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Abstract. Fitness functions derived for certain white-box test goals can
cause problems for Evolutionary Testing (ET), due to a lack of sufficient
guidance to the required test data. Often this is because the search does
not take into account data dependencies within the program, and the fact
that some special intermediate statement (or statements) needs to have
been executed in order for the target structure to be feasible. This paper
proposes a solution which combines ET with the Chaining Approach.
The Chaining Approach is a simple method which probes the data de-
pendencies inherent to the test goal. By incorporating this facility into
ET, the search can be directed into potentially promising, unexplored ar-
eas of the test object’s input domain. Encouraging results were obtained
with the hybrid approach for seven programs known to originally cause
problems for ET.

1 Introduction

Evolutionary Testing (ET) (see Ref. [1]) uses evolutionary algorithms to search
for software test data. For white-box testing coverage criteria, the execution
of each uncovered structure - for example a program statement or branch - is
taken individually as the goal of the search. However, the coverage of certain
structures in certain types of programs can cause problems for ET, due to a
lack of sufficient guidance to the required test data. Often this is because the
technique does not take into account data dependencies between statements in
the program. In order for the target structure to be feasible, special intermedi-
ate statements may need to have been executed. For instance, the outcome of
a target branching condition may be dependent on a variable having a special
value, which is only set in a special circumstance - for example a special flag or
enumeration value denoting an unusual condition; a unique return value from a
function call indicating an error has occurred; or a counter variable only incre-
mented under certain situations. If the intermediate assignment is particularly
unusual, it will not be executed by chance. Without specific knowledge of such
dependencies, the evolutionary search tends to stagnate and fail. The problem
of flag variables in particular has received much interest from researchers [2—4] -



however there has been little attention with regards to the broader problem as
described.

This paper proposes a solution which combines ET with the Chaining Ap-
proach. The Chaining Approach [5,6] is a structural test data generation tech-
nique based on local search. If the local search fails to find test data which
directly executes the target, data flow analysis is used to identify intermediate
statements, or events, which can decide whether the target will be reached or
not. By instead focusing on test data that executes a chain of events, the search
can be directed into potentially unexplored, yet promising areas of the test ob-
ject’s input domain. In the hybrid approach, evolutionary algorithms are applied
for the test data search. However, a chaining mechanism is employed whenever a
“problematic” test goal is encountered. Encouraging results were obtained with
initial experiments carried out on seven test objects known to originally cause
problems for ET.

2 Evolutionary Testing (ET)

ET (see Ref. [1]) uses evolutionary algorithms to search the input domain of
a test object for desired test data. Individuals of the search are simply input
vectors to the test object. The fitness function depends on the type of test data
required.

White-box testing coverage criteria demand that all program structures of
a certain type - for example statements or branches - are exercised. ET can
automate the derivation of test data for this purpose by searching for input
vectors which will execute each specific structure. In more developed approaches
[7,8], the fitness function is made up of two components. The first component
is referred to as the approzimation level, or, (perhaps more appropriately) the
approach level. This metric assesses how close an individual was to reaching
the target on the basis of its execution path through the program’s control
structure. Central to this is the notion of a critical branch (also referred to in
the literature as a decisive branch). A critical branch is simply a branch which
leads to the target being missed. Once such a branch has been taken, failure
to reach the target has essentially been “decided”. For improved handling of
structures nested within loops [8], a branch that misses the target within a loop
iteration is also counted as critical. For the example of Figure 1, where the goal
of the search is the execution of node 6, the set of critical branches includes the
true branch from node 1 and the false branch from node 4. The false branch
from node 5 is also treated as critical, since it misses node 6 within a loop body.
The approach level for an individual is calculated by subtracting one from the
number of critical branches lying between the node from which the individual
diverged away from the target, and the target itself. For the execution of node 6,
individuals taking the false branch at node 5 receive an approach level of zero,
individuals diverging away down the true branch at node 4 receive an approach
level of one, and so on.



