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Abstract
Fitness functions derived from certain types of white-box test goals can be inadequate
for evolutionary software test data generation (Evolutionary Testing), due to a lack of
search guidance to the required test data. Often this is because the fitness function does
not take into account data dependencies within the program under test, and the fact
that certain program statements may need to have been executed prior to the target
structure in order for it to be feasible.

This paper proposes a solution to this problem by hybridizing Evolutionary Testing
with an extended Chaining Approach. The Chaining Approach is a method which
identifies statements on which the target structure is data dependent, and incremen-
tally develops chains of dependencies in an event sequence. By incorporating this facil-
ity into Evolutionary Testing, and by performing a test data search for each generated
event sequence, the search can be directed into potentially promising, unexplored ar-
eas of the test object’s input domain.

Results presented in the paper show that test data can be found for a number of test
goals with this hybrid approach that could not be found by using the original Evolu-
tionary Testing approach alone. One such test goal is drawn from code found in the
publicly available libpng library.
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1 Introduction

Evolutionary Testing (Jones et al., 1996; McMinn, 2004; Pargas et al., 1999; Wegener
et al., 2001; Xanthakis et al., 1992) uses evolutionary algorithms to search for software
test data. For white-box testing criteria, each uncovered structure - for example a pro-
gram statement or branch - is taken as the individual target of a test data search. With
certain types of programs, however, the approach degenerates into a random search,
due to a lack of guidance to the required test data. Often this is because the fitness func-
tion does not take into account data dependencies within the program under test, and
the fact that certain program statements need to have been executed prior to the target
structure in order for it to be feasible. For instance, the outcome of a target branch-
ing condition may be dependent on a variable having a special value that is only set
in a special circumstance - for example a special flag or enumeration value denoting
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an unusual condition; a unique return value from a function call indicating that an
error has occurred, or a counter variable only incremented under certain conditions.
Without specific knowledge of such dependencies, the fitness landscape may contain
coarse, flat, or even deceptive areas, causing the evolutionary search to stagnate and
fail. The problem of flag variables in particular has received much interest from re-
searchers (Baresel et al., 2004; Baresel and Sthamer, 2003; Bottaci, 2002; Harman et al.,
2002), but there has been little attention with regards to the broader problem as de-
scribed.

This paper proposes a solution which hybridizes Evolutionary Testing with an ex-
tended Chaining Approach. If the search fails to find test data which directly executes
the target, the Chaining Approach performs data flow analysis to identify intermediate
statements which may determine whether the target will be reached or not. Such in-
termediate statements are referred to as events. The search then focuses on executing a
sequence of events in order to find test data to execute the target. By incorporating this
facility into Evolutionary Testing, the evolutionary search can be directed into poten-
tially unexplored, yet promising areas of the test object’s input domain. Results from
an experimental study confirm this. For eight test objects, test data can be found for
a particular test goal with the hybrid approach that could not be found by using the
original Evolutionary Testing approach alone. One such test goal is drawn from code
found in the publicly available libpng library.

This paper is organized as follows. Section 2 describes some basic concepts. Sec-
tion 3 introduces Evolutionary Testing, and the standard method of deriving fitness
functions from white-box test goals. Problems of inadequate guidance are explained
with examples. Section 4 introduces the Chaining Approach. Section 5 describes the
proposed hybrid approach, including computation of the fitness function for the exe-
cution of event sequences, as well as improvements to the chaining algorithm. Section
6 details the experimental study and results. Section 7 concludes the paper.

2 Basic Concepts

A control flow graph (CFG) of a program is a directed graph G = (N, E, s, e) where N
is a set of nodes, E is a set of edges, and s and e are unique entry and exit nodes to the
graph. Each node n ∈ N corresponds to a statement in the program, with each edge
e = (ni, nj) ∈ E representing a transfer of control from node ni to nj . Nodes corre-
sponding to decision statements (for example an if or while statement) are referred
to as branching nodes. In the example of Figure 1, nodes 2, 4, and 6 are branching nodes.
Outgoing edges from these nodes are referred to as branches. The branch executed when
the condition at the branching node is true is referred to as the true branch. Conversely,
the branch executed when the condition is false is referred to as the false branch. The
predicate determining whether a branch is taken is referred to as a branch predicate. The
branch predicate of the true branch from branching node 2 in the program of Figure 1
is a == 0 . The false branch predicate is a != 0 .

An input vector I is a vector I = (x1, x2, . . . xk) of input variables to a program. The
domain of an input variable xi, 1 ≤ i ≤ k, is the set of all values that xi can take on.
The domain of a program is the cross product D = Dx1

×Dx2
× . . .×Dxk

where each
Dxi

is the domain of the input variable xi. A program input x is a single point in the
k-dimensional input space D, x ∈ D.

A path through a CFG is a sequence P =< n1, n2, . . . nm > such that for
i, 1 ≤ i < m, (ni, ni+1) ∈ E.

A definition of a variable v is a node which modifies the value of v, for example an
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CFG Node
(s) void flag_example(int a, int b)

{
(1) int flag = 0;

(2) if (a == 0)
(3) flag = 1;

(4) if (b != 0)
(5) flag = 0;

(6) if (flag)
{

(7) // target
}

(e) }

Figure 1: Example containing a flag, resulting in a flat fitness landscape

assignment or input statement. In the program of Figure 1 the variable flag is defined
at nodes 1, 3 and 5.

A use of a variable v is a node in which v is referenced, for example in assigning a
value to another variable, or appearing as part of a branching condition. In the program
of Figure 1, the variable flag is used at node 6.

A definition-clear path with respect to a variable v is a path in which v is not de-
fined. In the example of Figure 1, the path < 4, 6 > is definition-clear with respect to
the variable flag , but < 4, 5, 6 > is not, since flag is defined at node 5.

