2 can be seen in the
fitness landscape (Figure 2¢). The sharp drop into local minima of the original
landscape (Figure 2c) is replaced with smooth planes sloping down to the global
minimum (Figure 2d).

The example of Figure 3 is of a slightly more complicated nature, with if-else
code appearing before the nested target. The transformed version of the program
can be seen in Figure 3b. Again, the benefits of the transformation can be instantly
seen in a plot of the fitness landscape (Figure 3c). The sharp drop in the original

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, 20YY.

11



12 . Phil McMinn et al.

landscape corresponding to branching node 1 being evaluated as true and branching
node 2 being encountered, is replaced by a smooth landscape sloping down from all
areas of the search space down into the global minimum (Figure 3d).

5. RESEARCH QUESTIONS

This section sets out the research questions to be answered through empirical study.

The first research question attempts to justify the approach taken by this paper
by establishing the applicability of the transformation in practice. Clearly, if nesting
is not prevalent in real-world code, or the rules for applying the transformation as
set out in Section 4 are too constrictive, the transformation will not be of much
use:

RQ 1: Does the form of nesting handled by the transformation presented occur in
practice?

The second research question aims to investigate performance of test data genera-
tion using the transformation:

RQ 2: Does the transformation improve test data generation for nested structures in
practice?

The third research question investigates two classes of nesting that a structural tar-
get can be involved in. The categorisation depends on the nature of the predicates
appearing in the if statements that the structure is nested in. Two predicates P;
and P; are defined to be dependent when the set of input variables that influence
their outcome intersect; otherwise, they are independent. An influence includes the
direct use of an input variable, or, an indirect use via intermediate variables that
are assigned a value using an input variable. In the following example, P and @) are
dependent (both predicates use the input variable b), but P and R are independent.

void dependency_example(int a, int b, int c)
{
(P) if (a == b) {
(@) if (b == ¢) {
// target 1
}
(R) if (¢ ==0) {
// target 2
}
}
}

The issue of predicate dependency will affect the search: for target 2, ‘moves’
made involving the variables a and b for P will not affect the outcome at R, which
is concerned with ¢ only. However for target 1, changing the value of b for Q) could
have an adverse effect on P.

It is expected that the removal of nesting through program transformation will
have a positive impact on independent predicates, for example target 1, and the
predicates involved en route to the target in the example of Figure 3. This is because
the search will be free to find their solution ‘concurrently’ without complicated
interactions resulting from changing a variable affecting multiple predicates.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, 20YY.



Empirical Evaluation of a Nesting Testability Transformation for Evolutionary Testing : 13

For dependent predicates, the situation is not so clear. The example of Figure 2
depicts a target with dependent nested predicates where the landscapes indicate
that the search should benefit from the removal of nesting. However, in general, the
effect on the search landscape cannot be predicted. It is possible that the concurrent
consideration of dependent predicates could inadvertently introduce further local
optima into the search space. Thus, the third research question is as follows:

RQ 3: Does the transformation improve test data generation for nested structures with
both ‘independent’ and ‘dependent’ predicate types?

The following two sections describe the two empirical investigations that are used
to address the three research questions. The first empirical study impacts RQ 1
and RQ 3, while the second impacts RQ 2 and RQ 3.

6. EMPIRICAL STUDY 1: PREVALENCE OF NESTING HANDLED BY THE TRANS-
FORMATION

The first empirical study is an examination of nested branches in 43 real-world
programs, containing a total of just under 800,000 lines of code. The results of
the study are summarized in Table I. For each program, the tables includes the
size of the program in lines of code and the number of transformable branches (it
also includes the percentage of these that are dependent and independent, used to
address RQ 3). The table directly answers the first research question:

RQ 1: Does the form of nesting handled by the transformation presented occur in
practice?

From the last line of the table, just under 24,000 transformable branches were
identified. This is about 3 per 100 lines of code; thus the answer to RQ 1 is clearly

Crna?

yes’.

7. EMPIRICAL STUDY 2: TEST DATA GENERATION

The second study provides data related to RQ 2 and RQ 3. It was designed to
compare the performance of an evolutionary search algorithm using both trans-
formed and original versions of programs with nested branches. The study selected
33 functions taken from seven production programs (five open-source and two in-
dustrial). Table IT shows the selected functions as well as details on the predicates
uncovered and the domain size used in the search. In all, the code studied contains
670 branches, of which 560 are nested and 394 are transformable. Details of the
subjects can be seen in Table II.

Five open-source case studies were selected from the subjects listed in Table .
The program eurocheck-0.1.0 contains a single function used to validate serial
numbers on European bank notes. The program gimp-2.2.4 is the well-known
GNU image manipulation program. Several library functions were investigated
that contained branches to which the nesting transformation could be applied, in-
cluding routines for conversion of different colour representations (for example RGB
to HSV) and the manipulation of drawable objects. The program space is program
from the European Space Agency, and is available from the Software-artifact Infras-
tructure Repository [Do et al. 2005]. Nine functions were investigated, with three

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, 20YY.



14 . Phil McMinn et al.

