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Abstract

Automated test data generation has remained a topic of considerable interest for several decades
because it lies at the heart of attempts to automate the process of Software Testing. This paper
reports the results of an empirical study using the dynamic symbolic execution tool, CUTE, and
a search based tool, AUSTIN on five non-trivial open source applications. The aim is to provide
practitioners with an assessment of what can be achieved by existing techniques with little or
no specialist knowledge and to provide researchers with baseline data against which to measure
subsequent work. To achieve this, each tool is applied ‘as is’, with neither additional tuning nor
supporting harnesses and with no adjustments applied to the subject programs under test. The
mere fact that these tools can be applied ‘out of the box’ in this manner reflects the growing
maturity of Automated Test Data Generation. However, as might be expected, the study reveals
opportunities for improvement and suggests ways to hybridize these two approaches that have
hitherto been developed entirely independently.

1. Introduction

Generating test inputs for software is a demanding problem. This paper focuses on test input
generation to achieve branch coverage. Essentially, as with other test data generation problems,
the underlying problem is one of reachability, which is of course undecidable, and so only partial
coverage can be expected. Nonetheless, since the only available alternative is costly and unre-
liable human–based code coverage analysis, it makes sense to attempt to partly automate test
input generation by seeking to develop algorithms and tools that can cover as much as possible
in reasonable time. This has been the goal of Automated Test Data Generation for more than
three decades, during which time great advances have been made in algorithms, techniques and
tooling.

This paper concerns two leading approaches to software testing: dynamic symbolic execution
and search based testing. Each has a long history of development dating back to the 1970s, but
each has experienced a recent upsurge in interest, leading to the development of research tools.

Dynamic symbolic execution [1, 2, 3, 4, 5] is a development of symbolic execution based
testing. The currently popular formulation of this approach originates in the seminal work of
Godefroid et al. on Directed Random Testing [2].

Search Based Software Testing (SBST) [6] formulates the test data adequacy criteria as fit-
ness functions, which can be optimized using Search Based Software Engineering [7, 8]. The
search space is the space of possible inputs to the program under test. The objective function
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captures the particular test adequacy criterion of interest. The approach is attractive because
it is widely applicable; any testing problem for which a fitness function can be defined can be
attacked with SBST. Of course, almost all approaches to testing involve some concept of test ad-
equacy, which typically must be quantifiable in order to be applicable. As such, there is usually
no shortage of candidate fitness functions [9].

This wide applicability has meant that a large number of applications of SBST have been
developed. These include functional [10] and non-functional [11] testing, mutation testing [12],
regression test selection [13], test case prioritization [14, 15], and interaction testing [16]. How-
ever, the most studied form of search based testing has been structural test data generation
[17, 18, 19, 20, 21, 22, 23].

While many papers present results that demonstrate that both dynamic symbolic execution
and search based techniques are better than random testing [1, 21, 23], there has been com-
paratively little work investigating and comparing their effectiveness with real world software
applications. Previous work, has tended to be small-scale, considering only few programs, or
considering only parts of individual applications to which the test generation technique is known
in advance to be applicable. This is a reasonable consequence of the need to explore the technical
development of new algorithmic features. For such developments, an empirical study will natu-
rally focus on those aspects of programs under test that explore the performance and behaviour
of the new technical contribution.

In previous studies, where the goal has been to explore technical developments, the test
data generation tools are seldom, if ever, applied ‘out of the box’; without customization or
special handling for different test subjects or parameter tuning. This is not intended as a criticism
of previous work. Since the topic of previous papers has tended to be the exploration of the
behaviour of new technical contributions, it is only natural for the research questions to consider
the performance of the new features under different conditions relating to customization and
tuning.

Furthermore, no previous paper has attempted an extensive empirical report of comparative
results from these two widely studied approaches to Automated Software Test Data Generation.
Therefore, the current literature fails to provide convincing answers to several important ques-
tions that practicing software testers might well ask of the current state of the art. These include:

1. How effective are dynamic symbolic execution and search-based tools when applied with
neither tuning nor customization to real-world software applications?

