
The State Problem for Evolutionary Testing

Phil McMinn and Mike Holcombe

Department of Computer Science, The University of Sheffield,
Regent Court, 211 Portobello Street, Sheffield, S1 4DP, UK.

{p.mcminn, m.holcombe}@dcs.shef.ac.uk

Abstract. This paper shows how the presence of states in test objects can hin-
der or render impossible the search for test data using evolutionary testing. Ad-
ditional guidance is required to find sequences of inputs that put the test object
into some necessary state for certain test goals to become feasible. It is shown
that data dependency analysis can be used to identify program statements re-
sponsible for state transitions, and then argued that an additional search is
needed to find required transition sequences. In order to be able to deal with
complex examples, the use of ant colony optimization is proposed. The results
of a simple initial experiment are reported.

1 Introduction

Evolutionary testing (ET) is a technique by which test data can be generated auto-
matically through the use of optimizing search techniques. The search space is the
input domain of the software under test. ET has been shown to be successful for gen-
erating test data for many forms of testing, namely specification testing [9], extreme
execution time testing [12] and structural testing [10].

It has also been shown that certain features of programs can inhibit the search for
test data, for example flag variables [3, 6]. This paper introduces another such fea-
ture: states in test objects. States can cause a variety of problems for ET, since test
goals involving states can be dependent on the entire history of input to the test ob-
ject, as well as just the current input. In addition, guidance must be provided so that
statements responsible for state transitions are executed, so as to put the test object
into the required states for certain test goals to become feasible. Internal states have
hindered test data generation for automotive components used at DaimlerChrysler.
The aim of this work is to extend the DaimlerChrysler ET system [14] to enable it to
generate test data when presented with such troublesome test objects.

This paper is organized as follows. Section 2 reviews evolutionary testing. Sec-
tion 3 introduces the state problem with examples. Section 4 discusses the use of data
dependency analysis to identify program statements that are responsible for state tran-
sitions. Section 5 discusses how this could be applied to the state problem, and ar-
gues that an additional search is needed to find required sequences of transitional
statements. In the case of simple examples an exhaustive search may be all that is re-
quired, however for more complex cases an optimization technique may be needed,
and the use of ant colony optimization is proposed. Results of a simple initial ex-

periment are reported. Section 6 then closes with conclusions and outlines future
work.

2 Evolutionary Testing (ET)

Evolutionary Testing (ET) uses optimizing search techniques such as evolutionary al-
gorithms to generate test data. The search space is the input domain of the test object,
with each individual, or potential solution, being an encoded set of inputs to that test
object. The fitness function is tailored to find test data for the type of test that is being
undertaken.

This paper discusses the state problem in the context of structural testing. Here the
aim is to find test data to execute every structural component of some coverage type,
for example all branches of the program's control flow graph, or the execution of
every definition-use pair for every variable. In order to retrieve fitness information,
the test object must be instrumented.

Previous work [10] has argued that higher levels of coverage are obtained when
each structural element of the chosen coverage type is targeted individually as a par-
tial aim. For each partial aim, the minimizing fitness function is made up of two
components, namely the approximation level and a branch distance calculation [10,
11]. The approximation level supplies a value indicating how close in structural
terms an individual is to reaching the target. For node-oriented coverage types, for
example statement coverage, this value is calculated as the number of branching
statements lying between branches covered by an individual and the target branch.
At the point where the individual diverged away from the target node, a normalized
branch distance calculation is computed. This value indicates how close the individ-
ual was to evaluating the branch predicate in the desired way. For example if a condi-
tion (x == y) needs to be executed as true, the branch distance is calculated using
|x-y|. For the thermostat function in figure 1, and the partial aim where the node 6
must be executed, the fitness values are computed as follows. Individuals reaching
node 4 and evaluating the branching condition heater_on as false receive an ap-
proximation level of 1 and a branch distance of 1 (1 - heater_on). On the other
hand, individuals reaching node 5 but evaluating the condition as false receive an ap-
proximation level of zero, and a branch distance computed using the formula
POWER_THRESHOLD - power. The value of the fitness function when the target is
finally reached is therefore zero.