Fig. 1. An example control flow graph for calculating approach levels, with respect to
the target - node 6. Critical branches are indicated with dashed arrows

At the point at which control flow diverged away from the target down a
critical branch, a branch distance calculation is computed. This is the second
component of the fitness function. This value indicates how close the alternative
branch was to being taken. For example if the false branch is taken from node 5,
and the branching condition at this node is (x == y), the distance for the true
branch is calculated using the formula abs(x - y) [9]. The overall (minimizing)
fitness function is zero if the target structure is exercised, otherwise, a fitness
value is computed for the individual on the basis of the approach level and the
branch distance calculation d mapped into the range 0 < d < 1:

approach_level + d (1)

3 The Problem

ET has been shown to be an effective method for structural test data generation
[7]. However, the approach performs poorly for programs with certain character-
istics. One problem can arise as a result of data dependencies within the program,
where the target structure requires the prior execution of certain intermediate
statements in order for it to be feasible. Since such statements do not affect
whether the target structure will be reached in terms of control flow through
the program, they are effectively ignored for the purposes of computing fitness
information. If such statements are only executed under “special” circumstances
rather than by chance, the target structure might not be covered.

Take the example of Figure 2. The inverse function finds the multiplicative
inverse of an input x. To avoid a division by zero error, zero is simply returned
when the divisor is zero. If the goal of the search is to execute node b, it is
necessary to execute the true branch from node a - requiring a zero return
value from the inverse function. This is in turn passed the input value x as an
argument. However, the zero input value required to execute the target is unlikely
to be found by chance, simply because it represents a very small portion of the
overall input domain. Furthermore, the fitness function actually leads the search
away from this value for all other input values - since as the value of x increases,
the result of the inverse function decreases. This deception can be seen in a
plot of the fitness function landscape (Figure 4a).



double function_under_test(double x) double inverse(double d)
{ {
(a) if (inverse(x) == 0) (c) if (4 == 0)
(b) // target (d) return O;
} else
(e) return 1 / d;
}

Fig. 2. C example resulting in a deceptive fitness function into order to execute node
e (control flow graph node identifiers appear in brackets to the left of program state-
ments)

The fitness landscape can also be flat for large areas of the input domain,
giving the search little guidance at all. It is well known that this problem can be
caused by the existence of flag and enumeration variables in branch predicates
[2-4]. A flag is simply a variable that is true or false. When such a variable is
used in a branch predicate, plateaux form in the fitness landscape corresponding
to the true and false values of the flag. This can be seen with the example of
Figure 3. The target of the search is to execute the statement corresponding
to node f, requiring the true branch from node e to be taken. The branching
condition at node e involves the variable flag, which is only true when all the
variables of an inputted array are zero. However no guidance is provided to this
input vector, since for all other vectors the branch distance calculation result,
using the false flag value, is the same. The resulting plateau can be seen in a
plot of the fitness landscape (Figure 5a). It can easily be seen from the program
that the search simply needs to execute the path up to e where the assignment
at node d is avoided on each iteration of the loop. However, ET is not aware of
this assignment, and consequently does not recognize what needs to be done to
prevent it - that is the optimization of all array values to zero.

A similar problem can occur with enumeration variables. Again, two plateaux
form in the fitness landscape when such variables are involved in branch predi-
cates - one for the “correct” value, and one for all other values. Since enumera-
tions are not ordinal types, no value from the enumeration can be deemed to be
“closer” to the desired value.

A number of solutions have been proposed for the particular problem of flags.
Harman et al. [3] present an approach to the problem of flags which transforms
the flag out of the program. A different type of transformation procedure needs
to be applied depending on the characteristics of the test object. No work has yet
been published applying these transformations to programs with loops. Bottaci
[2] deals with a special case. Baresel et al. [4] present an alternative approach
that analyses the program, and selects a suitable fitness function from a library
depending on features found within the program (e.g. a flag involved in a loop).
It is stated that the method struggles to avoid undesirable assignments to flags
in loops. It is claimed the method extends to enumerations, but no experimental
results are presented. Whilst these solutions apply different “rules” each time



void flag_avoid_loop_assignment(int a[10])

{
(a) int flag = 1;
int 1i;
(b) for (i = 0; i < 10; i++)
{
(c) if (afi] !'= 0)
(d) flag = 0;
}
(e) if (flag)
() // target
}

Fig. 3. C example requiring the avoidance of a flag assignment contained in a loop in
order to execute node f (control flow graph node identifiers appear in brackets to the
left of program statements)

a different program characteristic is encountered, incorporation of the Chaining
Approach represents a general and elegant solution to flags and the broader
problem as described.
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Fig. 4. Fitness landscapes for the deceptive example (Figure 2). (a) shows the landscape
for the fitness function used by ET (equivalent to that of the initial event sequence with
the hybrid approach). (b) shows the landscape of the fitness function for the successful
event sequence with the hybrid approach

