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Abstract—Rust is a relatively young, memory safe systems
programming language which is increasingly being adopted by
projects requiring both performance, and safety. While auto-
mated testing is built into the language, tool support for mutation
analysis is almost non-existent, having not been the subject of past
research. This leaves Rust developers without a way to determine
test thoroughness. To address this problem, we design a mutation
analysis process for Rust that overcomes challenges related to
generating viable mutations due to the strictness of the language
in terms of its type system, memory restrictions, and the potential
to introduce undefined behavior in unsafe code blocks. Our
technique efficiently evaluates mutations simultaneously through
a process we refer to as “batching” — the use of static analysis to
determine mutations that are non-conflicting, and therefore are
able to be evaluated together. Batching enables our technique
to maximize thread usage, executing more tests in parallel, and
further reducing the time required to evaluate mutations. We
implemented these techniques into a tool, mutest-rs, which we
empirically evaluated on a diverse set of common subject libraries
and Rust programs, and found that our batching method for in-
creasing parallelism is able to reduce the overall runtime of muta-
tion analysis by up to 66.4%, compared to not applying batching.

I. INTRODUCTION

The lack of mature mutation analysis techniques for Rust
represents a serious obstacle in ensuring thorough testing
of programs written in this safety-focused programming lan-
guage [1]. Being a compiled, low-level language, Rust faces a
multitude of issues when it comes to applying mutation testing.
The language’s strictness — both in terms of type safety, and
memory restrictions — means that mutation operators have to
be constrained using tailored static analysis. Furthermore, the
presence of unsafe code means that special care has to be taken
to avoid the introduction of undefined behavior through muta-
tions. For practical applicability, mutation analysis approaches
also have to be efficient in regard to their runtime, scaling well
to large numbers of tests, and mutations.

This paper is the first to consider mutation analysis for
the Rust language. We devise an efficient mutation analysis
pipeline for Rust, define new operators novel to the language,
as well as a novel mutation evaluation technique that we
refer to as “batching”, designed to increase the efficiency of
mutation analysis overall, and reduce execution costs.

Batching is the process of grouping individual, non-
conflicting mutations together into the same mutant, with the
purpose of evaluating constituent mutations, and their tests,
simultaneously. Rather than using processes, batching allows
for efficient in-process parallelism of evaluation, making it

possible to use schedulers with significantly less overhead, and
more control over the entire evaluation. Non-conflicting mu-
tations are sets of mutations that cannot influence whether the
other mutations in the set are killed or not, due to them appear-
ing in distinct parts of a program. Our technique determines
mutations that are non-conflicting through a conservative static
analysis of a program’s functions that are potentially reached
by individual tests. If two mutations m1 and m2 appear in
two different functions exclusively reached by two different
sets of tests — {t1, t2} and {t3, t4}, respectively — then m1

and m2 are candidates for evaluation in the same batch.
Our mutation analysis pipeline executes the tests relevant to

each individual batch in parallel. Since batches of mutations
require the execution of larger relevant portions of the test
suite, rather than only a few selected tests relevant to a
particular mutation, our technique maximizes test evaluation
concurrency. These benefits can be illustrated as follows.
Supposing two threads, a non-batched, yet non-naı̈ve parallel
mutation evaluation process might execute partial test suites to
evaluate each mutant; i.e. t1 and t2 for m1, and t3 and t4 for
m2, and could utilize each thread to execute each pair of tests
in parallel. However, it would need to synchronize at the end
of the first pair of tests (to change mutants), and then restart
the threads with the second pair. In this example, however,
a batched process would be able to continue to evaluate the
second pair of tests without the need to synchronize and
switch mutant, thereby producing a time saving that increases
with larger numbers of tests, and mutants.

Finally, our technique creates a single meta-mutant pro-
gram [2], which statically embeds all mutations, and builds
on the idea of conditional mutation [3], dynamically enabling
sets of mutations while evaluating individual batches.

We developed a tool, called mutest-rs [4], which implements
our technique. We used mutest-rs to evaluate our approach on
10 critical and commonly-used Rust programs and libraries
(referred to in Rust as “crates”). Our empirical results show
that mutest-rs is applicable to a range of Rust subjects,
reliably generates mutants, while also demonstrating that
batching is effective for reducing the mutation analysis
runtimes — with savings of up to 66.4% possible compared
to not using batching for the crates we studied.

The contributions of this paper, therefore, are as follows:
1) A set of mutation operators suitable for Rust programs,

including adaptations of existing operators, and novel oper-
ators specifically designed for the language (Section III-B).



2) An algorithm for batching mutations for simultaneous,
parallel, and efficient mutation evaluation (Section III-D).

3) A definition of mutation safety, applicable to programming
languages with distinct safe and unsafe scopes, allowing
for the mutation of system programs without the fear of
introducing undefined behavior (Section III-E).

4) The results of an empirical evaluation (Section IV) of the
reduction in testing time possible with mutation batching
in practice, revealing a reduction in the overall mutation
analysis runtime between 12.9% and 66.4% for a diverse
set of commonly-used Rust subject programs (Section V).

Our tool, and empirical data are available online (see [4], [5]).

II. BACKGROUND — RUST AND MUTATION ANALYSIS

Rust is an emerging programming language that aims to
bring proven memory safety to low-level systems program-
ming. Since its 1.0 release in 2015, it has become the language
of choice for performant, safety-focused systems in many parts
of the industry [6]. The practice of mutation analysis — the
use of automatically generated code defects to measure the
quality of a program’s test suite in recognizing faults [7] —
has, to date, not received research dedicated to the language.

Rust is a safety-focused programming language with static
analysis, and testing at its core. It has built-in testing facilities,
with functions marked with the test attribute evaluated by
the included test harness. Each such unit of code, known
as a “crate”, can be tested individually through its unit and
integration tests. Rust has a thriving ecosystem of library
crates, which become common dependencies of most projects.