2. To what types of program are the dynamic symbolic execution and search-based ap-
proaches best suited?

3. How long will a tester have to wait for the results?

The aim of this paper is to provide answers to these questions. Fortunately, the state of the
art in both Dynamic Symbolic Testing and Search Based Testing is now sufficiently mature that
it is possible to do this. That is, we seek to take a step back from technical developments in
order to consider what has been achieved overall; what is the current state of the art capable of
automatically generating test inputs for structural testing?

Of course, the ‘state of the art’ is a continually developing body of knowledge and tools are
continually under refinement. Since both fields of test data generation continue to attract a great
deal of interest, new technical developments continue to emerge in the literature. Therefore,
any attempt to answer these questions faces the problem of coping with a moving target. The
results presented here are thus not intended to be definitive, once–and–for–all answers to these
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questions. Rather, they are merely intended to capture a point in time in the development of this
research agenda at which it was possible to provide realistic base line data.

The hope is that this base line data will be useful both for current practitioners and also for
future research. It will allow the practitioner community to see what is possible and to which
programs the techniques can be readily applied without specialist knowledge. It will support the
research community in its ability to chart the development of the field.

As will be seen, the paper shows that despite considerable progress (which should make the
current tooling available attractive to practitioners), there remain areas where test data genera-
tion can be improved (providing food for thought for the research community). The results also
indicate that these two largely separate and independent approaches are to some degree comple-
mentary. This suggests the possible future development of hybrid approaches.

The paper reports the results of an empirical study which compares a dynamic symbolic
execution tool, CUTE [1], and a search based tool, AUSTIN [24]. The test adequacy criterion
under investigation is branch coverage. The primary contributions of this paper are the following:

1. An empirical study which determines the level of code coverage that can be obtained using
CUTE and AUSTIN on the complete source code of five open source programs.

2. An empirical study investigating the wall clock time required for each tool to obtain the
coverage that it does.

3. A more detailed technical assessment, based on the empirical study, of where CUTE and
AUSTIN succeeded and failed.

We hope that the first of these contributions will provide useful base line data against which
future developments in the field can be measured. The results indicate that there is plenty of
room for such development, so there remain many interesting research challenges ahead. The
aim of the final contribution is to provide an analysis of some of the challenges that remain
for such improvement, distinguishing mere tool implementation issues from more fundamental
algorithmic challenges.

The rest of the paper is organized as follows. Section 2 provides the background informa-
tion to the dynamic symbolic execution and search based tools, CUTE and AUSTIN, which the
empirical study presented in this paper uses. Section 3 outlines the motivation for our work, the
research questions addressed, and the gap in the current literature this paper is trying to close. The
empirical study, results and answers to the research questions are presented in Section 4, whilst
Section 5 aims to clarify the difference between tool and technique related problems. Threats to
validity are addressed in Section 6 and Section 7 presents related work. Section 8 concludes.

2. Background

Software testing can be divided into a sequence of three fundamental steps:

1. The design of test cases that are good at revealing faults, or which are at least adequate
according to some test adequacy criterion.

2. The execution of these test cases.
3. The determination of whether the output produced is correct.

Sadly, in current testing practice, often the only fully automated aspect of this activity is test
case execution. The problem of determining whether the output produced by the program under
test is correct cannot be automated without an oracle, which is seldom available. Fortunately, the
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problem of generating test data to achieve widely used notions of test adequacy is an inherently
automatable activity. Such automation promises to have a significant impact on testing, because
test data generation is such a time-consuming and laborious task. This paper focuses on structural
test data generation.

Automated structural test data generation has been a burgeoning interest to researchers since
at least the 1970s. In the 1970s two approaches to the problem emerged - symbolic execution
[25], which is the basis of dynamic symbolic execution; and a method that reformulated the
problem of executing a path through a program with floating-point inputs into objective functions
[17], which later developed into the field known as search based testing. Both these techniques
have witnessed a recent upsurge in interest as a result of the development of new approaches
to symbolic execution, and a wider interest in search based optimization as a problem solving
technique in Software Engineering. This section provides background information of each of the
two techniques to make the paper self-contained.

