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Abstract.  This paper shows how the presence of states in test objects can hin-
der or render impossible the search for test data using evolutionary testing.  Ad-
ditional guidance is required to find sequences of inputs that put the test object 
into some necessary state for certain test goals to become feasible. It is shown 
that data dependency analysis can be used to identify program statements re-
sponsible for state transitions, and then argued that an additional search is 
needed to find required transition sequences.  In order to be able to deal with 
complex examples, the use of ant colony optimization is proposed.  The results 
of a simple initial experiment are reported. 

1  Introduction 

Evolutionary testing (ET) is a technique by which test data can be generated auto-
matically through the use of optimizing search techniques.  The search space is the 
input domain of the software under test.  ET has been shown to be successful for gen-
erating test data for many forms of testing, namely specification testing [9], extreme 
execution time testing [12] and structural testing [10].   

It has also been shown that certain features of programs can inhibit the search for 
test data, for example flag variables [3, 6].  This paper introduces another such fea-
ture: states in test objects.  States can cause a variety of problems for ET, since test 
goals involving states can be dependent on the entire history of input to the test ob-
ject, as well as just the current input.  In addition, guidance must be provided so that 
statements responsible for state transitions are executed, so as to put the test object 
into the required states for certain test goals to become feasible.  Internal states have 
hindered test data generation for automotive components used at DaimlerChrysler.  
The aim of this work is to extend the DaimlerChrysler ET system [14] to enable it to 
generate test data when presented with such troublesome test objects. 

This paper is organized as follows.  Section 2 reviews evolutionary testing.  Sec-
tion 3 introduces the state problem with examples.  Section 4 discusses the use of data 
dependency analysis to identify program statements that are responsible for state tran-
sitions.  Section 5 discusses how this could be applied to the state problem, and ar-
gues that an additional search is needed to find required sequences of transitional 
statements.  In the case of simple examples an exhaustive search may be all that is re-
quired, however for more complex cases an optimization technique may be needed, 
and the use of ant colony optimization is proposed.  Results of a simple initial ex-



periment are reported.  Section 6 then closes with conclusions and outlines future 
work. 

2  Evolutionary Testing (ET) 

Evolutionary Testing (ET) uses optimizing search techniques such as evolutionary al-
gorithms to generate test data.  The search space is the input domain of the test object, 
with each individual, or potential solution, being an encoded set of inputs to that test 
object.  The fitness function is tailored to find test data for the type of test that is being 
undertaken.  

This paper discusses the state problem in the context of structural testing.  Here the 
aim is to find test data to execute every structural component of some coverage type, 
for example all branches of the program's control flow graph, or the execution of 
every definition-use pair for every variable.  In order to retrieve fitness information, 
the test object must be instrumented. 

Previous work [10] has argued that higher levels of coverage are obtained when 
each structural element of the chosen coverage type is targeted individually as a par-
tial aim.  For each partial aim, the minimizing fitness function is made up of two 
components, namely the approximation level and a branch distance calculation [10, 
11].  The approximation level supplies a value indicating how close in structural 
terms an individual is to reaching the target.  For node-oriented coverage types, for 
example statement coverage, this value is calculated as the number of branching 
statements lying between branches covered by an individual and the target branch.   
At the point where the individual diverged away from the target node, a normalized 
branch distance calculation is computed.  This value indicates how close the individ-
ual was to evaluating the branch predicate in the desired way.  For example if a condi-
tion (x == y) needs to be executed as true, the branch distance is calculated using 
|x-y|.  For the thermostat function in figure 1, and the partial aim where the node 6 
must be executed, the fitness values are computed as follows.  Individuals reaching 
node 4 and evaluating the branching condition heater_on as false receive an ap-
proximation level of 1 and a branch distance of 1 (1 - heater_on).  On the other 
hand, individuals reaching node 5 but evaluating the condition as false receive an ap-
proximation level of zero, and a branch distance computed using the formula 
POWER_THRESHOLD - power.  The value of the fitness function when the target is 
finally reached is therefore zero. 

With path-oriented coverage types, the approximation level is formed from the 
length of all identical path sections.  Branch distances are taken at each point in which 
the flow of execution diverged from the intended path.  These are then accumulated 
and normalized. 
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int thermostat (int temp, int pow) 
{   
  int heater_on; 

  if (temp < TEMP_THRESHOLD) 
    heater_on = 1; 
  else 
    heater_on = 0; 

  if (heater_on) 
    if (pow < POWER_THRESHOLD) 
      heater_on = 0;   

  return heater_on;   
} 
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Fig. 1. C Code fragment of the simple thermostat example, with control flow graph (right col-
umn) and control flow graph node numbers corresponding to program statements in the left 
column 

3  The State Problem 

The state problem occurs with functions at higher system levels that exhibit state-like 
qualities by storing information in internal variables, which retain their values from 
one execution of the function under test to the next.  Such variables are hidden from 
the optimization process because they are not available to external manipulation.  The 
only way to change the values of these variables is through execution of statements 
that perform assignments to them.  If such variables can be described as state vari-
ables, then these assignments, or definitions, are the transitions of the underlying state 
machine.   