With path-oriented coverage types, the approximation level is formed from the
length of all identical path sections. Branch distances are taken at each point in which
the flow of execution diverged from the intended path. These are then accumulated
and normalized.

1
2

3

4
5
6

7

int thermostat (int temp, int pow)
{
 int heater_on;

 if (temp < TEMP_THRESHOLD)
 heater_on = 1;
 else
 heater_on = 0;

 if (heater_on)
 if (pow < POWER_THRESHOLD)
 heater_on = 0;

 return heater_on;
}

s

1

4

7

e

2 3

5

6

Fig. 1. C Code fragment of the simple thermostat example, with control flow graph (right col-
umn) and control flow graph node numbers corresponding to program statements in the left
column

3 The State Problem

The state problem occurs with functions at higher system levels that exhibit state-like
qualities by storing information in internal variables, which retain their values from
one execution of the function under test to the next. Such variables are hidden from
the optimization process because they are not available to external manipulation. The
only way to change the values of these variables is through execution of statements
that perform assignments to them. If such variables can be described as state vari-
ables, then these assignments, or definitions, are the transitions of the underlying state
machine.

Figure 2 illustrates a function that is a controller for a smoke detector, the style of
which mimics real-life code witnessed at our industrial partner. It takes three argu-
ments - the first being the current room smoke level, followed by two arguments used
as outputs to signal that the alarm should be switched on or off (the alarm works on a
latch whereby after an “on” signal is received; the alarm stays on until it receives an
“off” signal). The function is designed to be cycled once every second by the hard-
ware. When the room smoke level becomes higher than a given threshold for a cer-
tain period of time, the alarm is raised (lines 13-14). When the room smoke level re-
turns to safe levels for a given time, a special waiting flag becomes true (lines 17-
18). The alarm then stays on for another 20 seconds (lines 21-22), unless the smoke
levels breach acceptable limits again (lines 19 -20). The static storage class is used to
declare several local variables. This allows them to maintain their values after the
function is executed, however, as they are internal to the function, they cannot be di-
rectly optimized by the evolutionary search process.

1
2

3
4
5
6
7
8

9
10
11
12

13
14

15
16
17
18

19
20

21
22
23
24

const double LEVEL = 0.3;
const int DANGER = 5, WAIT_TIME = 20;

void smoke_detector(double level,
 int* signal_on, int* signal_off)
{
 static int time = 0, off_time = 0;
 static int detected = 0, alarm_on = 0, waiting = 0;
 time ++;

 if (level > LEVEL && detected < DANGER)
 detected ++;
 else if (detected > 0)
 detected --;

 if (!alarm_on && detected == DANGER)
 { alarm_on = 1; *signal_on = 1; }

 if (alarm_on)
 {
 if (!waiting && detected == 0)
 { waiting = 1; off_time = time + WAIT_TIME; }

 if (waiting && detected == DANGER)
 waiting = 0;

 if (waiting && time > off_time)
 { waiting = 0; alarm_on = 0; *signal_off = 1;}
 }
}

Fig. 2. C code for the smoke detector example, line numbers appear in the left column

Of course, states can also exist in system components. This can occur again
through the use of the static storage class in C, or in object-oriented languages,
through class variables that are protected from external manipulation using access
modifiers. In our work however, the focus is only on test objects written using the C
language.

The next sections discuss the problems that states in test objects can cause for ET.

3.1 Input Sequences

Partial aims relying on the values of state variables often require input sequences in
order for them to be possible. This is because the execution of a series of transitions
is required in order to set state variables to desired values. For the smoke detector ex-
ample, the true branch from line 15 requires the detected variable to be equal to the
DANGER threshold. This requires five calls to the function, each of which must exe-
cute the transitional statement on line 10, which increments the detected variable.
Not until this has been done does the target become feasible.

A problem with the generation of sequences is that it is generally impossible to
automatically determine beforehand roughly how long the required sequence is going
to be, as different test objects can require radically different sequence lengths.

3.2 Disseminated Functionality

Where system functionality is dispersed across a series of components, it is possible
that the function under test is not the function responsible for manipulating the state in
the desired way. For these more complicated state problems, input sequences must be
found to call different functions in a certain order. This is illustrated by the exam
marks example in figure 3. The target is the true branch from the if statement in the
compare function (part (a)). This depends on the state of the module portrayed in
part (b). Only until the function has_max in this module has been executed a certain
number of times will the branch in compare become feasible.