Despite this, hitherto, a full-featured mutation analysis tech-
nique does not exist for Rust, although two relatively limited
solutions exist — mutagen [8], and cargo-mutants [9]. While
mutagen is capable of applying simple AST transformations
to Rust programs, cargo-mutants only implements extreme
mutation [10] — a simplified form of mutation that involves
replacing entire function bodies. Both of these tools only
operate on a program’s syntax. They are not concerned with se-
mantics, resulting in the generation of large numbers of invalid
mutants, low coverage of various idiomatic mutations, general
inefficiencies in both mutation generation and evaluation, and
practical difficulties related to their application.

Meanwhile, the research of Denisov et al. [11] into the
mutation analysis of LLVM bytecode, the instruction language
Rust compiles to, mentions its potential applicability to Rust.
However, a number of problems arise from bytecode-based
mutation analysis; mutations are easily introduced in external
library code not relevant to the program, and many bytecode
mutations do not have source code counterparts. The results
seen with generic LLVM bytecode mutation [11], [12], [13]
reinforced the need for research based on higher-level analysis.

Finally, Rust statically proves the memory safety of pro-
grams, although this requires developers to abide by its safety
rules. When more flexibility is required, dedicated unsafe code
sections may be introduced which have to be manually audited
to ensure that they uphold safety contracts; i.e., the guarantee

that the program will not contain undefined behavior. The in-
teractions between safe and unsafe code have to be considered
for mutation analysis to retain these guarantees.

III. A MUTATION ANALYSIS PIPELINE FOR RUST, AND ITS
IMPLEMENTATION INTO THE MUTEST-RS TOOL

This section details our mutation analysis pipeline for Rust,
which we implemented into a tool named mutest-rs. Our
mutest-rs tool is tightly integrated with rustc, the reference
implementation of the Rust compiler.

A. Overview

At a high-level, our approach performs two passes on the
input Rust source code to perform mutation analysis on a
given Rust crate. In the first pass, the original source code
is analyzed by an augmented version of the compiler. First,
the tool generates a call graph (Section III-C) starting from
the crate’s test functions. This ensures that the tool only
mutates functions that are reachable by the test suite, and
allows the tool to build a mapping between mutations, and
the tests that may reach them. Second, the tool applies a
set of mutation operators (Section III-B) to every possible
location in the body of the previously selected functions.
Third, the generated mutations are batched (Section III-D).
Finally, the conditional code substitutions which make up the
mutations are inserted into the original program, alongside
the mutation and mutant metadata, an injected global variable
ACTIVE_MUTANT_HANDLE representing the currently active
mutant, and an entry point with a call to the generic mutation
test harness, which drives the evaluation of the mutation test.
The output of the first pass is the generated source code.

In the second pass, the generated source code of the
mutation test program is compiled into a binary. This custom
test binary is then executed to perform the evaluation.

B. Mutation Operators for Rust

We model mutation operators as a mapping from a source
code location, a node in the original program’s abstract syntax
tree (AST), to a set of substitutions required to reproduce
the mutation, if the mutation operator is applicable. Every
substitution is a pair of an existing syntax node, and a new,
replacement syntax node. Substitutions may replace existing
expression nodes, or insert statements before or after an ex-
isting statement. The operators may make substitutions at any
node in the body of the function, not just the input location.
(This ensures that we can generate both first-, and higher-order
mutations [14] using our approach, although we only consider
first-order mutations in this paper.) First-order mutations can
be represented as a singleton set of a single substitution.

Our implementation embeds the generated substitutions that
make up the mutations using in-place conditional expressions
over an injected global state. This state represents the active
mutations at runtime, and is managed by the test harness.
Figure 1 shows an example of such a conditional expression.
First, substitutions of the various mutations are grouped by the
location in the original source code they apply to. Then, for



mem::size_of::<f32>() as u32 * 8

↓

match subst!(ACTIVE_MUTANT_HANDLE @ rep_13466) {
Some(subst) if subst.mutation.id == 1116 =>

mem::size_of::<f32>() as u32 + 8,
Some(subst) if subst.mutation.id == 1117 =>

mem::size_of::<f32>() as u32 / 8,
_ => mem::size_of::<f32>() as u32 * 8,

}

Fig. 1. Example of a match-based conditional expression used to embed
substituted expression nodes alongside the original. Taken from code gener-
ated for hashbrown (a subject used in our empirical study in Section IV-A),
illustrating the mutations applied to a memory offset calculation.

each substituted location, the tool replaces the original node
with a match-based conditional expression, with a branch for
each substituted node, and a default branch for the original
expression. For inserted statements, this default branch is an
empty block. This representation of the substitutions supports
nesting. By replacing subexpressions first, their corresponding
substitution expression gets placed into the default branch of
any outer substitution expression.

We designed a set of fundamental mutation operators for
programs written in Rust. Some of these mutation operators
are adaptations of common operators used in other languages
(e.g., by Major [15], and PIT [16] for Java) that are applicable
to Rust. Others are novel operators that are made possible
by a combination of language features provided by Rust, and
extensive static analysis. In general, these mutation operators
rely heavily on inferred type information. Table I lists these
operators, with operators novel to this paper as follows:

ArgDefaultShadow replaces any argument passed to a
function parameter with the default value of the type. By
inserting a variable binding statement at the beginning of the
function, it can ensure that the original function body does
not have access to the passed argument. This is possible since
Rust allows for rebinding variable names, and has a common
way of representing the intended default value of each type,
by means of the Default trait. The mutation operator only
applies to types with this trait implemented.

CallDelete deletes function calls, replacing the call with
the default value of the type. CallValueDefaultShadow retains
function calls, but replaces the return value at the call site with
the default value of the type. The difference between these
mutation operators is whether the side effects of the called
function are retained with the mutation. These two mutation
operators only apply to function calls which do not resemble
a default constructor (i.e., take at least one argument), and
whose return type implements the Default trait and is not
the unit type. When the function call is retained, the return
type position is explicitly annotated with the semantic type
information from the original function call to ensure that the
resolution of the call remains unchanged after mutation.