Table I. Nesting in practice

Program Lines Transformable Dependent (%) | Independent (%)
of Code | Nested Branches
a2ps 53,900 822 80% 20%
acct-6.3 9,536 160 56% 44%
barcode 5,562 160 78% 23%
bc 14,609 142 85% 15%
byacc 6,337 160 74% 26%
cadp 11,068 290 68% 32%
compress 1,234 40 50% 50%
copia 1,170 2 0% 100%
csurf-packages 36,593 1,326 84% 16%
ctags 16,946 474 86% 14%
diffutils 18,374 316 71% 29%
ed 12,493 184 75% 25%
empire 53,895 2,550 88% 12%
EPWIC-1 8,631 206 67% 33%
espresso 22,050 394 75% 25%
eurocheck-0.1.0 101 6 33% 67%
findutils 16,891 280 81% 19%
flex2-4-7 15,143 338 43% 57%
flex2-5-4 20,252 452 43% 57%
ftpd 15,914 1,050 72% 28%
gce.cpp 4,079 128 73% 27%
gnubg-0.0 7,229 344 73% 27%
gnuchess 16,659 784 79% 21%
gnugo 15,217 2,086 87% 13%
go 28,547 1,870 88% 12%
ijpeg 24,822 366 90% 10%
indent-1.10.0 6,100 250 78% 22%
i 6,916 182 93% 7%
libgimpcolor 3,230 74 51% 49%
ntpd 45,647 1,176 78% 22%
oracolo2 14,326 498 96% 4%
prepro 14,328 490 96% 4%
replace 563 14 57% 43%
space 9,126 500 96% 4%
spice 149,050 3,360 85% 15%
termutils 6,697 78 62% 38%
tiff-3.8.2 59,649 870 7% 23%
tile-forth-2.1 3,717 52 73% 27%
time-1.7 6,033 28 43% 57%
userv-0.95.0 7,150 326 72% 28%
wdiff.0.5 5,958 56 57% 43%
which 4,880 52 81% 19%
wpst 17,321 622 79% 21%
[ Total [ 797,943 | 23,558 | 81% | 19% |

containing branches to which the transformation could be applied. The program
spice is an open source general purpose analogue circuit simulator. Finally, two
functions were investigated, which were clipping routines for the graphical front-
end. tiff-3.8.2 is a library for manipulating images in the Tag Image File Format
(TIFF). The functions investigated comprise routines for placing images on pages,
and the building of ‘overview’ compressed sample images.

In addition, two industrial case studies, the programs dc_f2 (an internal name)
and dc_defroster, were provided by DaimlerChrysler. An S—Class Mercedes car
has over 80 such embedded controllers, which, taken together represent approx-
imately half a gigabyte of object code. The two systems used in this study are
production code for engine and rear window defroster control systems. The code is
machine generated from a design model of the desired behaviour. As such, it is not

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, 20YY.



Empirical Evaluation of a Nesting Testability Transformation for Evolutionary Testing .

Table II. Production code test objects used in the study
Test Object / Function Branches [[ Domain Size (10%) |
| Total [ Nested | Transformable [| Setup I | Setup 2 |

dc_defroster

Defroster_main 56 52 52 24 96
dc_f2

F2 24 8 8 54 81
eurocheck-0.1.0

main 22 20 6 31 50
gimp-2.2.4

gimp_hsv_to_rgb 16 14 14 21 37
gimp_hsv_to_rgb4 16 14 14 16 27
gimp_hsv_to_rgb_int 16 14 14 7 12
gimp_hwb_to_rgb 18 16 16 17 27
gimp_rgb_to_hsl 14 12 12 20 37
gimp_rgb_to_hsl_int 14 10 10 7 12
gimp_rgb_to_hsv 10 8 8 20 37
gimp_rgb_to_hsv4 18 12 12 7 12
gimp_rgb_to_hsv_int 14 8 8 7 12
gradient_calc_bilinear_factor 6 4 4 34 51
gradient_calc_conical_asym_factor 4 4 31 49
gradient_calc_conical_sym_factor 8 6 6 31 49
gradient_calc_linear_factor 8 6 6 31 49
gradient_calc_radial_factor 6 4 4 21 33
gradient_calc_spiral_factor 8 6 6 37 58
gradient_calc_square_factor 6 4 4 21 33
space

space_addscan 32 30 0 519 712
space_fixgramp 8 6 6 23 32
space_fixport 6 6 0 125 182
space_fixselem 16 14 0 125 182
space_fixsgrel 72 70 56 524 712
space_fixsgrid 44 42 26 101 120
space_gnodfind 4 2 0 70 89
space_seqrotrg 32 30 0 206 264
space_sgrpha2n 16 14 0 451 614
spice-3f4

clip_to_circle 42 26 26 23 30
cliparc 64 62 54 44 59
tiff-3.8.2

Placelmage 16 6 6 38 59
TIFF_GetSourceSamples 18 18 0 15 15
TIFF_SetSample 14 12 12 10 13
[Total [ 670 [ 560 | 394 [ ]

optimized for human-readability, making manual test data generation non—trivial.
The test objects are therefore ideal candidates for search—based testing strategies.