3.3 Guidance To Transitional Statements.

A sequence of function calls is not always enough to ensure that transitions will be
invoked for test goals to become feasible. Extra guidance must be provided to find
inputs that ensure that transitional statements are actually executed, and executed in
the correct order. In the exam marks example, the incremental statement involving
the num_top variable in the dependent module must be executed for the test goal in
the compare function to become feasible (assuming last_year_top is greater than
zero). This statement is unlikely to be executed at random since the actual input value
that will cause the statement to be reached (where mark is equal to 100) occupies a
very small portion of the input domain.

The use of control variables can further complicate matters. Control variables are
used to model the fact that a system’s behavior should change given the fact that cer-
tain events have occurred, as with the flags used in the smoke detector (alarm_on
and waiting). Such variables are often implemented as Boolean variables, to indi-
cate the system is in a state or not in a state; or as enumerations, to indicate the system
is in one of a collection of states. ET has further trouble with such variables, for the
same reason that it has trouble with the closely related flag problem [3, 6]. The evo-
lutionary search receives little guidance from branch distance calculations using these
types of variables, due to their “all or nothing” nature. As state problems are not only
dependent on the current input but also the history of inputs, the problem is accentu-
ated.

// ...

void compare()
{
 if (get_num_top() >
 last_year_top)
 {/* target branch */}
}

// ...

const int MAX_MARK = 100;
static int num_top = 0;

void has_max(int mark)
{
 if (mark == MAX_MARK)
 num_top ++;
}

int get_num_top ()
{ return num_top; }

(a) Function under test (b) Dependent module

Fig. 3. C code for the exam marks example

4 Possible Solutions

Solving state problems for ET would be seemingly straightforward if some state ma-
chine specification of the test object existed. Unfortunately such a model might not
always be available, and even if it were, the required information may not be present.
Such representations tend to model control only (due to state explosion problems),
whereas partial aims in ET may depend also on data states.

An alternative is to identify transitional statements using data dependency analysis
[1]. The chaining approach of Ferguson and Korel [5] is relevant here. The chaining
approach was not specifically designed for state problems but rather for the structural
test data generation for "problem" program nodes, whose executing inputs could not
be found using their local search algorithms (hence many nodes were declared prob-
lematic in their work, since these techniques often became stuck in local optima). As
a secondary means of trying to change the flow of execution at the problem node, data
dependency analysis was used to find previous program nodes that could somehow
affect the outcome at the problem node. Through trial and error execution of se-
quences of these nodes, it was hoped that the outcome at the problem node would be
changed.

In figure 1, execution of the if statement at node 4 as true may have been declared
as problematic. The use of a flag variable produces fitness values of zero or one,
which provides little guidance to the search for identifying input values for the true
case in the event that current test data had led to the false case, or vice versa. In this
situation the chaining approach would look for the last reachable definitions of vari-
ables used at the problem node. In this instance the variable heater_on is the only
variable used at node 4, and its last reachable definitions can be found at nodes 2 and
3. Therefore two node sequences, known as event sequences, are generated - one re-
quiring execution of node 2 before node 4, and the other requiring the execution of
node 3 before node 4. In order to execute node 2 in the sequence <s, 2, 4>, the true
branch from node 1 must be taken, requiring the search for input data to execute the
condition temp < TEMP_THRESHOLD as true. This becomes the new goal of the lo-

cal search. If the required test data to execute this branch is found, node 2 is reached
and finally the condition on node 4 is also evaluated as true.

In the case where a node leading to a last definition node also became problematic,
the chaining approach procedure would recurse to find the last definition nodes for the
variables used at these new problem nodes. This led to the generation of longer and
longer sequences until some satisfying sequence was found or some pre-imposed
length limit was reached.