2.1. Dynamic Symbolic Execution
Dynamic symbolic execution [1, 2, 3, 4] originates in the work of Godefroid et al. on Di-

rected Random Testing [2]. It formulates the test data generation problem as one of finding a
solution to a constraint satisfaction problem, the constraints of which are produced by a combi-
nation of dynamic and symbolic [25] execution of the program under test. Concrete execution
typically drives the symbolic exploration of a program, and furthermore, dynamic variable val-
ues obtained by real program execution can be used to simplify path constraints produced by
symbolic execution.

Symbolic execution involves constructing a system of constraints in terms of the input vari-
ables that describe when a program path will be executed. For example, the path condition which
executes the if statement as true in Figure 1a would simply be 〈a0 + 5 = b0 − 10〉, where a0 and
b0 refer to the symbolic values of the input variables a and b respectively. The path condition is
then solved by a constraint solver in order to derive concrete input values.

The path condition can easily become unsolvable, however, if it contains expressions that
cannot be handled by constraint solvers. This is often the case with floating-point variables or
non-linear constraints. For example, a linear constraint solver would encounter difficulties with
the program of Figure 1b because of the non-linear predicate appearing in the if condition.

Dynamic symbolic execution may alleviate some of the problems associated with traditional
symbolic execution by combining concrete execution with symbolic execution. The idea is
to simplify the path condition by substituting sub-expressions with concrete values, obtained
through actual dynamic executions. For example, this substitution process can be used to remove
non-linear sub-expressions in a path condition, making them amenable to a constraint solver.

Due to the combination of concrete and symbolic execution, dynamic symbolic execution is
also sometimes referred to as concolic testing. The term concolic was coined by Sen et al. [1] in
their work introducing the CUTE tool. The remainder of this paper will use the terms concolic
testing and dynamic symbolic execution interchangeably.

The CUTE Tool
CUTE implements a concolic testing strategy based on a depth-first exploration of all feasible

program paths. The first path executed is that which is traversed with either all zero or, random
inputs depending on CUTE’s execution mode. The corresponding path condition forms the basis
for successive iterations of the test data generation process.
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Suppose the function in Figure 1b is executed with the random values 536 and 156 for x
and y respectively. The path taking the false branch is executed and the corresponding path
condition is 〈x0 ∗ y0 ≥ 100〉, where x0 and y0 refer to the symbolic values of the input variables x
and y respectively. The next execution path is chosen by inverting the last relational operator in
the current path condition (i.e., exploring the paths in a depth-first manner). Thus the new path
condition becomes 〈x0 ∗ y0 < 100〉. Since this path condition contains non-linear constraints,
CUTE replaces x0 with its concrete value from the previous execution, i.e., 536 [1]. The new,
simplified path condition 〈536∗y0 < 100〉is now linear and can be handled by CUTE’s constraint
solver (lp solve) to find an appropriate value for y (i.e., zero or any negative value). The
exploration of program paths continues in this manner, inverting the last relational operator in
a path condition (with backtracking), until all feasible execution paths through a unit have been
explored. For functions with unbounded loops (or recursion), CUTE may unfold the body of the
loop indefinitely. One can therefore place a limit on the length of a path condition by bounding
CUTE’s depth first search via a command line parameter.

2.2. Search Based Testing
Like symbolic-execution-based testing, the first suggestion of optimization as a test data

generation technique also emerged in the 1970s, with the seminal work of Miller and Spooner
[17]. Miller and Spooner showed that the series of conditions that must be satisfied for a path to
be executed can be reformulated as an objective function, the optima of which (i.e., the test data
that executes the path) could be found using optimization techniques.

The role of an objective function is to return a value that indicates how ‘good’ a point in
a search space (i.e., an input vector) is compared to the best point (i.e., the required test data);
the global optimum. For example, if a program condition a == b must be executed as true, the
objective function could be |a − b|. The closer the output of this formula is to zero, the ‘closer’
the program input is to making a and b equal, and the closer the search technique is to finding
the test data of interest.

Because an optimizing search technique is used rather than a constraint solver, non-linear
constraints present fewer problems. For example the surface of the objective function for taking
the true path through the if condition of Figure 1b can be seen in Figure 1c. The surface is
smooth and provides the optimization process with a clear ‘direction’, guiding the search to the
required test data. Furthermore, computation of the objective function by dynamically executing
the program alleviates another problem of both symbolic and concolic testing, i.e floating-point
inputs.