3 Evolutionary Testing

White-box testing coverage criteria demand that test data be found to execute all pro-
gram structures of a certain type, for example all CFG nodes or all branches. Evolution-
ary algorithms can automate the derivation of test data for this purpose by searching
the input domain of the program in question. Real-valued encodings are used, with
individuals directly representing input vectors to a function of the program currently
under test (Wegener et al., 2001). The fitness function to be minimized is derived from
the current structure or test goal of interest (Wegener et al., 2001; Baresel et al., 2002),
and is made up of two components - the approach level and the branch distance.

The approach level metric assesses how close an input vector is to covering the cur-
rent structure of interest on the basis of the execution path taken through the program’s
control structure. Central to this is the notion of a critical branch. A critical branch is
simply a branch which leads to the structural target of interest being missed in a path
through the program. Critical branches are also referred to in the literature as decisive
branches, because once such a branch is taken through the program’s control structure,
failure to reach the target has essentially been ‘decided’. For example in Figure 2, each
of the false branches from nodes 1, 2 and 3 are critical branches. The approach level for
an individual (see Figure 2) is calculated by subtracting one from the number of critical
branches lying between the node from which the individual diverged away from the
target, and the target itself.

At the point where control flow took a critical branch for some individual, the
branch distance is calculated. The branch distance reflects how close the alternative
branch was to being taken, and is computed using the values of the variables or con-
stants involved in the predicates used in the conditions of the branching statement. For
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CFG Node

 

true 

true 

if a >= b 

if b <= c 

TARGET 

TARGET MISSED 
Approach Level = 1 

Branch Distance = b - c 

TARGET MISSED 
Approach Level = 2 

Branch Distance = b-a 
false 

false 

true 
if c == d false 

TARGET MISSED 
Approach Level = 0 

Branch Distance = abs(c- d) 

(s) void example(int a, int b, int c, int d)
{

(1) if (a >= b)
{

(2) if (b <= c)
{

(3) if (c == d)
{

// target
...

Figure 2: Calculating the fitness function for Evolutionary Testing

example, if the false branch were taken from node 3 in Figure 2, the branch distance for
taking the alternative true branch is computed using the formula abs(c - d) . The
closer the values of c and d, the smaller the branch distance value, and the closer the
branch is to being executed as true. A full list of formulas for different types of branch-
ing condition can be found in Tracey et al.(Tracey et al., 1998). The branch distance dist
is normalized using the following function (Baresel, 2000):

normalize(dist) = 1− 1.001−dist (1)

This value is added to the approach level to make up the complete fitness value for an
input vector and the current structural target of interest:

approach level + normalize(dist) (2)

3.1 Problems with the Approach

Evolutionary Testing has been shown to be an effective method for structural test data
generation (Wegener et al., 2001). However, the approach degenerates into a random
search for programs with certain characteristics. One problem can arise as a result of
data dependencies within the program, where the target structure requires execution
of earlier statements in order for it to be feasible. Due to the fact that these statements
do not affect whether the target will be reached in terms of control flow through the
program, they are ignored for the purposes of computing the fitness function. If such
statements are only exercised under ‘special’ conditions rather than by chance, and if
the search is not given guidance to their execution, the target structure is unlikely to be
covered.

Take the example of Figure 3. The inverse function finds the multiplicative in-
verse of an argument d. To avoid a division by zero error, zero is simply returned
when the divisor is zero. If the goal of the search is to execute node 2 in the function
function under test , it is necessary to execute the true branch from node 1. This
requires a zero return value from the inverse function, and hence a zero input value
x as an argument to the function function under test . However, the zero input
value required to execute the target is unlikely to be found by chance, simply because
it represents a very small portion of the input domain, and there is no explicit fitness
information to guide the search to it. In actual fact, the fitness function leads the search
away from the zero input, since as the value of x increases, the result of the inverse
function decreases. This deception can be seen in a plot of the fitness function in Figure
4a.

4 Evolutionary Computation Volume x, Number x



Evolutionary Testing Using an Extended Chaining Approach

CFG Node
(s) double function_under_test(double x)

{
(1) if (inverse(x) == 0)

{
(2) // target

}
(e) }

double inverse(double d)
{

(3) if (d == 0)
(4) return 0;

else
(5) return 1 / d;

}

Figure 3: Example resulting in a deceptive fitness landscape
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Figure 4: Fitness landscapes for the ‘Deceptive’ test object (Figure 3). (a) Fitness land-
scape of the initial event sequence. (b) Fitness landscape of the final event sequence

The fitness landscape for a test goal can also be flat for large areas of the input
domain, giving the search little guidance at all. It is well known that this problem can be
caused by the existence of flag and enumeration variables (Baresel et al., 2004; Baresel
and Sthamer, 2003; Bottaci, 2002; Harman et al., 2002). A flag is simply a variable that
is true or false. When flag variables are used in branch predicates, plateaux form in the
fitness landscape, which correspond to the true and false values of the flag. This can be
seen with the example of Figure 1. The test goal is the statement corresponding to node
7, which requires the true branch from node 6 to be taken. However, the branching
node 6 involves the flag variable flag , which is only true when both input variables to
the function are zero. No guidance is provided to this input vector, because for all other
vectors the branch distance using the false value of the flag is the same. The resulting
plateaux can be seen in a plot of the fitness landscape in Figure 5a. It can be easily seen
from the program that the path which executes nodes 3 and avoids node 5 should be
taken, in order for the variable flag to be true. However no guidance is provided to
the search to direct it to the execution of this path.
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Figure 5: Fitness landscapes and best fitness plots for the ‘Flag’ test object (Figure 1). (a)
Fitness landscape of the initial event sequence. (b) Best fitness plot for a test data search
using the initial event sequence. (c) Fitness landscape of the final event sequence. (d)
Best fitness plot for a test data search using the final event sequence.