Two further synthetic test objects were designed to specifically investigate the
relationship of dependency between the variables of different nested predicates.
Figure 4a shows a snippet of code from the ‘independent’ test object, where for all
branches, none of the predicates share any of the input variables. Figure 4b shows a
snippet of code from the ‘dependent’ test object, where consecutive branches share
an input variable from the predicate of the last. For both programs, test data
generation was attempted with the original version and the transformed versions
for each true branch.

7.1 Experimental Setup

The parameters of the evolutionary algorithm are based on those used in the Daim-
lerChrysler system for evolutionary testing, which has been widely studied in the
literature [Baresel and Sthamer 2003; Baresel et al. 2002; Wegener et al. 2001].

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, 20YY.

15



16 . Phil McMinn et al.

id ind dent (doubl
void independen (dZEblz :’ void dependent(double a,
double c’ double b,
doEble d’ double c,
double e’ double d,
u B
doubl s e
double f ...) . ouble e )
{
if = b
if (a==1b) { i (a =D {
. if (b == c) {
if (c == 4d) { if (c == ) {
if (e == £) {
} L
}
}
¥ }
}
(a) Independent (b) Dependent

Fig. 4. Code snippets of the independent and dependent predicate synthetic test objects. For
sake of presentation, only 2 nesting levels are depicted for each test object; in reality nesting is 6
levels deep

The population consists of 300 individuals, split into 6 subpopulations starting
with 50 individuals each. Linear ranking is utilized, with a selection pressure of
1.7. Real-valued encodings are used. Individuals are recombined using discrete
recombination, and mutated using the mutation operator of the breeder genetic
algorithm [Miihlenbein and Schlierkamp-Voosen 1993]. Competition and migration
is employed across the subpopulations. Each generation employs a 10% generation
gap (i.e., the best 10% of each population are retained from one generation to the
next), with the remaining 90% replaced by the best offspring.

The test data generation experiments were performed 60 times using transformed
and original versions of the program for each branch. If test data were not found
to cover a branch after 100,000 fitness evaluations, the search was terminated. For
the evolutionary search, the maximum and minimum values of each ordinal input
variable needs to be specified by the tester, and thus different domain sizes are
possible. Two domain sizes were used for each function, ranging from approximately
107 to 1072 across all functions, making for very large search problems. The
success or failure of each search was recorded, along with the number of test data
evaluations required to find the test data, if the search was successful. From this,
the ‘success rate’ for each branch can be calculated — the percentage of the 60 runs
for which test data to execute the branch was found. Success rate is a basis on
which the effectiveness of the search can be compared for the branch under original
and transformed conditions.

The average number of evaluations required to find test data for each branch was
also calculated. The average number of evaluations indicates how much effort was
required of the search in finding the test data, and is thus a means of comparing
the effort of the search on original and transformed programs.

The sixty runs were performed using the same random seed for each technique,
meaning that both searches begin with the same initial population. This allows the

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, 20YY.



Empirical Evaluation of a Nesting Testability Transformation for Evolutionary Testing . 17

use of paired t-tests in the statistical assessment. A confidence level of 99% was
applied. Such tests are necessary to provide robust results in the presence of the
inherently stochastic behaviour of the search algorithms.

The study provides answers to RQ 2 and RQ 3:

RQ 2: Does the transformation improve test data generation for nested structures in
practice?

Figure 6 gives an overall picture of search effectiveness with the transformation, by
plotting the difference in success rate using the transformation for those branches
where a change in success rate was experienced when the transformation was ap-
plied. Success rate is improved in 59 cases involving independent and dependent
nested predicates. 34 of these cases experienced an increase in success rate by more
than 10%, with the largest increase being 87% for a branch in the dc_defroster
program.

Besides effectiveness, search effort is lowered using the transformation in several
cases. This can be seen in Table III, which records branches for which the aver-
age number of fitness evaluations over the 60 runs is significantly different (when
applying paired t-tests) for experiments using the original version of the program
for each branch and the transformed version. The average number of evaluations
is lower for each of the 58 branches where the transformation is applied, and is cut
by over a half for 17 of these.

In 17 cases, however, success rate is worse. Eleven cases suffer a decrease in
success rate by more than 10%. Analysis of the code in question revealed the predi-
cates in question were dependent on one another. Consideration of all predicates at
once for these branches introduces local optima in to the fitness landscape - optima
that do not appear when each predicate is tackled in turn in the original version of
the program.

In conclusion then, the results demonstrate that the nesting transformation can
indeed improve effectiveness and lower search effort in practice. However this is not
always guaranteed. The next research question investigates the reasons behind this
more deeply.

RQ 3: Does the transformation improve test data generation for nested structures with
both ‘independent’ and ‘dependent’ predicate types?

One aim of the first empirical study was to classify nested branches into either
the ‘dependent’ or ‘independent’ categories. Just under one-fifth of predicates were
found to be independent. In theory, removal of nesting in these cases will allow
the search to satisfy each predicate concurrently, and thus allow for faster test
data generation. The distribution of dependent and independent nested predicates
across the 43 programs can be seen in Figure 5.

