
IGUANA: Input Generation Using Automated Novel

Algorithms. A Plug and Play Research Tool

Phil McMinn

University of Sheffield

Department of Computer Science

Regent Court, 211 Portobello Street,

Sheffield, S1 4DP, UK

p.mcminn@dcs.shef.ac.uk

Abstract

IGUANA is a tool for automatically generating software test data using search-based
approaches. Search-based approaches explore the input domain of a program for test data
and are guided by a fitness function. The fitness function evaluates input data and measures
how suitable it is for a given purpose, for example the execution of a particular statement in
a program, or the falsification of an assertion statement.

The IGUANA tool is designed so that researchers can easily compare and contrast different
search methods (e.g. random search, hill climbing and genetic algorithms), fitness functions
(e.g. for obtaining branch coverage of a program) and program analysis techniques for test
data generation.

1 Introduction

In contrast to methods like symbolic execution, search-based techniques take a heuristic approach
to the test data generation problem. Symbolic execution works to extract a series of constraints
from the program that describe the execution of a particular path. These constraints are solved
using linear programming techniques. A search-based approach to this problem instead involves
designing a fitness function which essentially gives a measure of how close input data were to
executing a program structure of interest. The approach is dynamic, and the program is instru-
mented in order to feedback information to the search algorithm for fitness function computation.
In this way, some of the problems associated with symbolic execution, e.g. the handling of loops
and dynamic memory, can be circumvented.

There has recently been an explosion of work in the area search-based testing, and in particular
the generation of test data. Search-based approaches have been shown to be an effective approach
for functional [6, 16, 15], non-functional [20, 14, 21], structural [7, 8, 3, 22, 5, 13, 19, 11, 10], and
grey-box [9, 18] testing criteria. McMinn’s survey in 2004 [10] cites approximately 40 publications
in the area, mainly concentrating on structural test data generation. To date, several search algo-
rithms have been employed, including random search, local search (including hill climbing, tabu
search and simulated annealing), evolutionary algorithms (including genetic algorithms, evolution
strategies and genetic programming), ant colony optimisation and particle swarm optimisation;
with several different approaches to fitness function construction for both structural testing, func-
tional testing, and non-functional properties such as worse case execution time, stress-based testing
and so on. Techniques such as testability transformations [4] have been proposed to circumvent
certain search-based testing problems, for example plateaux in the fitness landscape.

Until now, there has not been a general framework for comparing different search methods and
techniques on the test data generation problem. It is has therefore been difficult to judge results
presented in the literature, since different implementations of algorithms have been used, with

1

input vectors

fitness values

Instrumented

test object

Search
technique
(e.g. genetic
algorithm)

Figure 1: Overview of the process

different settings and test object configurations, leading to results which could be contradictory
or misleading. The IGUANA tool attempts to address this problem. It is an object-oriented
architecture for test data generation written in Java, incorporating libraries of search algorithms
and operators, and standard interfaces for the addition of more. It is possible to ‘plug in’ different
search methods and fitness functions at ease.

2 Search-Based Test Data Generation

At the time of writing, the IGUANA tool has been applied to structural test data generation,
although it is easily extensible to other types of testing. Structural testing is by far the most
studied area of search-based testing [10]. This section outlines how search-based structural test
data generation works, in particular the coverage of individual branches for branch coverage.

In order to cover a particular branch in a unit under test, the goal is to construct an input
vector for a function which drives execution of the program down the branch of interest. The
search space is formed from the set of possible input vector parameter–value combinations. The
test object is instrumented to return fitness information. The search then uses this information to
explore promising areas of the program’s input domain, which could lead to the discovery of the
required test data (Figure 1).

2.1 Fitness Function

For coverage of a branch, the fitness function is calculated by combining a ‘branch distance’
measure with another metric known as the ‘approach level’. The goal of the search is to find the
global minimum of the fitness function, i.e. zero.

Approach Level

The approach level calculation comes into effect when there are several conditions that must be
satisfied in order to execute the target, for example the true branch from node 8 (Figure 2(a)). It is
a measure of how many control dependent nodes were not encountered in the path executed by the
input vector. For structured programs, the approach level reflect the levels of nesting surrounding
the target (Figure 2(b)). The approach level is referred to as the ‘approximation level’ by Wegener
et al.[19].