6 Evolutionary Computation Volume x, Number x



Evolutionary Testing Using an Extended Chaining Approach

4 The Chaining Approach

The Chaining Approach (Ferguson and Korel, 1996a; Ferguson and Korel, 1996b; Korel,
1996) is an alternative structural test data generation technique based on a local search
method known as the ‘alternating variable method’. The alternating variable method
works to adapt a single input vector to find the required test data for some structure. If a
critical branch is taken, branch distance calculations are used to guide the modification
of the input vector until test data can be found, or no further improvement in branch
distance values can be made. If the branch distance cannot be minimized to zero, test
data will not have been found, and the search declares failure.

Recognizing search failure may be due to data dependencies within the program,
the Chaining Approach employs a ‘backup’ strategy through the construction of event
sequences, which may lead to execution of the target. An event sequence can be thought
of as an abstract path. An event simply refers to the execution of a program node.
Event sequences force the consideration of certain statements leading up to the target
structure, identified using data flow analysis. By conducting a new search for each
event sequence, new branch distance information can be employed to direct the search
into originally unexplored, potentially promising areas of the input domain.

4.1 Basic Concepts for the Chaining Approach

An event sequence is a sequence of events, < e1, e2, · · · ek >, where each event is a tuple
ei = (ni, Ci) where ni is a program node and Ci is a set of variables referred to as a con-
straint set (Ferguson and Korel, 1996a). The constraint set is a set of variables that must
not be modified until the next event in the sequence. That is to say, a definition-clear
path must be executed between two events ei and ei+1 with respect to each variable v
in Ci.

The following event sequence < (s, ∅), (3, {flag}), (7, ∅) > is an event sequence re-
ferring to nodes in the example of Figure 1. It requires that the start node s is executed,
followed by the execution of node 3. Node 7 must then be reached, but by avoiding
any reassignment to flag . This means the false branch must be taken from node 4.

An event sequence is feasible if input data exists on which the event se-
quence can be successfully executed, otherwise it is said to be infeasible. The
event sequence < (s, ∅), (3, {flag}), (7, ∅) > is feasible, however the event sequence
< (s, ∅), (5, {flag}), (7, ∅) > is not.

A problem node refers to a branching node for which the search can not find inputs
so that the flow of execution is changed in order for some alternative, preferred, branch
to be taken.

The set of nodes that can have an immediate effect on a problem node is the set of
last definitions of variables used at that problem node. A last definition i is a program
node that assigns a value to a variable v which may potentially be used by a node j.
For the node to qualify as a last definition, a definition-clear path must exist between
node i and node j with respect to v. The set of last definitions for variables used at node
6 is therefore the set {1, 3, 5}. A definition-clear path with respect to flag exists from
node 1 to node 6 via the false branches from nodes 2 and 4, whilst a definition-clear
path exists from node 3 to node 6 with respect to flag through the false branch from
node 4.

4.2 The Chaining Process

The Chaining Approach begins with an initial sequence E0 which contains the start
node s and the target node. Both events have empty constraint sets. In the example of
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Figure 1, the target is node 7. The initial event sequence is therefore:

E0 = < (s, ∅), (7, ∅) >

Input data may not be found to take the true branch from node 6 so that node 7 is
executed, due to the existence of a flag variable in the predicate at node 6. The flag is
only true when a and b are zero. However guidance to these values is not provided
by the true branch distance at node 6. Therefore, node 6 is declared as a problem node
and is inserted before node 7 into the event sequence:

< (s, ∅), (6, ∅), (7, ∅) >

Last definition nodes for node 6 are then identified - nodes 1, 3 and 5. Three new
event sequences are now generated, each demanding the execution of one of these
nodes before node 6 in the sequence:

E1 = < (s, ∅), (1, {flag}), (6, ∅), (7, ∅) >

E2 = < (s, ∅), (3, {flag}), (6, ∅), (7, ∅) >

E3 = < (s, ∅), (5, {flag}), (6, ∅), (7, ∅) >

The inserted events are formed using a last definition node and a constraint set formed
from the variable defined at the node. The addition of the last definition variable into
the constraint set specifies that it will not be modified again until the problem node
is encountered, ensuring the effect of that last definition on the problem node is not
destroyed. In this case, the constraint set contains the variable flag . In event sequence
E1 this means, for example, that the false branch must be taken from nodes 2 and 4 in
order to prevent flag being redefined before node 6. It is unlikely that E1 will lead to
the discovery of the required test data. It adds no branch distance information for the
purposes of the search, and the paths taken using it are likely to follow those of E0. E3

will not lead to the required test data, as it mandates the setting of flag to false. E2

requires flag to be set to true at node 3. This requires node 2 to be executed as true, and
so the search can use the branch distance information at this node to find a value of a in
order for this to happen. This branch distance information explicitly directs the search
to the zero value of the a variable. Such guidance was not available from the branching
condition at node 6, which depends only on the flag variable. Furthermore, node 5 must
be avoided, as it redefines flag . In order for this to occur, branch distance information
at node 4 is used so that the false branch is taken. By explicitly requiring that b is zero,
further guidance is provided to the search that was not previously available.

In general then, the Chaining Approach begins with an initial event sequence E0

containing only the start node s and the target node t - < (s, ∅), (t, ∅) >. The test data
search may fail to find inputs to execute the event sequence, with the flow of execu-
tion diverging down an unintended branch at some node p1. Node p1 is declared as
a problem node and is inserted into the event sequence - < (s, ∅), (p1, ∅), (t, ∅) >. For
the problem node p1, the set of last definition nodes lastdef(p1) are found for the set of
variables used at p1. For each last definition di ∈ lastdef(p1), a new event sequence is
generated containing an event associated with that last definition:

E1 = < (s, ∅), (d1, {def(d1)}), (p1, ∅), (t, ∅) >

E2 = < (s, ∅), (d2, {def(d2)}), (p1, ∅), (t, ∅) >

. . .