Results obtained with production code show that test data generation can be
improved for both independent and dependent nested predicate types, but that
this was not always assured for nested predicates of a dependent nature. The
synthetic test objects, with either dependent or independent predicate types, were
designed to shed more light on this issue.

Figure 7 shows that performance can always be improved for independent predi-
cates, both in terms of effectiveness (i.e., improved success rate) as seen in Figure 7a,

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, 20YY.



18 . Phil McMinn et al.

Table III. Search effort using the transformed and original versions of a program for branches
where there is a significant difference in the average number of fitness evaluations

Test Object / Domain Size | Average Evaluations
Branch (10%) | Transformed | Original | Significance |
dc_defroster

Defroster_main 12F 96 19,263 29,048 0.000
Defroster_main 14F 96 19,935 39,196 0.000
Defroster_main 15T 96 14,800 21,284 0.000
Defroster_main 16F 96 20,893 48,601 0.000
Defroster_main 16T 96 14,800 21,284 0.000
Defroster_main 18T 96 20,893 48,601 0.000
Defroster_main 20F 96 21,488 49,553 0.000
Defroster_main 20T 96 14,800 21,284 0.000
Defroster_main 22T 96 21,488 49,553 0.000
Defroster_main 30F 96 20,208 38,585 0.000
Defroster_main 31T 96 17,870 31,464 0.000
Defroster_main 36T 96 15,017 21,556 0.000
Defroster_main 39F 96 25,795 66,544 0.000
Defroster_main 39T 96 20,381 40,823 0.000
Defroster_main 40F 96 21,340 48,841 0.000
Defroster_main 40T 96 20,594 40,832 0.000
Defroster_main 44F 96 24,648 63,066 0.000
Defroster_main 44T 96 20,208 38,585 0.000
Defroster_main 45F 96 20,231 38,606 0.000
Defroster_main 45T 96 22,719 46,371 0.000
Defroster_main 48T 96 24,648 63,066 0.000
Defroster_main 49F 96 26,574 70,077 0.000
Defroster_main 49T 96 24,752 63,091 0.000
Defroster_main 55F 96 20,347 40,580 0.000
Defroster_main 58T 96 14,097 21,521 0.000
Defroster_main 60F 96 25,164 65,944 0.000
Defroster_main 60T 96 20,347 40,580 0.000
Defroster_main 61F 96 20,347 40,580 0.000
Defroster_main 61T 96 23,446 55,784 0.000
Defroster_-main 63F 96 20,312 41,776 0.000
Defroster_main 63T 96 22,411 46,072 0.000
dc_f2

F2 20T 54 4,890 5,935 0.001
F2 20T 81 7,017 11,523 0.000
F2 23T 54 4,926 6,746 0.000
F2 23T 81 7,877 11,533 0.000
eurocheck-0.1.0

main 7T 31 4,524 10,837 0.003
gimp-2.2.4

gimp_hsv_to_rgb 34T 37 5,780 6,176 0.002
gimp_hsv_to_rgb4 19T 27 5,190 5,492 0.003
gimp_hsv_to_rgb4 29T 27 5,011 5,529 0.001
gimp_hsv_to_rgb4 34T 27 5,105 5,555 0.004
gimp_hsv_to_rgb4 39T 27 5,132 5,821 0.000
gimp_hwb_to_rgb 28T 27 799 1,286 0.002
space

space_fixgramp 9T 32 7,520 10,980 0.000
space_fixsgrel 102T 524 12,363 18,609 0.006
space_fixsgrel 12T 524 27,813 43,619 0.000
space_fixsgrel 13F 524 29,056 43,309 0.000
space_fixsgrel 26T 524 24,423 40,396 0.007
space_fixsgrel 27T 524 27,389 42,567 0.001
space_fixsgrel 44T 524 29,060 45,287 0.000
space_fixsgrid 18F 101 8,408 12,959 0.000
space_fixsgrid 18F 120 16,128 26,318 0.000
space_fixsgrid 28F 120 15,811 24,909 0.000
space_fixsgrid 40F 101 8,781 11,836 0.002
space_fixsgrid 40F 120 17,748 24,920 0.000
space_fixsgrid 50F 101 3,479 5,627 0.000
space_fixsgrid 50F 120 15,033 24,886 0.000
spice-3f4

cliparc 15F 59 17,417 21,062 0.002
cliparc 86F 59 6,407 10,395 0.000

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, 20YY.