Branch Distance

When execution of a test case diverges away from the target branch, the branch distance expresses
how close an input came to satisfying the condition of the predicate at which point control flow
for the test case went ‘wrong’. For example, for the coverage of the true branch from node 1 in
Figure 2(a), a predicate distance for ‘dist == 0.0’ can be computed using the formula |dist-0.0|.
The closer dist is to zero, the ‘closer’ the true branch is to being taken. This can be seen in a

2

double gradient_calc_radial_factor(
double dist, double offset,

false

false

if dist == 0

if rat < offset

TARGET

TARGET MISSED
Approach Level = 2

TARGET MISSED
Approach Level = 1

true

true

true
if offset == 1

false

TARGET MISSED
Approach Level = 0

8

6

1

double x, double y)
{

double r, rat;

(1) if (dist == 0.0) {
(2) rat = 0.0;

} else {
(3) offset = offset / 100.0;
(4) r = sqrt (x * x + y * y);
(5) rat = r / dist;

(6) if (rat < offset)
(7) rat = 0.0;
(8) else if (offset == 1.0)
(9) rat = (rat >= 1.0) ? 1.0 : 0.0;

// ...

(a) Code snippet (b) Approach level calculation for the
true branch from node 8

Figure 2: Code from the gimp open source graphics package and corresponding fitness analysis

plot of the fitness landscape Figure 2(c). Predicate distance calculations for different types of
inequalities can be found in Table 1.

The situation becomes more complicated with conjoined or disjoined predicates, especially
where the target language employs short-circuiting (where short-circuiting is not employed the
rules of Tracey et al.[17] can be applied). In this case, evaluation breaks off early at any predicate
where the result of the entire condition has been decided. The predicate distance is found for the
last predicate evaluated, with the number of unevaluated conditions also figuring in the overall
fitness calculation.

Overall Fitness Calculation

Many search techniques just require the comparison of fitness values. Therefore one numerical
value, including the branch distance and approach level components is not required - just the
knowledge that one candidate solution is ‘better’ than another. For this comparison, a lower
approach level corresponds to a better solution. If there is a tie, then it is a lower number of
unencountered predicates in the condition is preferred, and if there is a tie in the number of
unencountered predicates, then a lower predicate distance corresponds to the better solution.

However where one numerical value is required, the predicate distance is normalized according
to the following equation of Baresel [2], where d is the predicate distance:

n = 1 − 1.001−d (1)

The branch distance, b is then calculated as:

b =
u + n

t
(2)

where u is the number of unencountered predicates, n is the normalized predicate distance, and t

is the total number of predicates in the branch condition.
This is then added to the approach level a to form an overall fitness value f :

f = a + b (3)

2.2 Search Algorithms

The following sections review some common search algorithms used for search-based test data
generation.

3

Table 1: Distance calculations for relational predicates (from Tracey et al.[17]). The value K,
K > 0, refers to a constant which is always added if the term is not true

Relational Predicate Objective Function obj

Boolean if TRUE then 0 else K

a = b if abs(a − b) = 0 then 0 else abs(a − b) + K

a 6= b if abs(a − b) 6= 0 then 0 else K

a < b if a − b < 0 then 0 else (a − b) + K

a ≤ b if a − b ≤ 0 then 0 else (a − b) + K

a > b if b − a < 0 then 0 else (b − a) + K

a ≥ b if b − a ≤ 0 then 0 else (b − a) + K

¬a Negation is moved inwards and propagated over a

void all_zeros(int list[], int size) {
int total = 0, i;

(1) for (i=0; i < size; i++) {
(2) if (list[i] == 0) {
(3) total ++;

}
}

(4) if (total == size) {
(5) printf("All zeros \n");

}
}

Figure 3: The all zeros function

2.2.1 Genetic Algorithms

Genetic algorithms (GAs) belong to the family of evolutionary algorithms, which work to evolve
superior candidate solutions (known as individuals) using mechanisms inspired by genetics, natural
selection and survival of the fittest. The search evolves several individuals at once in a ‘population’.