EN = < (s, ∅), (dN , {def(dN)}), (p1, ∅), (t, ∅) >
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The constraint set associated with each last definition di in Ei is a one element set
def(di) that requires a variable defined by di is not modified between di and p1.

The Chaining Approach selects one of the event sequences and tries to find inputs
for which it is successfully executed. If such an input is found, then test data to execute
the test goal has been found. If not, new event sequences may be generated. For exam-
ple, in trying to find inputs to execute E1, a new problem node p11

may be encountered
before d1 can be executed. If this is the case, p11

is inserted into the sequence:

< (s, ∅), (p11
, ∅), (d1, {def(d1)}), (p1, ∅), (t, ∅) >

Last definitions of variables are then found for p11
, and new events are generated and

inserted into a new set of event sequences:

E11
= < (s, ∅), (d11

, {def(d11
)}), (p11

, ∅), (d1, {def(d1)}), (p1, ∅), (t, ∅) >

E12
= < (s, ∅), (d12

, {def(d12
)}), (p11

, ∅), (d1, {def(d1)}), (p1, ∅), (t, ∅) >

. . .

E1N
= < (s, ∅), (d1N

, {def(d1N
)}), (p11

, ∅), (d1, {def(d1)}), (p1, ∅), (t, ∅) >

Generated event sequences are organized in a tree structure. The first level of the
tree contains the event sequences generated as a result of the first problem node, with
subsequent levels formed if further problem nodes are encountered. Event sequences
are explored in the tree in a depth-first fashion to a maximum depth limit.

4.3 Formal Generation of an Event Sequence

The general strategy for generating event sequence using the original Chaining Ap-
proach can be formally described as follows (Ferguson and Korel, 1996a). Let
E =< e1, e2, . . . , ei−1, ei, ei+1, . . . , em > be an event sequence. Suppose the test data
search finds input data to partially execute the event sequence up to event ei, with a
problem node p encountered between events ei and ei+1. Let d be a last definition of
problem node p. A new event sequence is generated from E by inserting two events
into sequence: ed = (d, def(d)) and ep = (p, ∅). Event ep is always inserted between
events ei and ei+1. In general, however, event ed may be inserted in any position be-
tween e1 and ek+1 in the event sequence. Therefore, the following event sequence is
generated:

E′ =< e1, e2, . . . , ek−1, ek, ed, ek+1, . . . , ei−1, ei, ep, ei+1, . . . , em >

Insertion of new events into the sequence may require modification of existing
constraint sets in the sequence. The constraint set of the event corresponding to the
problem node is simply the same as the constraint set of the prior event in the sequence:

Cp = Ci (3)

Before the insertion of the new event, variables in Ci could not be modified between
ei and ei+1. The above step ensures this is still the case, by maintaining that these
variables will not be modified between ep and ei+1 either.

The constraint set Cd for the event ed is formed from the variable defined at the
event node, def(d), merged with the variables of the constraint set of the previous
event, Ck :
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Cd = Ck ∪ def(d) (4)

In a similar fashion to Equation 3, this rule maintains consistency of the event sequence
by ensuring that variables in Ck are not modified between ek and the new event ed.
However, the variable def(d) might still be modified between ek+1 and ep, ruining the
effect of the last definition. The final step prevents this by adding def(d) to each con-
straint set for each event from ek+1 up to but not including ep:

∀j, k + 1 ≤ j ≤ i, Cj ∪ def(d) (5)

5 A Hybrid Approach

This section introduces the proposed ‘hybrid approach’.

5.1 Test Data Search

The alternating variable method adapts one input vector using branch distance infor-
mation alone. However, evolutionary search maintains populations of solutions, and
therefore needs to be able to make global comparisons with respect to test inputs and
event sequences. Thus, a more sophisticated fitness function is required. Therefore, the
fitness value of an input vector x for an event sequence E of length l is computed us-
ing the following fitness function, which is to be minimized (McMinn and Holcombe,
2004):

fitness =

l∑

i=1

fitness(ei) (6)

where ei is the ith event in the event sequence, and fitness(e) is calculated for
ei = (ni, Ci) as follows:

Rule 1. If the event node ni (to be executed after the event node of ei−1 and before
ei+1) is missed, add the result of Equation 2, where approach level is the approach level
for node ni, and dist is the branch distance of the alternative branch where execution
diverged away from ni.

Rule 2. For each definition node def executed for each variable v ∈ Ci violating the
definition-clear path required until ei+1, add the normalized branch distance for the
alternative branch at the last branching node that led to def ’s execution using Equation
1.

5.1.1 Example

Recall the example of Figure 1 and the event sequence:

< (s, ∅), (3, {flag}), (6, ∅), (7, ∅) >

Take the input (a=10, b=20) . The first event, e1 is the start node and is always exe-
cuted. However for e2, the second event, node 3 is missed, with the false branch from
node 2 taken. The approach level is zero and the branch distance is abs(10 − 0) = 10.
Therefore 0 + normalize(10) is added to the overall fitness according to rule 1.