4 The Chaining Approach

The Chaining Approach [5,6] is an alternative test data generation technique,
based on a local search method known as the “alternating variable method”.
If a critical branch is taken, the search method attempts to change the flow of
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Fig. 5. Fitness landscapes for the flag example, plotted for two array elements, assum-
ing all other elements are zero. (a) shows the landscape for the fitness function used
by ET (equivalent to that of the initial event sequence with the hybrid approach). (b)
shows the landscape of the fitness function for the successful event sequence with the
hybrid approach

control by searching for input values using the branch distance calculation of the
alternative branch as a cost function. In practice this is performed by successively
finding local minima for each input variable until the alternative branch is taken,
or no further improvement can be made. At this point the search declares failure.
Any move which results in an critical branch being taken earlier in the execution
path is disallowed.

Being based on local search, the alternating variable method frequently en-
counters problematic test goals with non-trivial search landscapes. Typically a
“problem” branching node is encountered, for which the search can not change
control flow so that a critical branch is not taken. In an attempt to circumvent
this problem, the Chaining Approach employs its backup plan - the construction
of “event” chains - or event sequences. Event sequences force the consideration
of certain statements leading up to the target structure, which may influence
the outcome at the problem branching node. Such statements are identified by
the use of data flow analysis. Using this mechanism, the search can be directed
into potentially unexplored but promising areas of the input domain.

The crux of the chaining mechanism is best explained with an example.
For the flag program of Figure 3 the execution of branching node e as true is
problematic. Prior events are identified by finding the last definitions of variables
used at the problem node. For node e, this is the variable flag, last defined
at nodes a and d. Two event sequences are constructed, one demanding the
execution of a before e, and the other requiring instead d before e. Node a of
course, is the event that causes node e to be executed as true. However, this is
only the case if the value of flag is preserved from this point up to node e - i.e.
that node d is avoided on each iteration of the loop. Associated with each event
is a constraint set of variables that should not be modified until the next event.
The variable flag is inserted into this constraint set because its modification



destroys the effect of the assignment at node a. If node d is accidentally taken,
the search uses the branch distance calculation of the false branch from this
node in order to change the flow of control. In this way, the focus of the search
changes from one which attempts to make flag true, into one which specifically
searches for an array where each element is zero - which in turn results in flag
being true.

Formally, an event sequence is described as a sequence of events < eq, e, - e
where each event is a tuple e; = (n;, C;) where n; is a program node and Cj is
the set of variables referred to as the constraint set [5]. The initial event sequence
for the flag example is simply < (f, ¢) >, with the event sequences constructed
at the next “level” being denoted as follows:

(1) < (a,{flag}),(e, ), (f,¢) >
(2) < (d.{flag}), (e, 9),(f,¢) >

Of course, the addition of node d is unhelpful, and if the latter event sequence
is tried, the search for test data will fail. Such an event sequence is described as
infeasible.

The generated event sequences are organized in a tree. At the root of the
tree is the initial event sequence. The first level contains the event sequences
generated as a result of the first problem node. In more complicated examples,
further problem branching nodes could be encountered on route to executing
some new event inserted into the sequence. In such instances the Chaining Ap-
proach backtracks further, and looks for last definition statements for variables
used at these new problem nodes. The additional event sequences are added to
the tree, which is explored to some specified depth limit.

5 A Hybrid Approach

In the hybrid approach, evolutionary algorithms are used for the test data search,
with a chaining mechanism employed for “problematic” test goals. The search for
test data for the initial event sequence is equivalent to the search conducted by
the original ET approach. However, if the search fails, the best overall individual
is taken, and its problem branching nodes are identified. These are the branching
nodes at which critical branches were taken. Using data flow information with
regards to the first problem branching node, new event sequences are built, with
separate evolutionary searches conducted in an attempt to try find test data for
each new event sequence.