GAs generally make use of binary representations, however real-valued encodings are depicted
throughout this paper, as they are more commonly used for test data generation. The ‘chromo-
some’ making up each individual is more or less a direct representation of the input vector to the
program concerned. The all zeros program of Figure 3, for example, would have the chromo-
some <list[0], ... list[4], size>, where the array size of list is fixed at 5. As can be seen,
the ‘genes’ of the chromosome represent the input values that the program will be executed with.

A distinguishing feature of GAs over other forms of evolutionary algorithm is the emphasis they
place on crossover. Crossover is a mechanism of exchanging genetic material between individuals,
with the aim of breeding new, potentially ‘fitter’ offspring. A series of ‘crossover points’ are
used to decide where two parent chromosomes are to be spliced in order to form the composite
chromosomes of two children. The example below shows two input vectors to the all zeros

program being crossed over at position 3 to produce two offspring.

Parents Offspring

l
i
s
t
[
0
]

l
i
s
t
[
1
]

l
i
s
t
[
2
]

l
i
s
t
[
3
]

l
i
s
t
[
4
]

s
i
z
e

l
i
s
t
[
0
]

l
i
s
t
[
1
]

l
i
s
t
[
2
]

l
i
s
t
[
3
]

l
i
s
t
[
4
]

s
i
z
e

0 0 0 20 20 4
→

0 0 0 0 0 5
20 20 20 0 0 5 20 20 20 20 20 4

A GA is essentially a loop of operations on the population of individuals. Each iteration of the
population is known as a ‘generation’. The aim is to evolve generations containing generating fitter
input vectors. The steps of each iteration, comprise selection of individuals for crossover, mutation,
and reinsertion of individuals into the population for the next generation. At selected generations
sub-populations exchange individuals (migration), and compete for resources (competition), as
introduced above. The search continues until test data has been found, or resources have been
exhausted.

4

−200

0

200

−200

0

200

0

0.5

1

1.5

list[0]
size

fi
tn

e
s
s

−100

0

100 −100

0

100
0

1

2

3

x 10
−3

list[1]
list[0]

fi
tn

e
s
s

(a) True branch from node 2 (b) True branch from node 4

Figure 4: Fitness landscapes the all zeros function, showing two inputs

Selection. Selection is the process of selecting parents for crossover. A selection strategy is
generally biased towards the best individuals, but weaker individuals are selected as well in order
to keep the population diverse, and to prevent premature convergence on sub-optimal areas of
the search space. One method is stochastic universal sampling [1], whereby the probability of
an individual being selected for reproduction is proportionate to its fitness. In order to avoid a
situation where a few very fit individuals are selected often, and dominate the search, ‘ranked’
fitness values are used. Ranked values depend on the individual’s position in the overall population
sorted into fitness order.

Crossover. Once the selection pool has been decided, parents are taken two at a time for crossover.
There are several operators available for crossover, where the individual is spliced at one location
(one-point crossover), multiple locations (multi-point crossover) or at all possible locations (uni-
form crossover). Another method is discrete recombination [12] to generate offspring. Discrete
recombination is similar to uniform crossover, in that every position in the chromosome is a po-
tential crossover point. However, a gene can be copied into one or both children with an even
probability.

Mutation. The offspring are then mutated. For binary encodings this involves flipping bits at
low probability. For real-valued encodings, potential operators include replacement of a gene with
a newly randomly generated value, or gaussian mutation, where a new value is selected using a
gaussian distribution around the current value.

Reinsertion. The next generation is then constructed using the existing generation and the new off-
spring. An elitist strategy to reinsertion, for example, replaces the worst of the current generation
with the best offspring.

2.2.2 Hill Climbing

Hill climbing is a very simple local search algorithm which works to improve a single candidate
solution, starting from a random point in the search space. The method simply explores the
neighbouring search space around the current ‘point’. If a fitter candidate solution is found, the
search moves to that point. If no better solution is found in the neighbourhood, the algorithm
terminates. The method is called ‘hill climbing’, because the process is likened to the climbing
of hills on the surface of the fitness function. However, a ‘climb’, or an improvement in fitness,
is represented by acceptance of a decreased numerical value, since the fitness function is to be
minimized.