Furthermore, the constraint set of e2 is violated, since node 5 is executed, which
redefines the value of flag . The branch distance of the alternative false branch from
node 4 is abs(20− 0). Therefore normalize(20) is added to the overall fitness according
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to rule 2. Node 6 of the third event e3 is successfully reached, but node 7 of the forth
event e4 is missed, since the false branch from node 6 is taken. The approach level for
node 7 of e4 is 0 and the branch distance is abs(1− 0) = 1. Therefore 0 + normalize(1)
is added to the overall fitness according to rule 1:

fitness = fitness(e1) + fitness(e2) + fitness(e3) + fitness(e4)

= 0 + (0 + normalize(10) + normalize(20)) + 0 + (0 + normalize(1))

= 0.0307

The fitness landscape of this event sequence is smooth, providing good guidance
to the required input vector, as seen in Figure 5c. This is in contrast to the original
fitness landscape (Figure 5a).

Note that fitness function for standard Evolutionary Testing and the initial event
sequence of the hybrid approach are identical. The initial event sequence consists of
just the start node and the target node. The start node is always executed, and its
event has no constraint set. Therefore the fitness function is the fitness of target node
event, calculated using rule 1, which is the same as the fitness function for standard
Evolutionary Testing.

This of course also means that it is unlikely for the hybrid approach to perform any
worse than standard Evolutionary Testing. The search for the initial event sequence
could be viewed as performing the standard Evolutionary Testing approach, with the
chaining mechanism brought into effect when this search fails.

5.2 Identification of Problem Nodes and Variables Used at the Problem Node

The evolutionary search works to minimize the fitness function. If a fitness value of
zero is found, test data to execute the test goal will also have been found. If this is not
the case, further event sequences are generated using the first problem node encoun-
tered by the best individual found during the search.

The test data corresponding to the best individual may result in an execution path
which diverges away from the intended path at several points - resulting in several
potential problem nodes. However, as for the original Chaining Approach, only the
first problem node in the sequence is used to find last definitions and generate new
event sequences.

5.3 Extended Event Sequence Generation Using Influencing Sets

The original Chaining Approach inserts new events which are last definitions for vari-
ables used at a problem node. However there is potentially a greater set of variables
that can affect the outcome at the problem node. For example the values of a and b
influence the value of x and thus have an intermediate effect on the outcome of the
following if statement:

x = a + b;

if (x > 0) {
// ...

}
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CFG Node
typedef enum {FALSE, TRUE} bool;

(s) void check_errors(int r1, int r2)
{

(1) bool error1 = FALSE;
(2) bool error2 = FALSE;
(3) bool shutdown = FALSE;

(4) if (r1 == 0)
(5) error1 = TRUE;

(6) if (r2 == 0)
(7) error2 = TRUE;

(8) shutdown = error1 && error2;

(9) if (shutdown)
{

(10) // target
}

(e) }

Figure 6: Example with multiple flags, and an intermediate assignment

This can cause problems for certain test objects. Consider the example of Figure 6. The
target is node 10. Node 9 is a problem node. The branching condition uses a flag,
and the fitness landscape is flat for the entire input domain, other than for the required
input vector. The generated event sequences are:

E1 = < (s, ∅), (3, {shutdown}), (9, ∅), (10, ∅) >

E2 = < (s, ∅), (8, {shutdown}), (9, ∅), (10, ∅) >

E1 is infeasible. E2 is feasible, but node 9 remains problematic, since it merely requires
node 8 to be executed. This node is always executed, and no new information is added
to the fitness function, whose landscape is still flat. Further event sequences need to be
generated to guide the search to the assignments at node 5 and 7, but with the original
Chaining Approach this is not possible.

Furthermore, take the example of Figure 7. The target is node 6, which is only
executed when half of the inputted integer array values are zero. Node 5 becomes a
problem node. It depends on a counter variable which is incremented in a loop when
an array value is found to be zero. The fitness landscape contains flat steps down to
the required test data, providing coarse levels of guidance (Figure 8a). Further event
sequences are generated, these being:

E1 = < (s, ∅), (1, {counter}), (5, ∅), (6, ∅) >

E2 = < (s, ∅), (4, {counter}), (5, ∅), (6, ∅) >

E1 is infeasible. E2 is not infeasible, but requires that the counter variable is incre-
mented only once. This is unlikely to be enough to ensure that input data can be found
- the chances of four more array values being zero in a large input domain being small.
The fitness landscape still contains ridges (Figure 8b), and node 5 is still a problem
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CFG Node
#define THRESHOLD 5
#define SIZE 10

(s) void counter(double a[SIZE])
{

(1) int counter = 0;
int i;

(2) for (i = 0; i < SIZE; i++)
{

(3) if (a[i] == 0)
(4) counter ++;

}

(5) if (counter == THRESHOLD)
{

(6) // target statement
}

(e) }

Figure 7: Example resulting in a coarse fitness landscape - the ‘Counter’ test object

node. A further increment counter should not be inserted between the events cor-
responding to nodes 4 and 5, because counter appears in the constraint set for the
event corresponding to node 4. Furthermore, a further increment could not appear be-
tween nodes s and 4, as the definition is not a last definition, since the last definition of
counter already appears in the sequence at node 4.

To handle these problems an extension is made to the event sequence generation
algorithm, using the concept of influencing sets. Given a program node and some path
to the problem node, an influencing set consists of all variables that could potentially af-
fect the outcome at the problem node. The event sequence generation process is forced
to consider definitions for all variables that can potentially affect the problem node,
allowing event sequences to be generated that were not possible with the original ap-
proach.

The recursive algorithm for the extended event sequence generation approach can
be seen in Figure 9. Paths are explored backwards from the problem node. The in-
fluencing set is adapted according to the path taken. For a newly identified problem
node, the influencing set is simply the set of variables involved in evaluated, but un-
satisfied conditions, at the problem node. Beginning with the current problem node sn,
the initial influencing set I , and the event prior to the problem node event in the event
sequence e = (n, C), the algorithm traces its way in a backwards manner through the
nodes of the program. The set prev nodes is simply the set of program nodes connected
to the current node by an outgoing edge. Each node pn in prev nodes is analyzed.