Figure 2 illustrates a function that is a controller for a smoke detector, the style of 
which mimics real-life code witnessed at our industrial partner.  It takes three argu-
ments - the first being the current room smoke level, followed by two arguments used 
as outputs to signal that the alarm should be switched on or off (the alarm works on a 
latch whereby after an “on”  signal is received; the alarm stays on until it receives an 
“off”  signal).  The function is designed to be cycled once every second by the hard-
ware.  When the room smoke level becomes higher than a given threshold for a cer-
tain period of time, the alarm is raised (lines 13-14).  When the room smoke level re-
turns to safe levels for a given time, a special waiting flag becomes true (lines 17-
18).  The alarm then stays on for another 20 seconds (lines 21-22), unless the smoke 
levels breach acceptable limits again (lines 19 -20).  The static storage class is used to 
declare several local variables.  This allows them to maintain their values after the 
function is executed, however, as they are internal to the function, they cannot be di-
rectly optimized by the evolutionary search process. 
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const double LEVEL = 0.3; 
const int DANGER = 5, WAIT_TIME = 20; 

void smoke_detector(double level,  
                   int* signal_on, int* signal_off) 
{   
  static int time = 0, off_time = 0; 
  static int detected = 0, alarm_on = 0, waiting = 0; 
  time ++;      

  if (level > LEVEL && detected < DANGER) 
    detected ++; 
  else if (detected > 0) 
    detected --; 

  if (!alarm_on && detected == DANGER) 
  { alarm_on = 1; *signal_on = 1; } 

  if (alarm_on)   
  {       
    if (!waiting && detected == 0) 
    { waiting = 1; off_time = time + WAIT_TIME; } 

    if (waiting && detected == DANGER) 
      waiting = 0; 

    if (waiting && time > off_time)     
    { waiting = 0; alarm_on = 0; *signal_off = 1;} 
  } 
} 

Fig. 2. C code for the smoke detector example, line numbers appear in the left column 

Of course, states can also exist in system components.  This can occur again 
through the use of the static storage class in C, or in object-oriented languages, 
through class variables that are protected from external manipulation using access 
modifiers.  In our work however, the focus is only on test objects written using the C 
language. 

The next sections discuss the problems that states in test objects can cause for ET. 

3.1  Input Sequences 

Partial aims relying on the values of state variables often require input sequences in 
order for them to be possible.  This is because the execution of a series of transitions 
is required in order to set state variables to desired values.  For the smoke detector ex-
ample, the true branch from line 15 requires the detected variable to be equal to the 
DANGER threshold.  This requires five calls to the function, each of which must exe-
cute the transitional statement on line 10, which increments the detected variable.  
Not until this has been done does the target become feasible. 



A problem with the generation of sequences is that it is generally impossible to 
automatically determine beforehand roughly how long the required sequence is going 
to be, as different test objects can require radically different sequence lengths. 

3.2  Disseminated Functionality 

Where system functionality is dispersed across a series of components, it is possible 
that the function under test is not the function responsible for manipulating the state in 
the desired way.  For these more complicated state problems, input sequences must be 
found to call different functions in a certain order.  This is illustrated by the exam 
marks example in figure 3. The target is the true branch from the if statement in the 
compare function (part (a)).  This depends on the state of the module portrayed in 
part (b).  Only until the function has_max in this module has been executed a certain 
number of times will the branch in compare become feasible. 

3.3  Guidance To Transitional Statements. 

A sequence of function calls is not always enough to ensure that transitions will be 
invoked for test goals to become feasible.  Extra guidance must be provided to find 
inputs that ensure that transitional statements are actually executed, and executed in 
the correct order.  In the exam marks example, the incremental statement involving 
the num_top variable in the dependent module must be executed for the test goal in 
the compare function to become feasible (assuming last_year_top is greater than 
zero).  This statement is unlikely to be executed at random since the actual input value 
that will cause the statement to be reached (where mark is equal to 100) occupies a 
very small portion of the input domain. 