The coverage of the true branch from node 2, therefore, is represented by the valley touching
zero on the z axis of the fitness function surface (Figure 4a).

5

A form of hill climbing, referred to as the alternating variable method, was used by Korel in
early papers in the search-based test data generation literature [7, 8]. The idea of the approach is
to take each input variable in turn and adjust its value in isolation from the rest of the vector. If
altering the variable does not result in better fitness, the next input variable is targeted, and so on,
until no modification of input values results in an improved fitness. If altering the variable does
result in an improvement in fitness, accelerated moves are made in the direction of improvement
by increasing the numerical step size of the move.

A well-known problem with local search methods like hill climbing is that they can easily land
at the base of sub-optimal ‘hills’, and fail to find a good solution. Once a hill has been climbed, or
a plateau encountered, the rest of the search space remains unexplored. A GA tends to be more
robust in such landscapes, sampling many points in the search space at once.

By way of example, recall the all zeros function from Figure 3 and assume size is fixed
and not alterable by the test data search. The relationship between inputs and values for node
4’s predicate is not as simple and direct as that for node 2. For the most part, exploratory
moves for values of list have no effect on total, resulting in areas of undistinguished fitness.
On encountering one of these plateaux or valleys, as seen in Figure 4b, hill climbing terminates
without finding the required test data.

In general, it could be that the hill climb is successful if it is restarted in another (randomly
selected) area of the search space, and therefore this strategy is often employed until the search
has run out of resources.

3 IGUANA: An Overview

IGUANA is essentially a set of libraries for search-based test data generation. It is written in
Java and currently supports structural test data generation for C code. At the time of writing,
IGUANA consists of approximately 450 classes. IGUANA contains a library of search algorithms,
including genetic algorithms and their various operators. It also contains a C parser for parsing
and instrumenting C code. The C code to be tested is compiled into a DLL which is executed by
IGUANA code via the Java Native Interface. The instrumentation inserted into the code takes
the form of modifying the conditions in branch predicates to call fitness computation code in
IGUANA.

3.1 Overview of the Java packages in IGUANA

IGUANA is made up of the following Java packages:

• cparser

This library parses C code, automatically instrumenting it with callbacks so that the fitness
function can be computed. The C parser was generated by the javacc tool using an adapted
C grammar. The control flow and dependence graphs are extracted from each function. The
control dependence graph is used in computation of approach levels. The control flow graph
is used in order to automatically determine the test targets of a coverage type, for example
all branches or all statements.

• expt

This library contains bootstraps for starting experiments. Sub-libraries are automatically
generated with classes for each test object. It is within these classes that the user specifies
input type information for each function to be tested.

• inputgeneration

This library contains the ‘generator’ classes, which are wrappers around search algorithm
classes but with all the parameters specified (for example which mutation operator to use,

6

if it is a genetic algorithm). It also contains objective function classes for different types of
fitness function for test data generation. The Trace class is used to monitor the path taken
through a C function by a particular input vector, and keeps track of the various predicate
distances found along the way.

• log

The log library is made up of classes for logging the progress of test data generation runs.

• programstructure

This library provides classes which model a program. These classes are instantiated upon
parsing by the cparser library. Classes include CFG, which models a control flow graph and
CFGNode, for control flow graph nodes. ControlDependency models control dependencies,
from which the control dependency graph can be recovered. The sub-library condition models
the conditions of a branching statement, with classes such as AndCondition, AtomicCondition
etc.

• search

The search library contains sub-libraries and classes for the various search methods sup-
ported. Individuals, or candidate solutions, are modelled in the solution sub-library, which
contains classes for the different types of encoding - for example as a vector of real values.
The evolve library is the genetic algorithm library. The library supports multiple populations,
with competition and migration amongst them. Mutation operators currently implemented
include Gaussian mutation, Breeder genetic algorithm mutation [12], and uniform muta-
tion. One point, uniform and discrete recombination crossover operators are implemented
in the library. Several selection methods are also supported, including elitest selection, ran-
dom selection, stochastic universal sampling and tournament selection. The random library
supports random search, whilst the hillclimb library supports basic hill climbing and the
alternating variable method, as described in the last section.