Firstly, the algorithm checks to see if pn is the same as the prior event node n. If this
is the case, and the variable defined at n (def(n)) is contained in the influencing set, the
influencing set is modified by removing def(n) and by adding the uses of n (uses(n)).
This is because no prior definition of def(n) can now affect the outcome at the problem
node, since n is itself a last definition. However, the variables used at n can affect the
problem node because they are used in the assignment to def(n). The procedure then
recurses using the event node en as the current node sn, the new influencing set and
the new prior event in the sequence.
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Figure 8: Fitness landscapes for the ‘Counter’ test object (Figure 7), plotted for the first
two values of the array. The next three values are fixed at zero, with the final elements
fixed at a non-zero value. (a) Fitness landscape of the initial event sequence. (b) Fitness
landscape of an intermediate event sequence that mandates only one increment of the
counter. (c) Fitness landscape of the final event sequence

14 Evolutionary Computation Volume x, Number x



Evolutionary Testing Using an Extended Chaining Approach

Let E be the original event sequence from which new event sequences are required

Let S be a global set of search points, where a search point is a tuple sp = (sn, I, e),
where sn is a program node, I is an influencing set of variables, and e = (n, C) is
an event in the original event sequence E

Procedure generate event sequences(In: a search point, sp = (sn, I, e = (n, C)))
Let prev nodes be the set of control flow graph nodes connected to sn
by an outgoing edge
If sp /∈ S

S ← S ∪ sp
Repeat

Let pn be a program node, pn ∈ prev nodes
prev nodes← prev nodes− {pn}
If pn = n

If def(pn) ∈ I
I ← I − {def(pn)}
I ← I ∪ uses(pn)

End If
generate event sequences((pn, I, prev event(E, e)))

Else If ∀v ∈ C, v 6= def(pn)
If ∃v ∈ I, v = def(pn)

If reachable(pn, e)
create new event sequence(pn, E, e)

End If
generate event sequences((pn, I − {def(pn)}, e))

Else
generate event sequences((pn, I, e))

End If
End If

Until prev nodes = ∅
End If

End Procedure

def(n) returns the variable defined at program node n (or ∅ if one is not defined)

uses(n) returns the set of variables used by a program node n

reachable(pn, e) checks if a node pn can be reached from another node n of an event
e = (n, C) without violation of the constraint set C

create new event sequence(pn, E, e) creates a new event sequence for the next level
of the tree from a definition node pn, the original event sequence E and the event e
after which the new event should be inserted

prev event(E, e) returns the event prior to the event e in an event sequence E

Figure 9: Recursive procedure for generating event sequences using influencing sets
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If pn is not the prior event node, the algorithm checks the constraint set of the
preceding event in the event sequence. If pn defines any variables in the constraint
set, this particular line of enquiry terminates, since the path to the next event is not
definition-clear.

If pn does not define any variable in the constraint set, but instead defines a vari-
able in the influencing set, then a qualifying definition node has been found. A new
event sequence can be generated using pn, if pn is reachable from en via some defini-
tion clear path with respect to C. This new event sequence is generated following the
rules of the original approach (Equations 3-5).

If none of the above cases are true, the procedure recurses using the new node pn
as the current node sn, along with the unmodified values of I and e.

Finally, a global data structure of ‘search points’ ensures that only acyclic program
paths are considered between adjacent events in the event sequence, and that the algo-
rithm terminates.

5.3.1 Examples

It is now demonstrated how influencing sets and the extended event sequence genera-
tion procedure has practical benefit.

Recall how further event sequences would be desired from the event sequence for
the example of Figure 7:

E2 =< (s, ∅), (4, {counter}), (5, ∅), (6, ∅) >

The problem node is node 5, and the influencing set is {counter}. In searching for
program nodes back from node 5, node 4 is encountered. An event for node 4 appears
in the event sequence. The definition variable is removed from the influencing set:

I ← I − def(4)

← {counter} − {counter}

← ∅

leaving an empty set. Uses at node 4 are added:

I ← I ∪ uses(4)

← ∅ ∪ {counter}

← {counter}

Last definitions can be sought for variables in the influencing set from node 4.
These last definitions include node 1, and node 4 on the previous iteration of the loop:

E21
= < (s, ∅), (1, {counter}), (4, {counter}), (5, ∅), (6, ∅) >

E22
= < (s, ∅), (4, {counter}), (4, {counter}), (5, ∅), (6, ∅) >

Event sequences can now be generated that include five instances of node 5, and
therefore five increments of the counter. When this happens, the fitness landscape is
smooth, providing good guidance to the required test data (Figure 8c). In this example
the influencing set is effectively unchanged - the variable counter is defined and used
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in the same statement, and so is removed and then re-added. However, return to the
example of Figure 6. The target is node 10. Node 9 is a problem node. The current
event sequence is:

E2 =< (s, ∅), (8, {shutdown}), (9, ∅), (10, ∅) >

Recall that E2 is feasible, but assume node 9 is still problematic. In event sequence
generation, node 8 is encountered tracing backwards from node 9. The influencing set
is modified to remove the definition of shutdown and add the uses - {error1, error2}.
This means that further event sequences can be generated:

E21
= < (s, ∅), (5, {error1}), (8, {shutdown}), (9, ∅), (10, ∅) >

E22
= < (s, ∅), (7, {error2}), (8, {shutdown}), (9, ∅), (10, ∅) >

Assuming node 9 remains problematic, the following event sequence will be generated
from both E21

and E22
:

< (s, ∅), (5, {error1}), (7, {error1, error2}), (8, {shutdown}), (9, ∅), (10, ∅) >

This event sequence requires nodes 5 and 7 to be executed before node 8, which in turn
assures that the true branch is taken from node 9, and that node 10 will eventually be
executed.