The use of control variables can further complicate matters.  Control variables are 
used to model the fact that a system’s behavior should change given the fact that cer-
tain events have occurred, as with the flags used in the smoke detector (alarm_on 
and waiting).  Such variables are often implemented as Boolean variables, to indi-
cate the system is in a state or not in a state; or as enumerations, to indicate the system 
is in one of a collection of states.  ET has further trouble with such variables, for the 
same reason that it has trouble with the closely related flag problem [3, 6].  The evo-
lutionary search receives little guidance from branch distance calculations using these 
types of variables, due to their “all or nothing”  nature.  As state problems are not only 
dependent on the current input but also the history of inputs, the problem is accentu-
ated.   



 

// ... 

void compare() 
{ 
  if (get_num_top() > 
       last_year_top) 
  {/* target branch */} 
} 

// ... 

const int MAX_MARK = 100; 
static int num_top = 0; 

void has_max(int mark) 
{  
  if (mark == MAX_MARK) 
    num_top ++; 
} 

int get_num_top () 
{ return num_top; } 

(a) Function under test (b) Dependent module 

Fig. 3. C code for the exam marks example 

4  Possible Solutions 

Solving state problems for ET would be seemingly straightforward if some state ma-
chine specification of the test object existed.  Unfortunately such a model might not 
always be available, and even if it were, the required information may not be present.  
Such representations tend to model control only (due to state explosion problems), 
whereas partial aims in ET may depend also on data states.   

An alternative is to identify transitional statements using data dependency analysis 
[1].  The chaining approach of Ferguson and Korel [5] is relevant here.  The chaining 
approach was not specifically designed for state problems but rather for the structural 
test data generation for "problem" program nodes, whose executing inputs could not 
be found using their local search algorithms (hence many nodes were declared prob-
lematic in their work, since these techniques often became stuck in local optima).  As 
a secondary means of trying to change the flow of execution at the problem node, data 
dependency analysis was used to find previous program nodes that could somehow 
affect the outcome at the problem node.  Through trial and error execution of se-
quences of these nodes, it was hoped that the outcome at the problem node would be 
changed. 

In figure 1, execution of the if statement at node 4 as true may have been declared 
as problematic.  The use of a flag variable produces fitness values of zero or one, 
which provides little guidance to the search for identifying input values for the true 
case in the event that current test data had led to the false case, or vice versa.  In this 
situation the chaining approach would look for the last reachable definitions of vari-
ables used at the problem node.  In this instance the variable heater_on is the only 
variable used at node 4, and its last reachable definitions can be found at nodes 2 and 
3.  Therefore two node sequences, known as event sequences, are generated - one re-
quiring execution of node 2 before node 4, and the other requiring the execution of 
node 3 before node 4.  In order to execute node 2 in the sequence <s, 2, 4>, the true 
branch from node 1 must be taken, requiring the search for input data to execute the 
condition temp < TEMP_THRESHOLD as true.  This becomes the new goal of the lo-



cal search.  If the required test data to execute this branch is found, node 2 is reached 
and finally the condition on node 4 is also evaluated as true. 

In the case where a node leading to a last definition node also became problematic, 
the chaining approach procedure would recurse to find the last definition nodes for the 
variables used at these new problem nodes.  This led to the generation of longer and 
longer sequences until some satisfying sequence was found or some pre-imposed 
length limit was reached.  

The use of the chaining approach to change execution at problem nodes is a useful 
concept that seems applicable to ET and the state problem.  In the chaining approach, 
problem nodes are those for which input data could not be found with local search 
methods.  With the state problem, difficult nodes are those that are not easily executed 
with ET, due to the use of internal state variables.  The chaining approach found pre-
vious nodes that could change the outcome of the target node.  For the ET state prob-
lem; transitional statements need to be found and executed that manipulate the state, 
as such guidance is not already provided by the fitness function. 

5  Applying the Chaining Approach 

Our system (from here on referred to as ET-State) aims to deal with test objects ex-
hibiting state behavior whose structural elements could not be covered using tradi-
tional ET.  The system identifies potential event sequences.  Traditional ET then at-
tempts to find the input sequence that will lead to both execution of the event 
sequence, and if the identified event sequence leads to the desired state, the structural 
target also.   This is performed using path-oriented fitness functions, so that each tran-
sitional statement receives the required guidance that leads to its execution. 

Event sequences for state problems will be potentially much longer than those for 
problem nodes for functions solely dependent on the current input, as identified by the 
original chaining approach.  As will be seen, our system also performs data depend-
ency analysis that is more extensive than the original chaining approach, meaning that 
the number of nodes available to add to each sequence at each step of its construction 
is also greater.  For complicated examples an exhaustive search of the chaining tree 
may not always be tractable.  We plan to accommodate this by using a further stage of 
optimization to heuristically build and evaluate sequences – namely the ant colony 
system. 