• testobject

Finally, the testobject library contains base classes for representation of a test object, which
are inherited by the concrete classes auto-generated for the expt library.

3.2 Directory Structure

There are three main top level directories in IGUANA; classes and src, where the compiled Java
class and source files respectively live, and ctestobj where the source and DLL files for the test
objects (written in C) live.

Within the ctestobj directory, the sub-directory include, contains C code for wrapping up the
test object into a form which IGUANA requires; including Java native interface headers and
functions. These are called by the instrumented C code which in turn call methods in IGUANA
Java code for fitness computation. The subdirectory lib is where the library of compiled DLLs
are stored. The src directory contains source C code for each test object. Each test object has
a sub-directory within src. Within this directory, the instrumented C code is stored, along with
generated reference image files for the control flow and dependence graphs, and a directory called
structure which contains control flow and branching condition information in serialised Java object
form. The *.struc files in this directory correspond to each function in the test object and are
essentially serialised iguana.programstructure.CFG objects.

4 Preparing a Test Object for Test Data Generation

This section outlines the steps involved in preparing test objects and initiating test data generation
with IGUANA.

7

4.1 Setup Environmental Variables

Initially, the IGUANA HOME variable needs to be set to the directory in which IGUANA resides,
and the PATH variable needs to be set to point to the ctestobj/lib IGUANA directory.

4.2 Run Instrumenter

Firstly the test object C source (called TESTOBJECTNAME.c) needs to be placed in the direc-
tory ctestobj/src/TESTOBJECTNAME. The command java iguana.testobject.MakeCTestObject -p
TESTOBJECTNAME will then prepare the test object, instrumenting it and wrapping it in Java
Native Interface headers. Java classes will also be automatically created to provide IGUANA with
a handle to the test object and as a basis for definition of the search vector.

4.3 Define Search Vector

The search vector is the raw sequence of double variables to be optimised by the search algorithm.
It is essentially a numerical model of the input domain of the function under test. The search
vector for a function to be tested is defined by an ‘input specification’.

A package will have been created in the IGUANA source directory called iguana.expt.TESTOBJECTNAME,
with a FUNCTIONTOTEST.java class for testing of each C function in the test object. A ‘loader’
class, called TESTOBJECTNAME Loader.java will also be created. Loader classes instantiate each
FUNCTIONTOTEST object for a test object, and return the objects in a list. The code of each
FUNCTIONTOTEST.java file needs editing to initialise an instance variable called inputSpec, of
class InputSpecification. Using the methods of InputSpecification, the input specification needs to
be assembled, stating the minimum and maximum of each variable, and its accuracy (i.e. the
number of decimal places it invovles).

The check ISSN test object of bibclean takes an array of 30 characters. Thus the search vector
is defined with the simple line ‘inputSpec.addInt(30, -128, 127);’ - i.e. 30 variables long, in the
range for the C char type (that is, -128 to 127 of integer form - i.e. no decimal places).

4.4 Define Mapping from Search Vector to Input Parameters

The C file iguana expt TESTOBJECTNAME FUNCTIONTOTEST.c, in the instrumented directory
then needs to be edited. The perform call function, contained within, needs to be edited to map the
search vector from IGUANA (an array of double variables) into parameters with which to execute
the function under test. The following is an example for the check ISSN function of bibclean.
Essentially the array of doubles is recast to an array of characters.

void perform_call(double* args, int num_args)
{
// declarations
const int NUM_ARGS = 30;
int i;

// check correct number of arguments
if (num_args != NUM_ARGS) {

native_error("Wrong number of generated inputs for check_ISSN");
}

for (i=0; i < NUM_ARGS; i++) {
current_value[i] = (char) args[i];

}

// test object calling code
check_ISSN();
}

4.5 Create DLL

The command java iguana.testobject.MakeCTestObject -c TESTOBJECTNAME can now be run to
compile all the functions to test object DLLs.