6 Experimental Study

An experimental study was designed to feature test goals that cause problems for Evo-
lutionary Testing, and to try them with the proposed hybrid approach. The experimen-
tal study featured one real world test object, and seven synthetic test objects. The real
world test object is drawn from the libpng publicly available open-source graphics
file format library (libpng, 2005). The seven synthetic test objects feature test goals with
flat, coarse and deceptive landscapes in loop and loop-free code. They are thus ideal
for testing the hybrid approach.

6.1 Test Objects

This section describes the test objects and the input domain sizes used. The source
code for test objects, where not found in this paper, can be found in McMinn (McMinn,
2005).

The libpng library - png init read transformations function. The core code
with respect to the chosen test goal of this function can be seen in Figure 10. It belongs
to a file containing a set of functions which can be called by an application to han-
dle data read in from a PNG graphics file. The target node is node 8, which depends
on branching node 7 being evaluated as true. This requires the flag variable k to be
false. Thus, the assignment to the flag at node 6 within the loop from node 4 must be
avoided. Event sequences must therefore be generated in order to provide the search
with this information. The function is passed a structure type as an input argument,
within which five variables are relevant to the test goal. The variable color type is an
unsigned character of range 0-255. The variables screen gammaand gammaare floats.
A range 0-10 was used with a precision of 0.1. The variable num trans is an unsigned
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CFG Node
(s) void png_init_read_transformations(png_structp png_pt r)

{
// ...

(1) int color_type = png_ptr->color_type;

// ...

if ((color_type == PNG_COLOR_TYPE_PALETTE
&& png_ptr->num_trans != 0)
&& (fabs(png_ptr->screen_gamma * png_ptr->gamma - 1.0)

(2) < PNG_GAMMA_THRESHOLD))
{

int i,k;
(3) k=0;
(4) for (i=0; i<png_ptr->num_trans; i++)

{
if (png_ptr->trans[i] != 0

(5) && png_ptr->trans[i] != 0xff)
(6) k=1; / * partial transparency is present * /

}

(7) if (k == 0)
(8) png_ptr->transformations &= (˜PNG_GAMMA);

}

// ...
(e) }

Figure 10: Example from the libpng PNG graphics file format reference library

short. A range of 0-30 was used. The array trans was of size 30, with its elements un-
signed characters, and the full range of 0-255 used for each. Thus the input domain of
the test object for the experiment, and therefore the search space size, is approximately
1.4× 1080 possible input vectors.

Counter. The ‘Counter’ test object can be seen in Figure 7 and was described in Sec-
tion 5.3. The inputted array is of ten doubles in the range -15,000 to 15,000, with a
precision of 0.1 the search space size is approximately 6× 1054.

Deceptive. This program can be seen in Figure 3 and was described in Section 3.1.
The input value of x lies in a range of -15,000 to 15,000, with a precision of 0.1, the
search space size is approximately 1.5× 105.

Enumeration. This decides whether three inputted colour intensity values (integers
in the range 0 to 255) represent one of the colours in an enumeration. The target state-
ment is executed when the inputs represent the colour black. However plateaux occur
in the objective function landscape for the standard evolutionary approach, and the
initial event sequence of the hybrid approach, due to the use of a variable that is of an
enumerated type. The search space size is approximately 1.6× 107.
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Flag. This is the function of Figure 1, which was described in Section 4.2. With an
input range of -15,000 to 15,000 for both input variables of integer type, the search
space size is approximately 2× 108.

Flag Loop Assignment. This program takes an array of ten integer values, along with
an additional integer variable. A flag is initially set to false, but becomes true when one
or more of the array values is zero. This assignment occurs within a loop body. When
the flag is true, the target statement is executed. Due to the use of the flag, the fitness
landscape consists of flat regions. The range of the integers of the array was -15,000 to
15,000 giving a search space size of approximately 8.6× 1044.

Flag Avoid Loop Assignment. This program also takes an array of ten integer values.
A flag is initially set to true, but is set to false in a loop body which iterates through
the array if any of the array values are not equal to zero. Consequently the search
landscape is made up of one large plateau except for the point of the required test data.
The range of the integers of the array was -15,000 to 15,000 giving a search space size
of approximately 6× 1044.

Multiple Flag. This program can be seen in Figure 6 and was described in Section 3.1.
With an input range of -15,000 to 15,000 for both input variables, the search space size
is approximately 2× 108.

6.2 Experimental Setup

Each of the test objects were put to the test with the hybrid approach.
The Genetic and Evolutionary Algorithm Toolbox (GEATbx) (Pohlheim, 2005) was

used to perform the evolutionary searches. Search parameters employed by other au-
thors in the field of Evolutionary Testing were used (Harman et al., 2002; Baresel et al.,
2003), namely 300 individuals per generation, split into 6 subpopulations starting with
50 individuals each. Linear ranking is utilized, with a selection pressure of 1.7. Real-
valued encodings are used. Competition and migration is employed across subpop-
ulations. Individuals are recombined using discrete recombination, and mutated us-
ing real-valued mutation. Each experiment with each program version was repeated
twenty times.

Two different termination criteria were used for the evolutionary searches. The
first criterion terminates searches after 200 generations if no solution has been found,
and is referred to as ‘TC1’. The second terminates the search if there has been no im-
provement in the best fitness value found over the last 50 generations, and is referred
to as ‘TC2’. This criterion can therefore extend the search past the 200 generations limit,
providing there has been an improvement in the best objective function value.

The experiments were repeated 20 times for each test goal and termination crite-
rion. The maximum chaining tree depth for the chaining mechanism was set at 10.