The use of the chaining approach to change execution at problem nodes is a useful
concept that seems applicable to ET and the state problem. In the chaining approach,
problem nodes are those for which input data could not be found with local search
methods. With the state problem, difficult nodes are those that are not easily executed
with ET, due to the use of internal state variables. The chaining approach found pre-
vious nodes that could change the outcome of the target node. For the ET state prob-
lem; transitional statements need to be found and executed that manipulate the state,
as such guidance is not already provided by the fitness function.

5 Applying the Chaining Approach

Our system (from here on referred to as ET-State) aims to deal with test objects ex-
hibiting state behavior whose structural elements could not be covered using tradi-
tional ET. The system identifies potential event sequences. Traditional ET then at-
tempts to find the input sequence that will lead to both execution of the event
sequence, and if the identified event sequence leads to the desired state, the structural
target also. This is performed using path-oriented fitness functions, so that each tran-
sitional statement receives the required guidance that leads to its execution.

Event sequences for state problems will be potentially much longer than those for
problem nodes for functions solely dependent on the current input, as identified by the
original chaining approach. As will be seen, our system also performs data depend-
ency analysis that is more extensive than the original chaining approach, meaning that
the number of nodes available to add to each sequence at each step of its construction
is also greater. For complicated examples an exhaustive search of the chaining tree
may not always be tractable. We plan to accommodate this by using a further stage of
optimization to heuristically build and evaluate sequences – namely the ant colony
system.

5.1 Ant Colony System (ACS)

Ant colony system (ACS) [2] is an optimizing technique inspired by the foraging be-
havior of real ants [7]. In ACS the problem is represented by a graph. Ants then in-
crementally construct solutions using this graph by applying problem-specific heuris-
tics and by taking into account artificial pheromone deposited by previous ants on
graph edges. This informs the ant of the previous performance of edges in previous
solutions, since the edges belonging to the better solutions receive more pheromone.

ACS is an attractive search technique to use for building event sequences for the
state problem, since the incremental solution construction process allows for straight-

forward incorporation of data dependency procedures for identifying possible transi-
tional program nodes. The space of viable event sequences for a state problem is un-
derpinned by the control and data dependencies of the underlying code structure, and
as these factors can be taken into account, ants are prevented from exploring solutions
that are unintelligent or infeasible from the outset.

Dorigo et al. [4] originally devised ant systems for the traveling salesman problem

(TSP). Here, graph nodes correspond to cities in the problem. Initially, graph edges
are initialized to some initial pheromone amount τ0. Then, in tmax cycles, m ants are
placed on a random city and progressively construct tours through the use of a prob-
abilistic transition rule. In this rule, a random number, q, 0 ≤ q ≤ 1 is selected and
compared with a tunable exploration parameter q0. If q ≤ q0, the most appealing edge
in terms of heuristic desirability and pheromone concentration is always chosen.
However if q > q0 a transition probability rule is used. The probability of ant k to go
from node i to node j whilst building its tour in cycle t, is given by:

�

ililJl

�

ijijk
ij �t�

�t�

tp
k
i

][)]([

][)]([
)(

⋅�

⋅
=

∈

(1)

where τij(t) is the amount of pheromone on edge (i,j), β is an adjustable parameter that
controls the relative importance of pheromone on edges, and ηij is a desirability heu-
ristic value from city i to j. In the TSP, the desirability heuristic is simply the inverse
of the distance from node i to j, making nearer cities more attractive than those further
away. Ants keep track of towns they have visited, and exclude these cities from fu-
ture choices.

Every time an edge is selected a local update is performed whereby some of the
pheromone on that edge evaporates. This has the effect of making that edge slightly
less attractive to other ants, so as to encourage exploration of other edges of the graph.
A local update for an edge (i,j) is computed using the formula:

0)()1()(τρτρτ ⋅+⋅−← tt ijij
 (2)

where ρ is the pheromone decay coefficient 0 < ρ ≤ 1.
After a cycle has finished, a global update of the graph takes place on the basis of

the best solution found so far (i.e. the shortest tour). This encourages ants to search
around the vicinity of the best solution in building future tours. The global update is
performed for every edge (i,j) in the best tour using the formula:

)()()1()(ttt ijijij τρτρτ ∆⋅+⋅−← (3)

where ∆τij(t) is computed as the inverse of the tour distance.
At the end of the last cycle the algorithm terminates and delivers the shortest tour

found.