ContinueBreakSwap replaces continue expressions as-
sociated with loops with break expressions, and vice versa.
When considering the added complexity of labels and optional
loop return values, the implementation of this rule quickly
requires extensive scope analysis.

TABLE I
MUTATION OPERATORS FOR RUST IMPLEMENTED IN MUTEST-RS.

Mutation operators in bold are novel and introduced in this paper.

Mutation Operator Description

ArgDefaultShadow Replace function argument with default value1

BitOpOrAndSwap Replace bitwise OR with bitwise AND, and vv.
BitOpOrXorSwap Replace bitwise OR with bitwise XOR, and vv.
BitOpShiftDirSwap Replace bitwise LSH with bitwise RSH, and vv.
BitOpXorAndSwap Replace bitwise XOR with bitwise AND, and vv.
BoolExprNegate Negate boolean expression
CallDelete Delete function call, replace with default value1

CallValueDefaultShadow Replace function call result with default value1

ContinueBreakSwap Replace continue with break, and vv.
EqOpInvert Invert equality operator
LogicalOpAndOrSwap Replace logical && with logical ||, and vv.
OpAddMulSwap Replace addition with multiplication, and vv.
OpAddSubSwap Replace addition with subtraction, and vv.
OpDivRemSwap Replace division with modulo, and vv.
OpMulDivSwap Replace multiplication with division, and vv.
RangeLimitSwap Change inclusivity of range’s upper bound
RelationalOpEqSwap Change relation operator’s bound w.r.t. equality
RelationalOpInvert Invert relational operator
1The default value for the type as defined by the implementation of the
Default trait in Rust; i.e. the value of Default::default().

Finally, RangeLimitSwap changes whether the range is
inclusive of its upper bound. While not a unique language
feature, ranges, along with iterators, make up the majority of
loop and array interactions, with manual indexing discouraged.

In addition to the novel operators, many of the common
operators have to be adapted to Rust, notably to its trait system.
Mutation operators that replace existing operators with related
counterparts all have to determine whether the trait required
for the new operator is implemented by the operand types.
For example, the Instant timestamp type implements the
Sub trait for subtraction but not the Add trait for addition.

While in mutest-rs, we did not implement any filtering for
equivalent mutants, the mutation operators used are designed
to produce only a relatively small amount of collisions. Most
of the mutation operators match distinct code patterns, and
those that match similar patterns produce mutations that ex-
hibit slight differences in behavior that might otherwise be
hard to notice.

C. Fully-Resolving Call Graphs as a Pre-Step to Batching

To analyze the functions reachable by individual tests, as
a pre-step for batching mutations, our technique builds a call
graph. The nodes of the graph represent unique functions de-
fined in the program. The presence of a directed edge between
two functions indicates that the function represented by the
source node contains a direct call to the function represented
by the destination node. We extend the construction of call
graphs with propagated type substitutions, which we refer to
as a fully-resolved call graph:

Definition 1 (Fully-resolved call graph): A fully-resolved
call graph is a directed graph GC = (F,C) over a set of
root functions R, where: F (function nodes) is a set of (f, S)
tuples, where f is a function definition, and S is a set of type
substitutions applicable to f ; and C (call edges) is a set of
directed edges between two function nodes, C ⊂ F × F .



Require: T
Ensure: L

C1, C2, . . .← {}, {}, . . .
for all t ∈ T do

Ct ← functions called in body of t
for all (f, S) ∈ Ct do

(f ′, S′)← resolve call f with types S

C
(f ′,S′)
1 ← C

(f ′,S′)
1 ∪ {t}

end for
end for
L← {}
for all d ∈ ⟨1, 2, . . .⟩ do

Fd ← {f | ∀((f, ), ) ∈ Cd}
FΣ ← {f | ∀(f, ) ∈ L}
break if Fd ⊆ FΣ ▷ all functions have already been visited
for all ((f0, S0), T ′) ∈ Cd do

Lf0 ← Lf0 ∪ {(t, d) | ∀t ∈ T ′}
Cf0 ← functions called in body of f0

for all (f, S) ∈ Cf0 do
S+ ← fold type substitutions S0 into S
(f ′, S′)← resolve call f with types S+

C
(f ′,S′)
d+1 ← C

(f ′,S′)
d+1 ∪ T ′

end for
end for

end for

Fig. 2. Construction of the walks of a fully-resolved call graph.

fn f1<T: T1>() -> T {
T::do_t1::<u8>(1)

}

let _ = f1::<S1>();

Fig. 3. A generic function call with a single level of indirection, which
cannot be resolved without propagating type substitutions in the call graph.

The root functions may be any fully-resolved, non-generic
functions. These include entry points, like a binary crate’s
main function or test functions. The algorithm in Figure 2
shows the process of building walks of the call graph between
test functions T and functions of the program. The output
of the algorithm, L, is a mapping between functions and
tests, with a distance associated with each mapping. For
each mapping, distance is the length of the shortest call
path between the two functions. C1, C2, . . . , Cd represent the
callees at their respective levels d of the call tree. These get
populated as the depth-wise iteration of the tree progresses.

The difference from the construction of a partially-resolved
call graph is that the concrete types each generic function is
called with are taken into account. Instead of looking at just a
function’s definition, each individual, uniquely type parameter-
ized invocation of the function is resolved independently. This
is analogous to the monomorphization of generic functions
performed during code generation in compiled languages [17].