Empirical Evaluation of a Nesting Testability Transformation for Evolutionary Testing

[0 Dependent B Independent |

100%

90% -

80% -

70%

60% -

50%

40% -

Proportion of predicates

30% -

20% WA HHAHHHAAAHHHHHHHHAA AR AR A HAHAEAE A A AR

10% A

0%

Programs

Fig. 5. Distribution of dependent and independent nested predicates for the programs of Table I

and decreased effort (i.e., decreased average number of fitness evaluations) as seen
in Figure 7b. The search is 100% successful for all branches with the transformed
version of the code, whereas with the original program, the search becomes less
effective in more deeply nested predicates and in larger domain sizes. The figure
also depicts the relationship for dependent predicates. At shallower levels, per-
formance is improved using the transformation, as the average number of fitness
evaluations is lower (Figure 7d). At more deeply nested levels, however, the search
with the transformation struggles. Considering all predicates at once, and their
inter-dependencies (i.e., having to keep several variables fixed to obey the equality
operator in each predicate) makes the search less effective than if the predicates
were considered one-at-a-time, as with the original version of the program (Fig-
ure 7c). At even deeper levels, however, the search fails using both transformed
and original versions of the program.

In conclusion, the results with the synthetic test objects show that the transfor-
mation can always improve search performance on nested independent predicates,
which from the first empirical study account for about one-fifth of all predicate
chains. The relationship for dependent nested predicates is more complicated. At
shallow levels, the transformation tends to increase search effectiveness and de-
crease effort. At deeper levels, however, search performance is less predictable and
could be worse with the transformation.

7.2 Threats to Validity

An important part of any empirical study is to consider the threats to the validity
of the experiment. This section briefly outlines these potential threats and how
they were addressed. The hypotheses studied in this paper concerns the use of a
testability transformation to remove nesting in a program for coverage of the branch
and its impact on the evolutionary search for test data. Omne issue to address,

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, 20YY.

19



20 . Phil McMinn et al.

100

80 -

60 -

40 -
il
....... .|||||||||||||IIIII""I"""

| ""I“IIII
220 A
-40 4
-60

-100

Change in success rate after applying
transformation (%)
o

&
S

Nested branches

Fig. 6. Nested branches for which there was a change in search success rate after applying the
transformation

therefore, is the so-called internal validity (i.e., to check whether there has been a
bias in the experimental design or an error in its implementation which could affect
the causal relationship under study).

One source of error could come from the transformation steps being performed
incorrectly. In order to circumvent this, the process was performed automatically
with the help of the javacc Java Parser Generator and a C grammar. A sample
set of transformations were then examined manually to ensure that the process was
being performed properly.

A potential source of bias comes from the inherent stochastic behaviour of the
evolutionary search algorithm under study. The most reliable (and widely used)
technique for overcoming this source of variability is to perform tests for statisti-
cal significance on a sufficiently large sample of result data. Such a test is required
whenever one wishes to make the claim that one technique produces superior results
to another. A set of results are obtained from a set of runs (essentially sampling
from the population of random number seeds). In order to compare the performance
of the search using transformed and original versions, measured using fitness eval-
uations, a test was performed to see if there is a statistical significant difference
in the means. For the results reported upon here, the t—test was used with the
confidence level set at 99%. In order for the t—test to be applicable, it is important
to have a sample size of at least 30. To ensure that this constraint was comfortably
achieved, each experiment was repeated 60 times.

Another source of bias comes from the selection of the programs to be studied.
This impacts upon the external validity of the empirical study. That is, the extent
to which it is possible to generalise from the results obtained. Naturally, it is im-
possible to sample a sufficiently large set of programs such that the full diversity of
all possible programs could be captured. The rich and diverse nature of programs
makes this an unrealistic goal. However, where possible, a variety of programming
styles and sources have been used. The study draws upon code from real world pro-
grams, both from industrial production code and from open source. Furthermore,

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, 20YY.



Empirical Evaluation of a Nesting Testability Transformation for Evolutionary Testing .

21

Independent Predicates

O Transformed M Original O Transformed M Original
100 . 100000
% @ 90000
o £ 80000
- i 2 70000
2 70 S .2 60000
2 5 © 50000
& 60 23
& 2§ 40000
50 o >
@ S 30000
& 40 5 20000
S > 10000
a 2 0
20 1 2 3 4 5 6
10 Branch (Nesting Level)
SR sErEss R e BRI S E R g S
SRR R LR
Branch (Nesting Level / Domain Size (10%))
(a) Effectiveness (b) Effort (for domain size 1074)
Dependent Predicates
O Transformed M Original G Transformed M Original
100 100000
% | | . 90000
@ 80000
~ 801 4
S £ 70000
< 70 2
2 5 & 60000
% 60 5 & 50000
o 23
@ 50 - 2 % 40000
w
2 404 £ 30000
S 304 Z 20000
@ 20 10000
10 0
0 Il 1 1 2 3 4 5 6
B8NS3 XS3838883388883x8¢838 Branch (Nesting Level)
::ggaagg;;gg;:gg;;ggaagg
Branch (Nesting Level / Domain Size (10%))
(c) Effectiveness (d) Effort (for domain size 1074)

Fig. 7. Search effectiveness and effort for independent and dependent predicates with original and
transformed versions of the program for each branch

it should be noted that the number of test problems considered is 394, providing a
relatively large pool of results from which to make observations.

Nonetheless, caution is required before making any claims as to whether these
results would be observed on other programs, possibly from different sources and
in different programming languages. As with all such experimental software engi-
neering, further experiments are required in order to replicate the results contained
here.