In the following sections we outline how the basic ACS algorithm is adapted for

solving state problems.

Problem Representation. The problem representation for the state problem is simply
a graph of all program nodes linked to one another.

However, in the state problem program nodes can be visited more than once in a
sequence. This means that arcs belonging to good solutions can also be reinforced
more than once. In order to prevent a situation where a sub-path is reinforced to the
point where ants begin to travel around the graph in infinite loops, the search space is
extrapolated so that nodes in the graph correspond to the nth use of some program
node in building an event sequence. This expansion of the search space can take
place dynamically, so there is no need to pre-impose limits on the number of times
each individual program node can be visited.

Solution Construction. At each stage of event sequence construction, each ant
chooses from a subset of all program nodes, as identified by the data dependency
analysis procedure.

The original chaining approach built event sequences by working backwards from
the target node. Data dependency analysis for a problem node ended at the last defi-
nitions of variables used at that node. For state problems, we extend the data depend-
ency analysis by considering all nodes that could potentially affect the problem node
(for example by analyzing variables used in assignments at last definitions, and so
on). The algorithms for doing this are similar to those used to construct backward
program slices [8].

Evaluation of Event Sequences. In the ET-State ant algorithm, the heuristic used to
evaluate the desirability of the inclusion of a node into the event sequence is also
equivalent to the “goodness” of the entire event sequence including that node. In or-
der to evaluate event sequences, they are first executed by traditional ET using path-
oriented fitness functions. The fitness information from the best individual is then fed
into ET-State. In most cases, the best individual found would likely have a series of
diverge points corresponding to nodes depending on states.

When adding a new node to an event sequence, ants use inputs used from the pre-
vious sequence to seed the first generation of the evolutionary algorithm for finding
inputs leading to the execution of the new sequence.

Pheromone Updates. Local and global pheromone updates are handled in a similar
fashion to ACS for the TSP, however ∆τij(t) for global updates is computed using the
fitness of the event sequence as evaluated with ET.

Termination Criteria. As the length of solutions for the state problem is not fixed as
they are for tours in the TSP, termination criteria are required to stop ants building in-
finitely long sequences. Two rules include a) the ant stops if it discovers a solution
better than the current best solution found so far, and b) ants can only explore se-
quences up to a certain number of nodes longer than the current best so far, or the ant
fails to improve its solution over the last n nodes.

5.2 Simple Initial Experiment

A simple initial experiment was run with a preliminary version of the system. The
code used for this study can be seen in figure 4. The aim is for the ants to find an
event sequence to get into the true branch from the if statement in fn_test (part
(a)). The outcome of this branch predicate is dependent on functions in the module
shown in part (b), which depend on internal state variables.

Four ants were used in ten cycles, the desirability heuristic exponent β was set to 2,
the exploration parameter q0 was set to 0.75, and a pheromone decay ρ of 0.25 was
used. Sequences were built using backward dependency analysis. Therefore when
adding the first node to its sequence, the ant could only choose to execute fn_c. For
the second node the ant could execute fn_c or fn_b, since the assignment statement
for k in fn_c uses the variable j that in turn is defined in fn_b. For every node after
fn_b was called, any function from the dependent module could be used, since fn_b
uses the variable i which in turn is defined in fn_a.

In the first cycle ants were prohibited from using any node more than once, so that
the full definition-use chain from k through to i could potentially be explored. The
greedy desirability heuristic for the addition of nodes, and for evaluating entire se-
quences, was simply based on the branch distance for the true branch in fn_test. In
this case, and in order to make the search more complicated, the ants were directed to
find the shortest satisfying sequence once a satisfying sequence had been found, by
simply rewarding shorter sequences (of course, shorter sequences ultimately require
less mental effort on behalf of the human checking the results of the structural tests).

Ants finished building their sequence if they had found a new best, or they had
made no improvement on their sequence for the last five nodes. The results showed
promise, as seen in table 1. In ten runs of the experiment, ants found a satisfying se-
quence in 2-3 cycles. The shortest function call sequence found (<fn_a, fn_a,
fn_b, fn_c, fn_c, fn_c, fn_test> (or similar sequence of the same length)) was
ascertained in an average of 4.9 cycles.