5.1  Ant Colony System (ACS) 

Ant colony system (ACS) [2] is an optimizing technique inspired by the foraging be-
havior of real ants [7].  In ACS the problem is represented by a graph.  Ants then in-
crementally construct solutions using this graph by applying problem-specific heuris-
tics and by taking into account artificial pheromone deposited by previous ants on 
graph edges.  This informs the ant of the previous performance of edges in previous 
solutions, since the edges belonging to the better solutions receive more pheromone. 

ACS is an attractive search technique to use for building event sequences for the 
state problem, since the incremental solution construction process allows for straight-



forward incorporation of data dependency procedures for identifying possible transi-
tional program nodes.  The space of viable event sequences for a state problem is un-
derpinned by the control and data dependencies of the underlying code structure, and 
as these factors can be taken into account, ants are prevented from exploring solutions 
that are unintelligent or infeasible from the outset. 

 
Dorigo et al. [4] originally devised ant systems for the traveling salesman problem 

(TSP).  Here, graph nodes correspond to cities in the problem.  Initially, graph edges 
are initialized to some initial pheromone amount τ0.  Then, in tmax cycles, m ants are 
placed on a random city and progressively construct tours through the use of a prob-
abilistic transition rule.  In this rule, a random number, q, 0 ≤ q ≤ 1 is selected and 
compared with a tunable exploration parameter q0.  If q ≤ q0, the most appealing edge 
in terms of heuristic desirability and pheromone concentration is always chosen. 
However if q > q0 a transition probability rule is used.  The probability of ant k to go 
from node i to node j whilst building its tour in cycle t, is given by: 
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where τij(t) is the amount of pheromone on edge (i,j), β is an adjustable parameter that 
controls the relative importance of pheromone on edges, and ηij is a desirability heu-
ristic value from city i to j.  In the TSP, the desirability heuristic is simply the inverse 
of the distance from node i to j, making nearer cities more attractive than those further 
away.  Ants keep track of towns they have visited, and exclude these cities from fu-
ture choices. 

Every time an edge is selected a local update is performed whereby some of the 
pheromone on that edge evaporates.  This has the effect of making that edge slightly 
less attractive to other ants, so as to encourage exploration of other edges of the graph.  
A local update for an edge (i,j) is computed using the formula: 

0)()1()( τρτρτ ⋅+⋅−← tt ijij
 (2) 

where ρ is the pheromone decay coefficient 0 < ρ ≤ 1. 
After a cycle has finished, a global update of the graph takes place on the basis of 

the best solution found so far (i.e. the shortest tour).  This encourages ants to search 
around the vicinity of the best solution in building future tours.  The global update is 
performed for every edge (i,j) in the best tour using the formula: 

)()()1()( ttt ijijij τρτρτ ∆⋅+⋅−←  (3) 

where ∆τij(t) is computed as the inverse of the tour distance. 
At the end of the last cycle the algorithm terminates and delivers the shortest tour 

found.   
 
In the following sections we outline how the basic ACS algorithm is adapted for 

solving state problems.  
 



Problem Representation. The problem representation for the state problem is simply 
a graph of all program nodes linked to one another.   

However, in the state problem program nodes can be visited more than once in a 
sequence.  This means that arcs belonging to good solutions can also be reinforced 
more than once.  In order to prevent a situation where a sub-path is reinforced to the 
point where ants begin to travel around the graph in infinite loops, the search space is 
extrapolated so that nodes in the graph correspond to the nth use of some program 
node in building an event sequence.  This expansion of the search space can take 
place dynamically, so there is no need to pre-impose limits on the number of times 
each individual program node can be visited. 

 
Solution Construction. At each stage of event sequence construction, each ant 
chooses from a subset of all program nodes, as identified by the data dependency 
analysis procedure. 

The original chaining approach built event sequences by working backwards from 
the target node.  Data dependency analysis for a problem node ended at the last defi-
nitions of variables used at that node.  For state problems, we extend the data depend-
ency analysis by considering all nodes that could potentially affect the problem node 
(for example by analyzing variables used in assignments at last definitions, and so 
on).  The algorithms for doing this are similar to those used to construct backward 
program slices [8].   
 
Evaluation of Event Sequences.  In the ET-State ant algorithm, the heuristic used to 
evaluate the desirability of the inclusion of a node into the event sequence is also 
equivalent to the “goodness” of the entire event sequence including that node.  In or-
der to evaluate event sequences, they are first executed by traditional ET using path-
oriented fitness functions.  The fitness information from the best individual is then fed 
into ET-State.  In most cases, the best individual found would likely have a series of 
diverge points corresponding to nodes depending on states. 