8

5 Performing Test Data Generation

In order to perform test data generation, one of the ‘generator’ classes in the inputgeneration.generator
package must be invoked. The generators are essentially bootstrap classes which initialise a search
method with a set of parameters, load up the required test object and appropriate fitness function
and begin the search process. The output is currently handled by a series of classes in the log
package (currently, information is dumped to the screen or redirected to a text file).

6 Defining New Search Techniques and Fitness Functions

A new search technique simply needs to extend the Search abstract class, found in the search pack-
age. Parameters to the specifics of the search can be passed in via a newly defined constructor or
factory method. Candidate solutions used by the search should extend the search.solution.Solution
class.

Fitness functions should implement the search.objective.ObjectiveFunction interface, with fit-
ness values extending the search.objective.ObjectiveValue class. This class has the method isIdeal
which returns a Boolean value denoting whether the fitness value represents the global optima.
Fitness ‘values’ need not be represented internally in a numerical format (the class extends
java.lang.Comparable for comparison purposes), but as most search methods do require this, the
method getNumericalValue should be overridden to return a numerical representation.

Fitness functions for automatic test data generation are found in the inputgeneration.objectivefunction
package. This is where code for calculating predicate distances resides. The inputgeneration.trace
package contains classes for tracing the execution path taken through test objects and collating
branch distances.

7 Test Object Library

Test objects that have been used with IGUANA to date can be seen in Table 2.
bibclean-2.08 is an open source program used to syntax check and pretty-print BibTeX

bibliography files. The two functions tested are validity checks for ISBN and ISSN codes used
to identify publications. eurocheck-0.1.0 is also an open source program. It contains a single
function used to validate serial numbers on European bank notes. gimp-2.2.4 is the open source
GNU image manipulation program. Several library functions were tested, including routines for
conversion of different colour representations (for example RGB to HSV) and the manipulation of
drawable objects. space is program from the European Space Agency used for scanning star field
patterns, of which nine functions were tested. spice is an open source general purpose analogue
circuit simulator. Two functions were tested, which were clipping routines for the graphical front-
end. tiff-3.8.2 is a library for manipulating images in the Tag Image File Format (TIFF).
Functions tested include image placing routines and functions for building ‘overview’ compressed
sample images.

8 Summary

This paper has presented an overview of search-based structural test data generation with the
IGUANA system. The IGUANA system is a research tool and is thus under constant adaption to
incorporate new ideas and algorithms.

9

Table 2: Test object details

Test Object / Function Lines of of Code Number of Branches

bibclean-2.08
check ISSN 42
check ISBN 42
Total 178
eurocheck-0.1.0
main 22
Total 70
gimp-2.2.4
gimp rgb to hsl int 14
gimp rgb to hsv 10
gimp hsv to rgb 16
gimp hsv to rgb int 16
gimp rgb to hsv int 14
gimp rgb to hsl 14
gimp rgb to hsv4 18
gimp hwb to rgb 18
gimp hsv to rgb4 16
gradient calc radial factor 6
gradient calc square factor 6
gradient calc conical sym factor 8
gradient calc conical asym factor 6
gradient calc bilinear factor 6
gradient calc spiral factor 8
gradient calc linear factor 8
Total 867
space
addscan 32
fixgramp 8
fixport 6
fixselem 8
fixsgrel 68
fixsgrid 22
gnodfind 4
seqrotrg 32
sgrpha2n 16
Total 2210
spice
cliparc 64
clip to circle 42
Total 269
tiff-3.8.2
TIFF SetSample 14
TIFF GetSourceSamples 18
PlaceImage 16
Total 182

References

[1] Baker, J. E. Reducing bias and inefficiency in the selection algorithm. In Proceedings of the
2nd International Conference on Genetic Algorithms and their Application (Hillsdale, New
Jersey, USA, 1987), Lawrence Erlbaum Associates.

[2] Baresel, A. Automatisierung von strukturtests mit evolutionren algorithmen. Diploma
Thesis, Humboldt University, Berlin, Germany, July 2000.

[3] Ferguson, R., and Korel, B. The chaining approach for software test data generation.
ACM Transactions on Software Engineering and Methodology 5, 1 (1996), 63–86.