For an event sequence S of length [, the fitness for an input vector x is
computed using the formula:

!
Z fitness(e;) (2)

where e; is the ith event in the event sequence, and fitness(e) is calculated for
an event e = (n,C) as follows:



1. If control flow diverged down a critical branch with respect to n, add the
result of Equation 1 for node n to the fitness

2. For each definition node executed for each variable v € C violating the
definition clear path required until the next event in the sequence (if one
exists); add d; the branch distance for the alternative branch at the last
branching node, mapped into the range 0 < d < 1

Figure 5 depicts the fitness landscape for the initial event sequence for the flag
example (equivalent to the search conducted by the original ET approach), along-
side that of the event sequence < (a, {flag}), (e, ¢), (f, ) >. As can be seen, the
latter landscape offers more guidance to the search, and is more amenable to
the discovery of the required test data. As an example, the fitness function is
computed as follows. With values of the array being (1000, 1000, ...) (where all
elements are zero unless stated), node e is executed twice, and the branch dis-
tance of the false branch from node ¢ on the first two iterations of the loop
are used in accumulating the fitness, according to rule 2. For array values of
(500,1000, . ..), the situation is the same, but the branch distance of the false
branch from node ¢ in the first iteration is smaller, and therefore the overall fit-
ness is less. For array values of (0,1000,...) only the false branch distance in the
second iteration is needed. When all array values are zero, the event sequence is
successfully executed and the overall fitness is zero.

For the deceptive example of Figure 2, the fitness landscape for the initial
event sequence can be seen alongside that of < (d, {inverse}), (a, ), (b, ¢) >.
As can be seen, the latter landscape is more conducive to the discovery of the
required test data. With an input value of 500, nodes b and e are unexecuted.
The approach levels and branch distances for these nodes are used to compute
the fitness, according to rule 1. With an input value of 100, these nodes are
still unexecuted, but the branch distances are smaller at the point at which
control flow diverged away, being closer to zero, and therefore the overall fitness
is smaller. At zero, all nodes are successfully executed.

In our work we have extended the data flow analysis utilized by the original
Chaining Approach in order to find further program nodes that can influence the
outcome at the problem node. The original Chaining Approach considers only
last definitions of variables used at the current problem node. In our work, if this
does not lead to the execution of the problem node in the desired way, last defi-
nitions of variables used at these last definitions are also considered. In practice
this is performed by maintaining an influencing set of variables which can still
affect the outcome at the current problem branching condition. (Unfortunately
space restrictions prevent a full discussion of this algorithm here).

6 Results

Experiments were performed using different programs. Each contained a specific
statement that could not be easily covered by ET, due to a specific “low proba-
bility” statement sequence required to be followed before the target is reached.
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Table 1. Average fitness evaluations and running times for the experiments. The
average number of fitness evaluations is the average sum of evaluations used by each
evolutionary search for each event sequence for a test object.

Average No. of Average
Fitness Evaluations Search Time (s)

200 50 generations 200 50 generations

generations|no improvement |generations|no improvement
Counter 547,064 213,546 157.9 67.1
Deceptive 63,684 23,907 10.2 4.8
Enumeration 314,551 105,523 48.6 18.0
Flag Assignment 121,772 56,687 21.3 11.2
Flag Loop Assignment 109,274 49,147 29.5 14.0
Flag Avoid Loop Assignment| 81,592 45,562 23.7 14.7
Multiple Flag 228,892 83,867 39.3 16.2

Each problem statement was used as the target of the search using the hybrid
approach. Although each program is of a relatively simple nature, the technical
difficulties that will be encountered by ET are the same whether they are em-
bedded in programs large or small. The actual size of a program is not directly
responsible for increasing the complexity of the problem.

ET parameters applied by other authors in the field [3,10] were used for
the evolutionary searches - namely 300 individuals per generation, comprising
of 6 subpopulations with 50 individuals each; competition and migration across
subpopulations; utilization of linear ranking; and a selective pressure of 1.7. Each
experiment was repeated 50 times. The chaining tree was explored to a maximum
depth of 5.