When adding a new node to an event sequence, ants use inputs used from the pre-
vious sequence to seed the first generation of the evolutionary algorithm for finding 
inputs leading to the execution of the new sequence. 
 
Pheromone Updates.  Local and global pheromone updates are handled in a similar 
fashion to ACS for the TSP, however ∆τij(t) for global updates is computed using the 
fitness of the event sequence as evaluated with ET. 

 
Termination Criteria.  As the length of solutions for the state problem is not fixed as 
they are for tours in the TSP, termination criteria are required to stop ants building in-
finitely long sequences.  Two rules include a) the ant stops if it discovers a solution 
better than the current best solution found so far, and b) ants can only explore se-
quences up to a certain number of nodes longer than the current best so far, or the ant 
fails to improve its solution over the last n nodes.   

 



5.2  Simple Initial Experiment 

A simple initial experiment was run with a preliminary version of the system.  The 
code used for this study can be seen in figure 4. The aim is for the ants to find an 
event sequence to get into the true branch from the if statement in fn_test (part 
(a)).  The outcome of this branch predicate is dependent on functions in the module 
shown in part (b), which depend on internal state variables. 

Four ants were used in ten cycles, the desirability heuristic exponent β was set to 2, 
the exploration parameter q0 was set to 0.75, and a pheromone decay ρ of 0.25 was 
used.  Sequences were built using backward dependency analysis. Therefore when 
adding the first node to its sequence, the ant could only choose to execute fn_c.  For 
the second node the ant could execute fn_c or fn_b, since the assignment statement 
for k in fn_c uses the variable j that in turn is defined in fn_b.  For every node after 
fn_b was called, any function from the dependent module could be used, since fn_b 
uses the variable i which in turn is defined in fn_a. 

In the first cycle ants were prohibited from using any node more than once, so that 
the full definition-use chain from k through to i could potentially be explored.  The 
greedy desirability heuristic for the addition of nodes, and for evaluating entire se-
quences, was simply based on the branch distance for the true branch in fn_test.  In 
this case, and in order to make the search more complicated, the ants were directed to 
find the shortest satisfying sequence once a satisfying sequence had been found, by 
simply rewarding shorter sequences (of course, shorter sequences ultimately require 
less mental effort on behalf of the human checking the results of the structural tests). 

Ants finished building their sequence if they had found a new best, or they had 
made no improvement on their sequence for the last five nodes.  The results showed 
promise, as seen in table 1.  In ten runs of the experiment, ants found a satisfying se-
quence in 2-3 cycles.  The shortest function call sequence found (<fn_a, fn_a, 
fn_b, fn_c, fn_c, fn_c, fn_test> (or similar sequence of the same length)) was 
ascertained in an average of 4.9 cycles. 

 

// ... 
const int target = 32; 

void fn_test() 
{   
  if (fn_c() == target)  
  { /* target branch  */ } 
} 
// ... 

static int i=0, j=0, k=0; 

void fn_a()  
{ i ++; } 

void fn_b()  
{ j += i * 2; } 

int fn_c()    
{ k += j * 2; return k; } 

(a) Function under test (b) Dependent module 
Fig. 4. C code for the initial experiment 



Table 1.  Results for the initial experiment 
 
 Average Best  Worst 
Satisfying Event Sequence Found 2.1 2 3 
Shortest Satisfying Event Sequence Found 4.9 3 7 
No of ants: 4     No of trials: 10 

6  Conclusions and Future Work 

This paper has introduced the state problem for evolutionary testing; showing that 
state variables can hinder or render impossible the search for test data.  State variables 
can be dependent on the input history to the test object, as well as just the current in-
put.  They do not form part of the input domain to the test object, and therefore cannot 
be optimized by the ET search process.  The only way to control these variables is to 
attempt to execute the statements that perform assignments to them, statements that 
form the transitions of the underlying state machine of the system.  Such statements 
can be identified by data dependency analysis.  The use of ant colony algorithms is 
proposed as a means of heuristic search and evaluation of sequences of transitional 
statements, in order to find one that makes the current test goal possible.   

The next step in this work is the complete implementation of the system, which 
will then be tried on a set of industrial examples.  These experiments will be consid-
ered successful if coverage of structural elements involving states are achieved which 
were previously unobtainable by the use of ET or even random testing alone.  If not 
all structural elements involving states can be covered then further analysis will take 
place to understand the features of these programs that are still causing problems. 
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