Figure 3 is an example of a function call which cannot
be resolved using the local context of the function definition
alone. Inside the generic f1 function, a call is made to the
T1::do_t1::<V> generic trait function, with the known type
parameter <V = u8>. Since the T type parameter of the func-
tion is not known, the call can only be partially resolved to <T

as T1>::do_t1::<u8>, which does not identify the actual

test1

test2

test3

test4

fn1 fn2

fn2

fn3 fn5 fn6

fn4 call

Fig. 4. Reachability-exclusivity, the precondition for mutation batching.

function body. Our technique instead looks at the invocation
f1::<S1> (and other invocations of f1 with differing type
arguments). By combining the invocation’s types <T = S1>

with the call’s types <T = ?, V = u8>, it becomes possible
to resolve the same function call to S1::do_t1::<u8>.

For dynamic polymorphism, the fully-resolved call graph
branches off into all possible implementations of the function
being called to cover any possible runtime function call. For
example, when calling a trait function on a set of trait objects,
the dynamic call is represented as a call edge to all type’s
implementation of the function which implements the trait.

By employing a fully-resolved call graph, our approach is
able to discover the exact functions reached by individual
test functions. However, compile-time call graph analysis has
its limitations, namely dynamic invocation through function
pointers, which cannot be covered with such a lightweight
approach, and requires runtime checks. These are not inherent
limitations of mutation batching, and other approaches are left
as an item for future work.

D. Mutation Batching

The evaluation of mutations takes up the majority of time
spent on mutation testing. For larger projects, this limitation
may disqualify the use of automated mutation testing entirely,
since it takes a prohibitively long time to perform. Therefore,
it is important to look for optimized evaluation techniques
to reduce the time needed to get results. In Rust, test authors
commonly make their test suites parallel, since that is the built-
in test runner’s default, presenting an opportunity to further
engineer safe ways of parallelizing the evaluation of multiple
mutations, making better use of available resources.

Simultaneously enabling multiple mutations requires that
changes in behavior remain uniquely identifiable through
test results. This invariant can be upheld by ensuring that
no two mutations are reachable from any of the same test
functions, effectively producing disjunct subprograms within
the original program (see Figure 4). We introduce the notion of
reachability-exclusivity for such a mutation collision scheme:

Definition 2 (Mutation reachability-exclusivity): Two muta-
tions m1 and m2, reachable from the sets of tests T1 and T2,
respectively, are said to be mutation reachability-exclusive iff
T1 ∩ T2 = ∅.

Our mutation operators cannot add to the set of functions
called by other functions in a program, and so its fully-resolved
call graph is sound for determining reachability-exclusivity.



Require: M
Ensure: B

function SORTINGHEURISTIC(m)
return− |{m′ ∈M | m and m′ are not reachability-exclusive}|

end function
function COMPATIBLEBATCH(B,m)

for all M ′ ∈ B do
if ∀m′ ∈M ′ : m and m′ are reachability-exclusive then

return M ′

end if
end for
return None

end function
B ← {}
sort M by the element-wise value of SORTINGHEURISTIC
for all m ∈M do

if M ′ ← COMPATIBLEBATCH(B,m) then
M ′ ←M ′ ∪ {m}

else
B ← B ∪ {{m}}

end if
end for

Fig. 5. Static batching of non-conflicting mutations. A greedy, heuristics-
based approximation of the optimal batching.

The implementation of our approach generates such non-
conflicting sets of mutations upfront, at compile time. The
resulting static mutation batches are each evaluated by the test
harness. We also encode the necessary metadata to discern the
test results corresponding to each mutation at compile time.

The algorithm in Figure 5 shows the process of creating
non-conflicting batches B of mutations M . The optimal batch-
ing problem — which can be modeled as a graph problem
with nodes representing mutations, and edges representing
conflicts — is NP-hard. Our algorithm is a greedy, heuristics-
based approximation. It works by first sorting mutations into a
list, and then working through that list, adding non-conflicting
mutations to the batch. This list is pre-sorted according to a
heuristic. Through anecdotal initial experimentation, we found
the largest batches were possible by sorting the list by the
number of conflicts each individual mutation had. We leave
the further investigation of this, as well as potentially more
optimal algorithms for batching as an item for future work.
(In our empirical experiments (Section IV), we apply limits to
the number of mutations in a batch to evaluate effectiveness.)

It is important to note that only safe mutations — mutations
defined in safe subtrees of the program — may be safely
evaluated in parallel. Mutations that are inside unsafe blocks
or are invoked by unsafe code are not guaranteed to uphold
the necessary guarantees. As such, unsafe mutations are put
into their own singleton set. We discuss mutation safety next.

E. Mutation Safety — Avoiding the Spread of Unsafety

Safety in Rust is the guarantee that Safe Rust code cannot
cause undefined behavior. Unsafe Rust code has no such
guarantees, and unsafe operations are required to be annotated
explicitly, through the use of an unsafe block. This strict sep-
aration of safe and unsafe code allows for new considerations
to be made when applying mutation testing to Rust.

let xs = [0; 3];
let i = 100;
let el = unsafe { xs.get_unchecked(i) };

Fig. 6. Example of unsafe code depending on its safe, but incorrect enclosing
scope.

fn size() -> usize {
100

}

let xs = [0; 3];
let el = unsafe {

let i = size() - 1;
xs.get_unchecked(i)

};

Fig. 7. Example of unsafe code depending on a call to a safe, but incorrect
function. The issue becomes clear if the body of the called function is inlined.

There is an intricate relationship between safe and unsafe
Rust code. Safe Rust has to trust any unsafe Rust where safety
invariants have been upheld, but unsafe Rust must not trust the
correctness of safe Rust code without care [18]. In practice,
however, embeddings of unsafe Rust often depend on the
correctness of the enclosing safe code section — its context
(see Figure 6) — and the correctness of the safe code it calls
(see Figure 7) for their own correctness [19].

In safe Rust, according to the safety rules mentioned above,
mutations may cause undesired behavior but they will never in-
troduce undefined behavior. Mutations introduced into unsafe
code however are likely to lead to the introduction of undefined
behavior which was not present in the original code. While this
may be desirable to test for, such undefined behavior-inducing
mutations still have to be differentiated. For example, they
have to be tested in a separate process to guard against the
newly-introduced undefined behavior causing the mutation test
evaluation to crash or otherwise behave incorrectly. We intro-
duce the notion of safe and unsafe mutations to differentiate
between mutations in safe and unsafe scopes respectively.