[4] Harman, M., Hu, L., Hierons, R., Wegener, J., Sthamer, H., Baresel, A., and

Roper, M. Testability transformation. IEEE Transactions on Software Engineering 30, 1
(2004), 3–16.

[5] Jones, B., Sthamer, H., and Eyres, D. Automatic structural testing using genetic
algorithms. Software Engineering Journal 11, 5 (1996), 299–306.

[6] Jones, B., Sthamer, H., Yang, X., and Eyres, D. The automatic generation of soft-
ware test data sets using adaptive search techniques. In Proceedings of the 3rd International
Conference on Software Quality Management (Seville, Spain, 1995), pp. 435–444.

[7] Korel, B. Automated software test data generation. IEEE Transactions on Software Engi-
neering 16, 8 (1990), 870–879.

[8] Korel, B. Dynamic method for software test data generation. Software Testing, Verification
and Reliability 2, 4 (1992), 203–213.

10

[9] Korel, B., and Al-Yami, A. M. Assertion-oriented automated test data generation. In
Proceedings of the 18th International Conference on Software Engineering (ICSE) (1996),
pp. 71–80.

[10] McMinn, P. Search-based software test data generation: A survey. Software Testing, Veri-
fication and Reliability 14, 2 (2004), 105–156.

[11] McMinn, P., and Holcombe, M. Hybridizing evolutionary testing with the chaining
approach. In Proceedings of the Genetic and Evolutionary Computation Conference (GECCO
2004), Lecture Notes in Computer Science vol. 3103 (Seattle, USA, 2004), Springer-Verlag,
pp. 1363–1374.

[12] Mühlenbein, H., and Schlierkamp-Voosen, D. Predictive models for the breeder genetic
algorithm: I. continuous parameter optimization. Evolutionary Computation 1, 1 (1993), 25–
49.

[13] Pargas, R., Harrold, M., and Peck, R. Test-data generation using genetic algorithms.
Software Testing, Verification and Reliability 9, 4 (1999), 263–282.

[14] Puschner, P., and Nossal, R. Testing the results of static worst-case execution-time
analysis. In Proceedings of the 19th IEEE Real-Time Systems Symposium (Madrid, Spain,
1998), IEEE Computer Society Press, pp. 134–143.

[15] Tracey, N. A Search-Based Automated Test-Data Generation Framework for Safety Critical
Software. PhD thesis, University of York, 2000.

[16] Tracey, N., Clark, J., and Mander, K. Automated program flaw finding using simulated
annealing. In Software Engineering Notes, Issue 23, No. 2, Proceedings of the International
Symposium on Software Testing and Analysis (ISSTA 1998) (1998), pp. 73–81.

[17] Tracey, N., Clark, J., Mander, K., and McDermid, J. An automated framework for
structural test-data generation. In Proceedings of the International Conference on Automated
Software Engineering (Hawaii, USA, 1998), IEEE Computer Society Press, pp. 285–288.

[18] Tracey, N., Clark, J., Mander, K., and McDermid, J. Automated test data genera-
tion for exception conditions. Software - Practice and Experience 30, 1 (2000), 61–79.

[19] Wegener, J., Baresel, A., and Sthamer, H. Evolutionary test environment for auto-
matic structural testing. Information and Software Technology 43, 14 (2001), 841–854.

[20] Wegener, J., Grimm, K., Grochtmann, M., Sthamer, H., and Jones, B. Systematic
testing of real-time systems. In Proceedings of the 4th European Conference on Software
Testing, Analysis and Review (EuroSTAR 1996) (Amsterdam, Netherlands, 1996).

[21] Wegener, J., and Grochtmann, M. Verifying timing constraints of real-time systems by
means of evolutionary testing. Real-Time Systems 15, 3 (1998), 275–298.

[22] Xanthakis, S., Ellis, C., Skourlas, C., Le Gall, A., Katsikas, S., and Kara-

poulios, K. Application of genetic algorithms to software testing (Application des algo-
rithmes génétiques au test des logiciels). In 5th International Conference on Software Engi-
neering and its Applications (Toulouse, France, 1992), pp. 625–636.

11