However, the results show that there do indeed exist cases where the effectiveness
of test data generation is improved with the transformation, and effort-wise, there is
a statistically significant relationship between the use of transformation for nested
branches and decreased ‘cost’ of search algorithms for test data generation.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, 20YY.



22 . Phil McMinn et al.

8. DISCUSSION

It is possible for the transformation to have issues with the removal of certain
types of predicates, although these issues were not encountered in the course of
the empirical study. One example is a predicate which tests the possibility of a
dynamic memory reference. The following example may lead to a program error
if it is transformed. The removal of the if statement may result in the printf
statement being executed with a value of i that is out of range, thus causing an
array out of bounds error:

if (i >= 0 & i < length_of_a)
{

printf ("%f\n", alil);
}

A similar example is the testing of a pointer to see if it points to anything (i.e.,
whether it is NULL). Whilst these types of predicate did appear in code used in the
empirical study, they were nested in loops. Thus the transformation could not be

applied and as such no abnormal termination errors occurred.

Another issue is the possibility of introducing arithmetic errors. For example in
the following segment of code, a division by zero error may result if the conditional
were to be removed:

if (d '= 0)
{

r=n/d;
}

The test data generation empirical study revealed cases where the transformation
led to poorer search performance (i.e., nested predicates which were dependent).
A practical strategy for applying the transformation would therefore be to only
apply it to dependent nested predicates if test data cannot be found using the
original version of the program. The empirical study which investigated prevalence
of nesting found that just under one fifth of nested predicates are independent. For
these independent predicates, significant improvements in efficiency are possible.

9. RELATED WORK

This paper has used an approach known as testability transformation, introduced
by Harman et al. [2004] as a means of adapting traditional program transformation
to allow it to improve the effectiveness of automated test data generation tech-
niques. A testability transformation need not preserve the traditional meaning of
the program it transforms. Rather, it need only preserve the sets of adequate test
data for the programs studied. This has been found to be applicable to a number
of testing problems [Baresel et al. 2004; Hierons et al. 2005; Korel et al. 2005].
Test data generation is a process that is generally performed by hand in industry.
This practice is extremely costly, difficult, and laborious. Search—based approaches
to testing like evolutionary testing can automate this process and is thus an impor-
tant research area. Therefore, the solution to the nested predicate problem is also
important, because it hinders evolutionary testing - as shown in this paper.
Baresel et al. [2002] study fitness evaluation of composed conditions in C, which is
similar to the nesting problem due to the short-circuiting of the && and | | operators.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, 20YY.



Empirical Evaluation of a Nesting Testability Transformation for Evolutionary Testing : 23

In the following piece of code

if (a ==Db && b == c)
{
/] ...
the condition b == ¢ will not be evaluated until a == b, because the && operator

breaks off evaluation of the entire condition early. It is noted that if no side-effects
exist in the condition, both sub-conditions could be evaluated for the purposes
of computing the fitness function. An experimental study shows that the search
is more efficient when this is performed. Also discussed is the nested predicate
problem where no further statements exist between each subsequent if decision
statement, as in the example of Figure 1. It is observed that the branch distances
of each branching node can simply be measured at the ‘top level’ (i.e., before node
1 is encountered), and simply added together for computing the fitness function, in
a similar way to the composed condition problem. However, no empirical work was
performed. The testability transformation presented in this paper can be applied
to these simple cases and more complicated situations where intervening code does
exist between nested predicate pairs.

This paper is concerned with the application of evolutionary algorithms to test
data generation. Other methods have been proposed, including techniques based
on symbolic execution [Boyer et al. 1975; Clarke 1976; King 1976; DeMillo and
Offutt 1991], the goal-oriented approach [Korel 1992], and the chaining approach
[Ferguson and Korel 1996]. Symbolic execution encounters difficulties with loops
and dynamic memory. The goal-oriented approach uses local search to find test
data which will execute each nested condition en route to the target node, one
after the other. Thus, it too suffers from the nested predicate problem. The use
of local search also means that the method cannot escape from local optima in the
search space. The chaining approach is concerned with finding data dependencies
which may affect the outcome at some problem branching node, at which the flow
of execution cannot be changed. The search for data dependencies cannot help
the nested predicate problem, as it is rooted in issues of control flow. In fact, the
chaining approach is likely to exacerbate the problem, since in the method, the
data dependencies also need to be executed, and these may also be nested.

An early method of Miller and Spooner [Miller and Spooner 1976] partially solves
the nested target problem. However a straight line version of the program must
be produced leading to the structural target of interest. Furthermore, local search
is used. Xanthakis et al. [1992] use genetic algorithms, but a full path needs to
be specified by the tester. Neither a straight line version of the program, nor
the specification of a path up to the nested target are required by the testability
transformation approach presented in this paper.

Methods using simulated annealing [Tracey et al. 1998b; Tracey et al. 1998]
have also been proposed, but these also follow a strategy of satisfying one nested
predicate after another, and therefore also fail to solve the nested target problem.
Thus the method proposed in this paper could be further applied here.