Definition 3 (Unsafe mutation): We consider mutation m
unsafe if it fulfills one of the following conditions:
• m has a direct or indirect unsafe block parent in the

function body it is located in.
• m is in a function body with an unsafe block but is not

a direct or indirect child of an unsafe block. This rule is
called context-tainting.

• m is in the body of a function which is called directly
or indirectly from an unsafe block. This rule is called
call-tainting.

• m is in the body of a function which is called directly
or indirectly from a function body with an unsafe block,
but the call is not a direct or indirect child of an unsafe

block. This rule is called extended call-tainting.

Definition 4 (Safe mutation): We consider mutation m safe
if it is not unsafe according to the definition above.

A safe mutation is guaranteed to not introduce undefined
behavior into the program when applied. Figure 8 shows an
outline of how safe code becomes tainted by unsafe code as the
call tree is traversed from an entry point, according to the rules



fn x { [-]
fn y { [2.]

unsafe { [1.]
fn z { [3.] }

}
fn w { [4.] }
unsafe fn u { [1.]

fn v { [3.] }
fn w { [3.] }

}
}

}

Fig. 8. Illustration of the mutation safety rules on a scope-level. Each
scope is either a called function or an unsafe block. Mutations have the
safety of their containing scope. Within each scope, an annotation is placed
to signify applications of the safety rules: [1.] unsafety; [2.] context-
tainting; [3.] call-tainting; [4.] extended call-tainting; [-] none, safety.

defined above. Tainted scopes — scopes which are matched by
one of the tainting rules — are part of the program’s extended
unsafe scope. Mutations in the same scope have the same
safety, and mutations in tainted scopes become unsafe.

F. Parallelized Test Evaluation

Our approach generates an instrumented program, which
when executed, performs mutation analysis. This program
includes conditionally branching code for all mutations,
metadata representing the mutations and mutation batches,
and a generic mutation test harness. The harness acts as the
main control loop of the program, iterating over mutation
batches, and evaluating the tests corresponding to mutations.

First, all tests are evaluated without any mutations applied.
The information from this profiling test run is used to sort tests
by execution time. This ordering is later used for further test
runs, in anticipation that the majority of the time, mutations
will not change the execution time of any test significantly. An
overall test timeout ttimeout is also automatically determined
from this test run based on the longest running test’s duration
tmax , as follows: ttimeout = tmax +max (0.1 · tmax , 1s).

After the profiling test run, our technique applies each
mutation batch and evaluates it. A mutation batch is applied
by changing the reference stored in the injected global vari-
able ACTIVE_MUTANT_HANDLE, which is referenced in all
of the conditionally branching code generated by mutest-rs
(Figure 1). Once the mutation batch is applied, the harness
evaluates the tests corresponding to the mutations in the batch,
determining the detection of each mutation separately based
on the results of the corresponding test completions. If a test
runs for longer than the automatically determined test timeout
ttimeout, then its corresponding thread is abandoned. The
thread is kept running, but may terminate later, avoiding the
potential for undesired state that would be caused by forcibly
terminating the thread. The parallel test runner used by the
harness works using a fixed number of threads. By modifying
the queue of unscheduled tests during the test run, removing
tests corresponding to mutations which have already been
detected, the number of evaluated test cases can be reduced.

In addition, before each mutation batch evaluation, the tests
are reordered again using a stable sort, which bubbles up a
single test for each mutation in cycles, keeping the relative

TABLE II
SUBJECTS USED IN OUR STUDY; A COMBINATION OF THE MOST

DOWNLOADED RUST LIBRARY CRATES, AND GITHUB PROJECTS.

Crate Description SLoC Unit Tests

alacritty Terminal emulator 15459 65
bat Extended cat clone 6795 46
exa Extended ls clone 10724 406
hashbrown SwissTable hash map 17651 93
parking_lot Synchronization primitives 5102 86
rand Randomness generator 8616 75
rand_core Randomness generator 1648 9
regex RegEx engine 20982 7832
regex-syntax RegEx parser 51406 324
rustls TLS implementation 25184 174

order — based on execution time — the same. This ensures
that the evaluation of all mutations starts as soon as possible,
increasing the overall likelihood of a shorter overall test run.

IV. EVALUATION

We used mutest-rs to evaluate a series of research ques-
tions. Since Rust is a new language in the field of mutation
testing research, we need to evaluate the effectiveness of
applying mutation analysis in the first instance, applying it
to commonly-used, and critical Rust code. These have the
potential to present obstacles to our approach, for example
non-deterministic, flaky tests [20] that are likely to affect
mutation scores, and the extent to which tests may be par-
allelized. Furthermore, we have made improvements to the
classic mutation analysis workflow in our approach — in
particular, our method of batching mutations — which may
have wider applicability beyond Rust, and which we also
evaluate. Our research questions, therefore, are as follows:

RQ1: How do common Rust projects perform with respect to
mutation analysis with our mutation operators?
RQ2: What is the distribution of mutations across batches that
can be achieved through reachability-exclusivity for various
types and sizes of projects?
RQ3: What are the performance gains provided by
reachability-exclusive mutation batching? How does the ap-
proach scale with project size and the number of mutations?
RQ4: How does mutation batching perform in the context of
flaky, non-deterministic, non-parallelizable test suites?

A. Subjects

We selected Rust crates from the list of the top 100 most
downloaded library crates according to crates.io (the primary
crate registry), and the list of the largest Rust repositories
(according to repository size, and number of stars) on GitHub.
We excluded crates that were wrappers of external libraries,
primarily comprised of unsafe code, contained at most an
insignificant amount of executable code, used a custom test
runner or had an insignificant amount of unit tests.