// ...
const int target = 32;

void fn_test()
{
 if (fn_c() == target)
 { /* target branch */ }
}
// ...

static int i=0, j=0, k=0;

void fn_a()
{ i ++; }

void fn_b()
{ j += i * 2; }

int fn_c()
{ k += j * 2; return k; }

(a) Function under test (b) Dependent module
Fig. 4. C code for the initial experiment

Table 1. Results for the initial experiment

 Average Best Worst
Satisfying Event Sequence Found 2.1 2 3
Shortest Satisfying Event Sequence Found 4.9 3 7
No of ants: 4 No of trials: 10

6 Conclusions and Future Work

This paper has introduced the state problem for evolutionary testing; showing that
state variables can hinder or render impossible the search for test data. State variables
can be dependent on the input history to the test object, as well as just the current in-
put. They do not form part of the input domain to the test object, and therefore cannot
be optimized by the ET search process. The only way to control these variables is to
attempt to execute the statements that perform assignments to them, statements that
form the transitions of the underlying state machine of the system. Such statements
can be identified by data dependency analysis. The use of ant colony algorithms is
proposed as a means of heuristic search and evaluation of sequences of transitional
statements, in order to find one that makes the current test goal possible.

The next step in this work is the complete implementation of the system, which
will then be tried on a set of industrial examples. These experiments will be consid-
ered successful if coverage of structural elements involving states are achieved which
were previously unobtainable by the use of ET or even random testing alone. If not
all structural elements involving states can be covered then further analysis will take
place to understand the features of these programs that are still causing problems.

Acknowledgements. This work is sponsored by DaimlerChrysler Research and
Technology. The authors have benefited greatly from the discussion of this work
with Joachim Wegener, André Baresel and other members of the ET group at
DaimlerChrysler, along with members of the EPSRC-funded FORTEST and
SEMINAL networks.

References

1. Aho A., Sethi R., Ullman J. D.: Compilers: Principles, Techniques and Tools. Addison-
Wesley (1986)

2. Bonabeau E., Dorigo M., Theraulaz G.: Swarm Intelligence. Oxford University Press (1999)
3. Bottaci, L.: Instrumenting Programs with Flag Variables for Test Data Search by Genetic

Algorithm, Proceedings of the Genetic and Evolutionary Computation Conference, New
York, USA (2002)

4. Dorigo M., Maniezzo, V., Colorni A.: Ant System: An Autocatalytic Optimizing Process.
Technical report, Politechnico di Milano, Italy, No. 91-016 (1991)

5. Ferguson R., Korel B.: The Chaining Approach for Software Test Data Generation. ACM
Transactions on Software Engineering and Methodology, Vol. 5, No. 1, pp. 63-86 (1996)

6. Harman M., Hu L., Hierons R., Baresel A., Sthamer H: Improving Evolutionary Testing by
Flag Removal. Proceedings of the Genetic and Evolutionary Computation Conference, New
York, USA (2002)

7. Goss S., Aron S., Denenubourg J. L., Pasteels J. M.: Self Organized Shortcuts in the Argen-
tine Ant. Naturwissenschaften, Vol. 76, pp. 579-581 (1989)

8. Tip F., A Survey of Program Slicing Techniques. Journal of Programming Languages,
Vol.3, No.3, pp.121-189 (1995)

9. Tracey N., Clark J., Mander K.: Automated Flaw Finding using Simulated Annealing. Inter-
national Symposium on Software Testing and Analysis, pp. 73-81 (1998).

10. Wegener J., Baresel A. Sthamer H.: Evolutionary Test Environment for Automatic Struc-
tural Testing. Information and Software Technology, Vol. 43, pp. 841-854 (2001)

11. Wegener J., Buhr K., Pohlheim H.: Automatic Test Data Generation for Structural Testing
of Embedded Software Systems by Evolutionary Testing. Proceedings of the Genetic and
Evolutionary Computation Conference, New York, USA (2002)

12. Wegener J., Grochtmann M.: Verifying Timing Constraints of Real-Time Systems by
Means of Evolutionary Testing. Real-Time Systems, Vol. 15, pp. 275-298 (1998)