In more recent work, Harman and McMinn [Harman and McMinn 2007] applied
a theoretical and empirical analysis of the use of genetic algorithms for test data
generation, comparing their performance with hill climbing and random search.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, 20YY.



24 . Phil McMinn et al.

Harman et al. [2007] further consider the application search space reduction through
the removal of input variables not relevant to a structural target through the use
of program analysis.

10. SUMMARY AND FUTURE WORK

This paper has described how targets nested within more than one conditional
statement can cause problems for evolutionary structural test data generation. In
the presence of such nesting, the search is forced to concentrate on satisfying one
branch predicate at a time. This can slow search progress and artificially restricts
the potential search space available for the satisfaction of branching predicates
‘later’ in the sequence of nested conditionals. The paper presented a first empirical
study that demonstrated the prevalence of nesting in practice and the possible
application sites for the transformation in just under 800,000 lines of production
code. A second empirical study showed that evolutionary test data generation can
be improved in terms of effectiveness and efficiency for many branches in real-world
code. Statistical ¢-tests showed that performance could be improved significantly in
many of these cases. The empirical study showed that improvement gains are always
possible where the predicates in nested conditional statements are independent of
one another, but improvement is less predictable for dependent predicates.

Future work aims to further tackle the problem of dependent predicates, attempt-
ing to remove or reduce local optima in the fitness landscape that might result from
an ordering or non-ordering of nested predicate consideration. It also aims to extend
the approach to targets nested in loops.

ACKNOWLEDGMENT

The authors would like to thank Joachim Wegener and DaimlerChrylser for pro-
viding the two industrial examples used in the empirical study.

REFERENCES

BARESEL, A. 2000. Automatisierung von strukturtests mit evolutionren algorithmen. Diploma
Thesis, Humboldt University, Berlin, Germany.

BARESEL, A., BINKLEY, D., HARMAN, M., AND KOREL, B. 2004. Evolutionary testing in the
presence of loop-assigned flags: A testability transformation approach. In Proceedings of the
International Symposium on Software Testing and Analysis (ISSTA 2004). ACM, Boston,
Massachusetts, USA, 43-52.

BARESEL, A. AND STHAMER, H. 2003. Evolutionary testing of flag conditions. In Proceedings
of the Genetic and Evolutionary Computation Conference (GECCO 2008), Lecture Notes in
Computer Science vol. 2724. Springer-Verlag, Chicago, USA, 2442 — 2454.

BARESEL, A., STHAMER, H., AND SCHMIDT, M. 2002. Fitness function design to improve evolution-
ary structural testing. In Proceedings of the Genetic and FEvolutionary Computation Conference
(GECCO 2002). Morgan Kaufmann, New York, USA, 1329-1336.

BOYER, R. S., ELspas, B., aND LEvITT, K. N. 1975. SELECT - A formal system for testing and
debugging programs by symbolic execution. In Proceedings of the International Conference on
Reliable Software. ACM Press, 234-244.

CLARKE, L. 1976. A system to generate test data and symbolically execute programs. IEEE
Transactions on Software Engineering 2, 3, 215-222.

DEMILLO, R. A. AND OFFUTT, A. J. 1991. Constraint-based automatic test data generation.
IEEE Transactions on Software Engineering 17, 9, 900-909.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, 20YY.



Empirical Evaluation of a Nesting Testability Transformation for Evolutionary Testing : 25

Do, H., ELBAUM, S., AND ROTHERMEL, G. 2005. Supporting controlled experimentation with
testing techniques: An infrastructure and its potential impact. Empirical Software Engineer-
ing 10, 4, 405 — 435.

FERGUSON, R. AND KOREL, B. 1996. The chaining approach for software test data generation.
ACM Transactions on Software Engineering and Methodology 5, 1, 63—86.

HarMAN, M., HASSOUN, Y., LaknoTtia, K., MCMINN, P.; AND WEGENER, J. 2007. The impact
of input domain reduction on search-based test data generation. In Proceedings of the ACM
SIGSOFT Symposium on the Foundations of Software Engineering (FSE 2007). ACM Press,
Cavat, near Dubrovnik, Croatia, 155—-164.

HARMAN, M., Hu, L., HIERONS, R., BARESEL, A., AND STHAMER, H. 2002. Improving evolu-
tionary testing by flag removal. In Proceedings of the Genetic and Evolutionary Computation
Conference (GECCO 2002). Morgan Kaufmann, New York, USA, 1359-1366.

HArMAN, M., Hu, L., HIERONS, R., WEGENER, J., STHAMER, H., BARESEL, A., AND ROPER, M.
2004. Testability transformation. IEEE Transactions on Software Engineering 30, 1, 3—16.
HArRMAN, M. AND MCMINN, P. 2007. A theoretical & empirical analysis of evolutionary testing and
hill climbing for structural test data generation. In Proceedings of the International Symposim

on Software Testing and Analysis (ISSTA 2007). ACM Press, London, UK, 73-83.

Hierons, R., HArRMAN, M., AND Fox, C. 2005. Branch-coverage testability transformation for
unstructured programs. The Computer Journal 48, 4, 421-436.