Table II lists the crates involved in our experiments. In
terms of source lines of code, the subjects ranged from 1648
for rand_core to 51406 for regex-syntax. In terms of
the number of unit tests, the subjects ranged from 9 for
rand_core to 7832 for regex.



B. Methodology
In preparation for the experiments, we forked each subject’s

source code repository. This was done to pin down the
crate versions we were testing against, creating a stable test
environment. In addition, for crates with a significant amount
of out-of-code standalone tests (programs contained in the
tests/ directory of a Cargo package), we moved the test
cases back into the crate. This made it possible for mutest-rs to
analyze these test cases as well, allowing for a more extensive
evaluation of the crates’ test suite. All modifications to the
subjects are available in our replication package [5].

We wrote an experiment script to automatically perform
the analysis on all selected crates. All information is parsed
automatically by the script from the output of mutest-rs. We
configured mutest-rs to discard all unsafe mutations.

The script first runs mutest-rs to gather information about
the generated mutants with batching disabled, with a small
batch size limit of 5, and without a batch size limit (unbatched,
small batched, and fully batched cases respectively). This
includes the total number of mutations generated, and the
distribution of mutations across batches for all batching cases.

Then, the script runs mutest-rs to completion to perform the
mutation testing. In all cases, the same test ordering, filtering,
and multi-threaded scheduling was applied, regardless of the
presence of batching. Five evaluations are performed for each
batching case to reduce the error in our timing measurements
caused by background processes, and non-determinism. For
each evaluation, the tool collects the mutation score, the
number of mutations that were detected and undetected, the
number of mutations that timed out, the number of tests that
were evaluated to determine the detection of mutations in each
mutant, and the time each stage of mutest-rs took:
• function discovery, which consists of building the call tree

of the test suite, determining which functions to mutate, and
the mutation safety of each scope;

• mutation operator application, the process of applying
each mutation operator to every possible location in the
mutable functions, producing mutations;

• mutation batching;
• code generation, the process of applying the necessary

modifications to the program’s AST, and printing the re-
sulting code;

• compilation of the generated program;
• test profiling, the evaluation of the unmodified test suite

to gather execution time metrics used for test ordering, and
determining a test timeout;

• mutation evaluation, the evaluation of each mutant against
the test suite.
The experiments were run on a MacBook Air M1 (2020)

with 16 GiB of RAM, running macOS 12.4. We built mutest-rs
against the nightly-2022-06-13 version of rustc, and ran
it with a thread pool of size 8 for executing the tests.

C. Threats to Validity
It is important to consider the threats to the validity, and

representativeness of the empirical results of this study.

TABLE III
MUTATION SCORES.

Crate Score Detected
(Timed out) Undetected Total

alacritty 22.8% 329.0(10.0) 1114.0 1443
bat 73.7% 221.0 79.0 300
exa 73.3% 508.0 185.0 693
hashbrown 76.5± 0.7% 205.8± 1.8 63.2± 1.8 269
parking_lot 73.7% 28.0(14.0) 10.0 38
rand 59.6% 779.0(88.0) 529.0 1308
rand_core 71.4% 145.0 58.0 203
regex 62.3% 736.0(7.0) 446.0 1182
regex-syntax 65.9% 1520.0(59.0) 786.0 2306
rustls 69.5± 0.1% 960.0± 0.7(15.0) 422.0± 0.7 1382

The choice of the mutation operators applied could be a
threat to internal validity. Different or additional mutation
operators may affect the number of mutations, the resulting
batching of mutations, and the runtime of mutation analysis
and mutation testing. However, since the majority of the cho-
sen mutation operators are frequently used in mutation testing
literature, we consider the reported results to be meaningful.

The choice of subjects could be a threat to external va-
lidity. The reported results may be different for other crates.
Nevertheless, the analyzed crates vary in terms of program
size, number of test cases, complexity and implemented func-
tionality, and cover many of the most common crates currently
available. Therefore, we consider the results to be meaningful.

Defects in the compiler-integrated mutation testing tool,
mutest-rs could be a threat to construct validity. We controlled
the threat in mutest-rs by testing with several small example
programs as well as manually analyzing the generated muta-
tions, mutants, code, and mutation testing results. Moreover,
over the course of this study, the tool has generated multiple
millions of lines of valid Rust code. We conclude that the
implementations of the tools used worked correctly.

Finally, we make our tool, scripts, data, and repository forks
of our subjects available in our replication package [5].

V. RESULTS

RQ1: How do common Rust projects perform with respect to
mutation analysis with our mutation operators?

Using the results of the unbatched mutation test evalua-
tions over all subjects, we can determine the mean mutation
score to be 64.9%, with mutation scores ranging between
22.8% for alacritty, and 76.5% for hashbrown. Except
for alacritty’s low mutation score, all other crates had
a mutation score above 59%. The low mutation score of
alacritty can be best attributed to the project having
comparably shallow tests. Only hashbrown, and rustls

showed slight variance in its mutation score across multiple
evaluations. We investigate this further in RQ4. The tool
generated mutations which timed out in half of the crates,
with rand having the most timeouts at 88, making up 11% of
all of its detected mutations. Table III shows the mean results
across all 5 unbatched evaluations. Only safe mutations were
considered for the purposes of batching, however, the number
of unsafe mutations was not high enough for any crate to
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have a significant effect on the overall mutation score. While
the mutation operators are unlikely to produce a significant
amount of collisions, it is important to note that we did not
perform filtering for equivalent mutants.

In conclusion for RQ1: Unbatched mutation scores range
between 22.8% and 76.5%, hinting that mutation testing may
uncover a significant amount of test inadequacies.

RQ2: What is the distribution of mutations across batches that
can be achieved through reachability-exclusivity for various
types and sizes of projects?