6.3 Results

Table 1 shows the success rate of the searches comparing the search for the first event se-
quence (i.e. the search equivalent to using the original Evolutionary Testing approach)
against searches for all generated event sequences. Test goals were only satisfied a
small number of times using the first event sequence alone, showing that the test ob-
jects did indeed cause problems for the original Evolutionary Testing approach. After
the consideration of all event sequences, test data was found 100% of the time, with the
exception of the libpng test object, for which 5% of searches had not found test data
by the time the search termination criterion was met. The table also shows the effects
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Table 1: Successful searches for each test object, comparing searches using Evolutionary
Testing / the first event sequence, and the hybrid approach (‘all generated sequences’)
with different termination criteria. ‘TC1’ terminates searches after 200 generations if no
solution has been found. ‘TC2’ terminates the search if there has been no improvement
in the best fitness value found over the last 50 generations

Test Object Evolutionary Testing / All generated
First event sequence sequences

TC 1 TC 2 TC 1 TC 2
libpng 0% 0% 95% 95%
Counter 0% 0% 100% 100%
Deceptive 0% 0% 100% 100%
Enumeration 80% 45% 100% 100%
Flag 0% 0% 100% 100%
Flag Loop Assignment 5% 0% 100% 100%
Flag Avoid Loop Assignment 0% 0% 100% 100%
Multiple Flag 0% 0% 100% 100%

of the different termination criteria. It shows that the original static limit of 200 genera-
tions is more likely to result in test data being found for the initial event sequence, but
for the hybrid approach overall, both criteria fared the same. Table 2 shows the average
number of fitness evaluations (test object executions) for both termination criteria. This
table clearly shows that the 50 generations of no improvement criterion is more effi-
cient - in some cases decreasing the number of fitness evaluations by a third, without
compromising the ability of the hybrid approach to find test data.

The results with respect to each individual test object are discussed below.

libpng. The evolutionary search always fails for the initial event sequence, demon-
strating the need for chaining with this test object. Figure 11a shows how the
search stagnates as a result of the flag for an example search. The event sequence
< (s, ∅), (3, {k}), (7, ∅), (8, ∅) > (refer to Figure 10) is generated, and the search is suc-
cessful in 19 out of 20 cases for both termination criteria, resulting in a 95% success rate
(Figure 11b).

Counter. The search for test data fails for the initial event sequence, due to the coarse
fitness landscape. A new event sequence is generated to increment the counter once.
However this landscape still contains ridges, and the search struggles. An event se-
quence is then generated to increment the counter the required number of times. This
search is successful.

Deceptive. The search for the initial event sequence always fails, the search stagnat-
ing early. Event sequences are generated, and the search succeeds when node 4 (refer to
Figure 3) is attempted first, since the fitness landscape provides unequivocal guidance
to the required test data - as can be seen in Figure 4b.

Enumeration. Test data can be found, although not always reliably, using the initial
event sequence / original Evolutionary Testing approach. When this search fails how-
ever, the chaining mechanism ensures that test data is always found.
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Table 2: Average fitness evaluations for each test object against different search termi-
nation criteria. ‘TC1’ terminates searches after 200 generations if no solution has been
found. ‘TC2’ terminates the search if there has been no improvement in the best fitness
value found over the last 50 generations

Test Object Termination Criterion
TC1 TC2

libpng 78,819 45,123
Counter 290,461 131,253
Deceptive 59,571 19,435
Enumeration 54,075 37,373
Flag 61,094 20,594
Flag Loop Assignment 64,534 31,499
Flag Avoid Loop Assignment 82,266 41,766
Multiple Flag 61,094 20,594
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Figure 11: Best fitness plots for the libpng test object. (a) Best fitness for a test data
search using the initial event sequence. (b) Best fitness plot for a test data search using
the final event sequence.
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Flag. Test data is not found using the initial event sequence, with the search failing to
make any progress at all (Figure 5b). When the event sequence is generated executing
node 3 and avoiding node 5, test data is found (Figure 5d).

Flag Loop Assignment. Test data is found for one search using standard Evolutionary
Testing / the initial event sequence. However test data is only reliably found after the
chaining mechanism is employed.

Flag Avoid Loop Assignment and Multiple Flag. For these test objects, test data is
never found with the initial event sequence, but always found once the chaining mech-
anism is employed.

7 Conclusions and Future Work

Evolutionary Testing can often fail to find test data for certain white-box goals, due to a
lack of guidance provided by the fitness function to the search. This can occur when the
target structure has data dependencies on previous statements in the program. These
statements must be executed for the target to be feasible, but are only done so under
special circumstances. This paper shows that Evolutionary Testing can be improved
through hybridization with an extended Chaining Approach. This hybrid approach
incorporates and extends the idea of generating event sequences from the Chaining Ap-
proach, which can help provide increased guidance to the search to direct it to the
execution of ignored statements, and thus unexplored but potentially promising areas
of the test object’s input domain.

An experimental study was performed with a test object drawn from the publicly
available libpng PNG graphics file library, and seven synthetic test objects. The seven
synthetic test objects featured different types of landscape that are problematic for evo-
lutionary test data generation, i.e. flat, coarse and deceptive landscapes in loop and
loop-free code and were ideal for testing the hybrid approach. In all cases it was shown
that the hybrid approach could find test data where the original approach either could
not or was inconsistent. This is an improvement over current work in this area, which
has solely concentrated in the area of flat fitness landscapes as the result of flag vari-
ables.

Future work needs to establish how the approach scales up to larger systems, and
the number of event sequences that can be reasonably handled. Some initial applica-
tions to state-based systems have been carried out (McMinn, 2005; McMinn and Hol-
combe, 2005).
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Search-Based Software Engineering workshop in Windsor, UK, 2002).
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