JONES, B., STHAMER, H., AND EYRES, D. 1996. Automatic structural testing using genetic algo-
rithms. Software Engineering Journal 11, 5, 299-306.

JONES, B., STHAMER, H., YANG, X., AND EYRES, D. 1995. The automatic generation of soft-
ware test data sets using adaptive search techniques. In Proceedings of the 3rd International
Conference on Software Quality Management. Seville, Spain, 435-444.

King, J. 1976. Symbolic execution and program testing. Communications of the ACM 19, 7,
385-394.

KOREL, B. 1990. Automated software test data generation. IEEE Transactions on Software
Engineering 16, 8, 870-879.

KOREL, B. 1992. Dynamic method for software test data generation. Software Testing, Verification
and Reliability 2, 4, 203—213.

KOREL, B. AND AL-YAaMI, A. M. 1996. Assertion-oriented automated test data generation. In
Proceedings of the 18th International Conference on Software Engineering (ICSE). 71-80.
KoREL, B., HARMAN, M., CHUNG, S., APIRUKVORAPINIT, P., AND R., G. 2005. Data dependence
based testability transformation in automated test generation. In 16th International Symposium

on Software Reliability Engineering (ISSRE 05). Chicago, Illinios, USA, 245-254.

McMINN, P. 2004. Search-based software test data generation: A survey. Software Testing,
Verification and Reliability 14, 2, 105—156.

McMINN, P., BINKLEY, D., AND HARMAN, M. 2005. Testability transformation for efficient auto-
mated test data search in the presence of nesting. In Proceedings of the UK Software Testing
Workshop (UK Test 2005). University of Sheffield Computer Science Technical Report CS-05-
07, 165-182.

McMINN, P. AND HoLcOMBE, M. 2006. Evolutionary testing using an extended chaining approach.
Evolutionary Computation 14, 41-64.

MILLER, W. AND SPOONER, D. 1976. Automatic generation of floating-point test data. IFEE
Transactions on Software Engineering 2, 3, 223-226.

MUHLENBEIN, H. AND SCHLIERKAMP-VOOSEN, D. 1993. Predictive models for the breeder genetic
algorithm: I. continuous parameter optimization. Fvolutionary Computation 1, 1, 25—49.

Parcas, R., HARROLD, M., AND PECK, R. 1999. Test-data generation using genetic algorithms.
Software Testing, Verification and Reliability 9, 4, 263—282.

PUSCHNER, P. AND NoOssAL, R. 1998. Testing the results of static worst-case execution-time
analysis. In Proceedings of the 19th IEEE Real-Time Systems Symposium. IEEE Computer
Society Press, Madrid, Spain, 134-143.

TRACEY, N. 2000. A search-based automated test-data generation framework for safety critical
software. Ph.D. thesis, University of York.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, 20YY.



26 . Phil McMinn et al.

TRACEY, N., CLARK, J., AND MANDER, K. 1998a. Automated program flaw finding using simulated
annealing. In Software Engineering Notes, Issue 23, No. 2, Proceedings of the International
Symposium on Software Testing and Analysis (ISSTA 1998). 73-81.

TRACEY, N., CLARK, J., AND MANDER, K. 1998b. The way forward for unifying dynamic test-
case generation: The optimisation-based approach. In International Workshop on Dependable
Computing and Its Applications. Dept of Computer Science, University of Witwatersrand, Jo-
hannesburg, South Africa, 169-180.

TRACEY, N., CLARK, J., MANDER, K., AND McDERMID, J. 1998. An automated framework for
structural test-data generation. In Proceedings of the International Conference on Automated
Software Engineering. IEEE Computer Society Press, Hawaii, USA, 285-288.

TRACEY, N., CLARK, J., MANDER, K., AND MCDERMID, J. 2000. Automated test data generation
for exception conditions. Software - Practice and Ezxperience 30, 1, 61-79.

WEGENER, J., BARESEL, A., AND STHAMER, H. 2001. Evolutionary test environment for automatic
structural testing. Information and Software Technology 43, 14, 841-854.

WEGENER, J., GRIMM, K., GROCHTMANN, M., STHAMER, H., AND JONES, B. 1996. Systematic test-
ing of real-time systems. In Proceedings of the 4th European Conference on Software Testing,
Analysis and Review (EuroSTAR 1996). Amsterdam, Netherlands.

WEGENER, J. AND GROCHTMANN, M. 1998. Verifying timing constraints of real-time systems by
means of evolutionary testing. Real-Time Systems 15, 3, 275-298.

WHITLEY, D. 2001. An overview of evolutionary algorithms: Practical issues and common pitfalls.
Information and Software Technology 43, 14, 817-831.

XANTHAKIS, S., ELLIS, C., SKOURLAS, C., LE GALL, A., KATSIKAS, S., AND KARAPOULIOS, K. 1992.
Application of genetic algorithms to software testing (Application des algorithmes génétiques
au test des logiciels). In 5th International Conference on Software Engineering and its Appli-
cations. Toulouse, France, 625—636.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, 20YY.