To discuss the benefits of mutation batching, it is impor-
tant to consider the problem of optimal batching, and how
the optimal solutions compare to the kinds of batches our
algorithm generates. Figure 9 visualizes the distribution of
mutations across batches of various sizes. While the data is
considerably noisy, it is easy to see that almost all crates
follow a logarithmic trend line depicting a high number of
unbatched mutations, and a small number of large batches. The
optimal batching of these crates would approach a mirrored
trend line depicting a small number of unbatched mutations,
and a high number of large batches. The batching problem
remains the same regardless of the conflict criteria used. The
algorithm outlined in this paper is a greedy, heuristics-based
approximation of the optimal solution to the batching problem.
Regardless, it can still provide a significant improvement over
unbatched evaluation techniques.

Table IV shows the batching ratio achieved by reachability-
exclusive batching of mutations using this paper’s greedy
algorithm. The reduction in the number of mutation rounds
— the number of mutants for unbatched-, and the number
of batches for batched evaluation — ranges between 28.9%
for parking_lot, and 82.9% for hashbrown, with a mean
of 65.1%, suggesting a significant improvement in mutation
testing runtime for most crates. The number of unbatched
mutations ranges between 57.9% for parking_lot, and
1.9% for hashbrown of the total number of mutations, with
a mean of 15.8%. The large number of unbatched mutations

TABLE IV
BATCHING OF MUTATIONS.

Mutations refers to the number of mutations generated for each crate. Total
Batches refers to the total number of batches the generated mutations were
placed into by batching. The figures in brackets denote the ratio of the
total number of mutations, and the number of batches; i.e. the batching
compression ratio. Singleton Batches refers to the number of batches with
only a single mutation (i.e. unbatched mutations), a subset of all batches. The
figures in brackets denote the ratio of the number of unbatched mutations,
and the total number of mutations.

Crate Mutations Total Batches Singleton Batches

alacritty 1443 736(49.0%) 366(25.4%)
bat 300 94(68.7%) 15(5.0%)
exa 693 179(74.2%) 74(10.7%)
hashbrown 269 46(82.9%) 5(1.9%)
parking_lot 38 27(28.9%) 22(57.9%)
rand 1308 584(55.4%) 424(32.4%)
rand_core 203 54(73.4%) 8(3.9%)
regex 1182 345(70.8%) 69(5.8%)
regex-syntax 2306 623(73.0%) 46(2.0%)
rustls 1382 351(74.6%) 181(13.1%)

in some cases is an indicator that more optimal batchings
exist, suggesting that further performance improvements may
be achievable by applying the technique of mutation batching
with more optimal batching algorithms.

In conclusion for RQ2: The greedy algorithm presented in
this paper is an approximation of the batching problem. The
reduction in the number of mutation rounds ranges between
28.9% and 82.9%. Between 57.9% and 1.9% of mutations are
unbatched depending on the crate.

RQ3: What are the performance gains provided by
reachability-exclusive mutation batching? How does the ap-
proach scale with project size and the number of mutations?

Mutation batching is a technique for increasing the paral-
lelism of the evaluation of mutations by allowing for mutations
with a small number of tests to be included in larger batches,
maximizing the number of tests that can be run at once. All
timings discussed are the means of the 5 individual evaluations
per each batching. We do not report additional metrics or
errors, since the timing results exhibit little dispersion.
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Figure 10 shows the differences in the time taken to
evaluate mutation tests between unbatched, small batched,
and fully batched mutation tests. All crates except exa show
a considerable decrease in runtime, ranging between 4.8%
for alacritty, and 94.5% for hashbrown across the tested
batchings, with a mean decrease of 28.3% for small batching,
and 28.1% for full batching. The outlier improvement seen
with hashbrown can best be attributed to a combination
of an optimal batching — being the most batched crate in
our experiment at 17.1% with only 1.9% of its mutations
unbatched — and project characteristics — having the smallest
number of tests amongst the largest crates. The difference
in improvement between small batches, and full batches is
negligible in most cases, usually within one to two percent,
with the biggest difference being rustls’s 11.8%. However,
in almost all cases, small batching achieves a higher reduction
in runtime compared to full batching. This is most likely
the direct result of the greedy algorithm used, which pri-
oritizes creating larger batches over a balanced distribution
of mutations across batches. While unsafe mutations were
discarded, due to the small number of them, we expect to
have seen indistinguishable results in most cases, even if we
had evaluated them one-by-one in individual processes.

Figure 11 shows the differences in runtime for the entirety
of mutation testing, including analysis, with full batching. The
decrease in the overall runtime of mutation testing ranges
between 12.9% for rand, and 66.4% for hashbrown with
batching, with a mean decrease of 25.7%. We see a drastic
decrease in compilation times with batching. This happens
because of the way conditional mutations are implemented
in mutest-rs. Since a static substitution lookup table is em-
bedded for each mutant into the generated code, reducing the
number of them also reduces compile times. This approach is
necessary for efficient mutation testing. While it is possible to
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TABLE V
NUMBER OF TESTS EVALUATED DURING MUTATION TESTING.

Unbatched, and fully batched evaluations listed separately. Total refers to
the total number of test evaluations if all mutations are undetected, and
exhaustive mutation testing has to be performed.

Crate Unbatched Batched Total

alacritty 4075.4± 156.4 4491.0± 160.1 5671
bat 771.6± 49.0 814.6± 47.5 1337
exa 6414.2± 1086.4 6243.2± 715.9 30457
hashbrown 495.2± 35.3 511.8± 52.8 1647
parking_lot 228.0 234.0 439
rand 1579.0 1848.0 2227
rand_core 216.0 242.0 253
regex 979154.0 625880.0 1658674
regex-syntax 21910.0 14118.0 45660
rustls 3881.8± 248.2 4336.0± 204.3 8093

generate programs which load mutants from a separate data
file, such an implementation would require accessing dynamic
data structures at every mutated location, drastically increasing
evaluation runtime. It is also worth noting that the process of
mutation batching takes an insignificant amount of time in
most cases, with the median batching time being 1.3 seconds.
The batching time of a crate is proportional to the number of
tests, and the number of mutations generated. The largest crate
in our study, regex, with 7832 tests and 1182 mutations, has
a batching time of 17.2 seconds.