In the first run of experiments, searches were terminated after 200 genera-
tions. However it was found that for unsuccessful or infeasible event sequences,
the search tended to stagnate well before the final generation was reached. Con-
versely, it was noted that for successful event sequences, test data could generally
be found with an improvement on the previous best fitness value occurring within
the last 50 generations. In an attempt to improve efficiency by saving on unnec-
essary fitness evaluations, a second run of the experiments was performed where
each evolutionary search was terminated after 50 generations of no improvement.
The results for the experiments are recorded in Table 1. The timing information
reflects overall search times using a 1.3GHz PC with 512Mb of RAM. As can
be seen, the latter termination criterion yielded the best performance, in some
cases cutting search times by a third. This was achieved without comprising
the reliability of the result. The following briefly describes each program and
problem target statement, with further discussion of the results obtained.
Counter. This program is similar to the flag program of Figure 3 (“Flag Avoid
Loop Assignment”), except a counter variable is used which keeps a total of
the inputted ten array elements that are equal to zero. The target statement is
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Fig. 6. Average best fitness plots for the deceptive fitness function program. (a) shows
the search using the initial event sequence, with early stagnation. (b) shows the progress
of the search for the successful event sequence

executed if at least half of the array elements are zero. The range of the integers
of the array was -15,000 to 15,000 giving a search space size of approximately
6 x 10**. In all trials, eleven event sequences required consideration in order to
find the required test data.

Deceptive. This is the program of Figure 2, with the target statement being that
of node b. This experiment was carried out using an input range for x of -50,000 to
50,000 with a precision of 0.001, giving a search space size of approximately 108.
The initial search stagnates early (Figure 6a). Event sequences are generated as
outlined in Section 4. In all trials, the search succeeded with the event sequence
that attempts to execute node b first (Figure 6b).

Enumeration. This decides whether three inputted color intensity values (in-
tegers in the range 0 to 255) represents one of the colors in an enumeration. A
problem node occurs in the function under test when the color must be black.
The search space size of approximately 1.6 x 107. The hybrid approach generated
test data in all runs of the experiment. In five runs, the search fortuitously found
test data for the initial event sequence. For all other trials, seven event sequences
had to be considered before the one yielding test data could be found.

Flag Assignment. This function takes two double values. In searching for test
data for one of the program statements, a flag has to be true. The flag is ini-
tially set to false, and is only set true when the first input value is zero. With
an input range of -50,000 to 50,000 for each input variable, with a precision of
0.001, the search space size is approximately 10'6. The hybrid approach success-
fully generated test data in all trials, requiring the consideration of three event
sequences.

Flag Loop Assignment. This program is similar to the program of Figure 3,
except the flag which must be true for the target statement to be executed is
set within the loop body when one or more of the ten inputted array values are
zero. The range of the integers of the array was -15,000 to 15,000 giving a search
space size of approximately 6 x 10*4. The hybrid approach generated test data in
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the search using the initial event sequence, which fails to improve on the best fitness
of the initial generation. (b) shows the progress of the search for the successful event
sequence

all trials. Generally three event sequences were evaluated, although in six runs,
the search fortuitously found test data for the initial event sequence.

Flag Avoid Loop Assignment. This is the program of Figure 3, with the
target statement being that of node f. Again, the range of the integers of the
array was -15,000 to 15,000 giving a search space size of approximately 6 x 1044,
The initial search fails to improve on the best fitness value of the first generation
(Figure 7a). Event sequences are generated as outlined in Section 4. The test
data search for the event sequence that attempts to avoid node d was successful
94% of the time (Figure 7b).

Multiple Flag. This program involves two flags, both of which must be true
in order to execute the target statement. The program takes two double input
variables. Both flags are true if the first and second inputs are zero. However if
the second double value is 1, the second flag is reset to false. Both double input
ranges were -50,000 to 50,000 with a precision of 0.001 giving a search space size
of approximately 10'®. The hybrid approach generated test data in all trials,
evaluating five event sequences.

7 Conclusions

ET can often fail to test data for certain white-box test goals for types of pro-
grams, due to the lack of guidance provided by the search. This can occur when
the target structure has data dependencies on previous statements which are
only exercised under special circumstances. This paper argues that ET can be
improved by incorporating ideas from the Chaining Approach, which forces the
consideration of “events” leading up to the target structure. By instead search-
ing for test data that executes an event sequence, the search can be directed into
potentially untried, yet promising areas of the program’s input domain. Exper-
iments were carried out on seven programs. These programs - involving flags,
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enumerations, counters and special function call return values - cause problems
for the original ET approach. With the hybrid approach, test data could be suc-
cessfully generated. Much of the literature in this area has solely concentrated
on flag problems. The hybrid approach is general enough to tackle a wider range
of programs which cause problems that are not just the result of flags.
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