It is important to point out that mutation batching does not
necessarily decrease the number of test evaluations required
to produce a mutation score. Table V compares the number
of test evaluations performed during unbatched, and batched
mutation testing. We see a slight increase in the number of
test runs for most crates with a notable decrease of 36.1% for
regex, and 35.6% for regex-syntax. The increase can be
explained by the behavior of the parallel test runner, which
waits for all already running tests to complete.



TABLE VI
MUTATION SCORES WITH, AND WITHOUT BATCHING.

Crate Unbatched Batched

alacritty 329.0(22.8%) 329.0(22.8%)
bat 221.0(73.7%) 235.0(78.3%)
exa 508.0(73.3%) 514.0(74.2%)
hashbrown 205.8± 1.8(76.5%) 243.4± 0.5(90.5%)
parking_lot 28.0(73.7%) 35.0(92.1%)
rand 779.0(59.6%) 792.0(60.6%)
rand_core 145.0(71.4%) 145.0(71.4%)
regex 736.0(62.3%) 855.0(72.3%)
regex-syntax 1520.0(65.9%) 1865.0(80.9%)
rustls 960.0± 0.7(69.5%) 991.4± 0.5(71.7%)

In conclusion for RQ3: Our greedy approximation of
the batching problem produces significant improvements in
runtime. Mutation batching improves evaluation times as well
as compile times. The overall runtime of mutation testing
is decreased by 12.9% to 66.4% depending on the crate.
Mutation batching does not necessarily decrease the number of
test evaluations, but we have seen reductions of up to 36.1%.

RQ4: How does mutation batching perform in the context of
flaky, non-deterministic, non-parallelizable test suites?

While mutation batching does not affect the mutation score
of deterministic test suites, it may report slightly different
mutation scores on flaky, non-deterministic test suites. These
are primarily caused by the presence of shared state, which is
regarded as desirable to mock in unit tests, in part because it
enables parallelized testing. The degree of variance introduced
in these cases is important to consider. Table VI shows the
difference in reported mutation scores compared to mutation
testing without batching. We see no change in mutation score
after batching in half of the studied crates. In the remaining
crates — those with flaky test suites — we see deviations
ranging between 0.9% for exa, and 18.4% for parking_lot,
with a median deviation of 4.7%. The most affected crates,
parking_lot, regex-syntax, and hashbrown, make use
of mutable global state, making them difficult to write fully
deterministic test suites for.

In conclusion for RQ4: Mutation batching does not af-
fect the mutation score of deterministic test suites. Non-
deterministic test suites may be affected to various degrees
depending on flakiness. This is caused by the flaky test suite
and is not a soundness issue.

VI. RELATED WORK

Mutation testing has been widely applied to many lan-
guages [7]. To the best of our knowledge, this is the first
research work that targets the Rust programming language.
Two recent and popular tools that have been studied include
Major [15] and PIT [16] for Java. Major uses a set of syntax-
based, compiler-assisted mutation operators, and embeds them
into a single meta-mutant. It implements test case prioritization
based on a monitored reference run. Our approach improves on
Major, using an extended set of mutation operators, along with
a parallel test scheduler that leverages simultaneous mutation
evaluation that our batching technique affords. Conversely, PIT

uses bytecode mutations to avoid compilation, at the expense
of mutation operator expressivity.

There has been a lot of attention to reducing the cost
of mutation analysis. These techniques are given excellent
coverage in the survey by Pizzoleto et al. [21], including
works that have sought to reduce the costs of evaluating
mutations, that, as with this work, fall into Offutt and Untch’s
categories of “do faster” and “do smarter” [22]. The approach
of Gopinath et al. [23], seeks to optimize the common code
paths between the generated mutants, forking the program at
each mutant. Sun et al. [24] performed a larger-scale study of a
similar approach, grouping mutants in the same block together,
compiling the resulting programs separately and forking the
program execution for each individual mutant. These efforts
primarily focus on reducing repeated work across mutant
evaluations rather than increasing parallelism across the entire
evaluation. Zhang et al. [25] use a family of techniques to
prioritize, and reduce the tests needed to evaluate mutants,
applying heuristics relating to coverage and execution history.

Mateo and Usaola [26] apply statement coverage analysis
to determine which tests reach mutations, so as to remove
other tests from consideration. This builds on a similar ap-
proach taken by Schuler and Zeller [27] when developing the
Javalanche mutation testing tool for Java. Just et al. [28] take
these ideas beyond mutation reachability to derive information
about state infection. This work differs in that we focus on the
higher level unit of function calls reachable by tests. This is
advantageous for most programs, since it can be performed
statically, upfront, without any runtime analysis.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we propose a set of novel mutation operators
for Rust programs, introduce the notion of mutation safety,
and explore mutation batching, a promising technique that im-
proves the efficiency of parallelism in executing tests to evalu-
ate mutations, and may be applied in mutation testing at large.

Our experiments show that mutation batching translates into
a considerable decrease in the runtime of mutation testing
evaluation, ranging between 4.8% and 94.69%, with a mean
of 28.1%. The overall runtime of mutation testing is reduced
between 12.9% and 66.4%, with a mean decrease of 25.7%.

Due to the promising results of this study, we plan, as
part of our future work, to improve the results achievable by
mutation batching, by developing better heuristics, and finding
other, more effective approximations of the mutation batching
problem. While the reachability metrics derived from static
call graphs are sufficient for many programs, we intend to
investigate the use of additional runtime coverage information,
and how it might improve batching quality. Due to the general
applicability of mutation batching to other programming lan-
guages, we may experiment with its use more widely. Since
our technique requires memory safety, it may prove especially
useful for languages with managed memory. In addition, we
intend to explore the idea of an increased set of novel mutation
operators based on common error patterns as well as complex,
higher-order mutations’ ability to surface more subtle issues.
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