The suggestions of Miller and Spooner were not subsequently taken up until Korel devel-
oped them further in 1990 [18], when he proposed the use of a search technique known as the
‘alternating variable method’. Since then the ideas have been applied to other forms of testing
[10, 11, 12, 13, 14, 15, 16], using a variety of optimizing search techniques, including genetic
algorithms [19, 20, 21]. The objective function has been further developed to generate test data
for a variety of program structures, including branches, as well as paths [21].

The AUSTIN Tool
AUSTIN is a tool for generating branch adequate test data for C programs. It is an improved

version of our earlier work [24], most notably in the way pointer constraints are solved. Our
earlier work did not include feasibility checks of pointer constraints because it did not use an
equivalence graph to solve them.
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AUSTIN does not attempt to execute specific paths in order to cover a target branch; the path
taken up to a branch is an emergent property of the search process. The objective function used
by AUSTIN was introduced by Wegener et al. [21] for the Daimler Evolutionary Testing System.
It evaluates an input against a target branch using two metrics; the approach level and the branch
distance. The approach level records how many nodes on which the branch is control dependent
were not executed by a particular input. The fewer control dependent nodes executed, the ‘further
away’ the input is from executing the branch in control flow terms. Thus, for executing the true
branch of statement 3 in Figure 1d; the approach level is

• 2 when an input executes the false branch of statement 1;

• 1, when the true branch of statement 1 is executed followed by the false branch of statement
2;

• zero if statement 3 is reached.

The branch distance is computed using the condition of the decision statement at which the
flow of control diverted away from the current ‘target’ branch. Taking the true branch from
statement 3 as an example again, if the false branch is taken at statement 1, the branch distance
is computed using |a − b|, whilst |b − c| is optimized if statement 2 is reached but executed as
false, and so on. The branch distance is normalized (see formula in Figure 2) and added to the
approach level. The search method used is the Alternating Variable Method (AVM), proposed
by Korel [18]. The AVM is a simple search technique, which was shown to be very effective
by Harman and McMinn [23] when compared with more sophisticated optimization techniques
such as genetic algorithms.

AUSTIN, like CUTE, begins with all primitives set to zero. If the target is not executed, the
AVM cycles through each input of primitive type and performs so-called ‘pattern moves’, guided
by the objective function. If a complete cycle of adjustments takes place with no improvement
in objective value, the search restarts using random values.

Suppose the program of Figure 1d is executed with the input 〈a = 100, b = 200, c = 300〉,
with the aim of executing the true branch of statement 3. The AVM takes the first variable, a,
and performs exploratory moves; executions of the program where a is decreased and increased
by a small amount δ (δ = 1 for integers and 0.1 for floating point variables). An increased value
of the variable a brings it closer to b and results in a better objective value.

The AVM then makes pattern moves for as long as the objective function continues to yield
an improved value. The value added to the variable in the nth pattern move is computed using
the formula 2n ·dir ·δ; where dir ∈ {−1, 1} corresponding to the positive or negative ‘direction’ of
improvement, identified by the initial exploratory moves. Thus consecutive exploratory moves
for the variable a are 102, 104, 108 and so on. Pattern moves will improve the objective value
until a value of 228 is reached for the variable a. At this point the minimum (a = 200) has
been overshot, so the AVM repeats the exploratory-pattern move cycle for as long as necessary
until the minimum is reached. When a = 200, the true branch of statement 1 is executed. For
executing statement 2, exploratory moves on the variable a both lead to a worse objective value,
because the original outcome at statement 1 is affected and the approach level worsens. The
AVM will then consider the next variable, b. Exploratory moves here have the same effect, and
so the AVM moves onto the variable c. Decreasing the value of c improves the objective value,
and so pattern moves are made. Eventually each input value is optimized to 200.
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void testme1(int a, int b)
{

a += 5; b -= 10;
if (a == b)

// ...
}

(a) Example for demonstrating symbolic execution. The branch
predicate is linear

void testme2(int x, int y)
{

if (x * y < 100)
// ...

}

(b) Example for demonstrating concolic execution and search
based testing. The branch predicate is non-linear

(c) Surface of the objective function for executing the true
branch of the program in (b)

void testme3(int a, int b, int c)
{

(1) if (a == b)
(2) if (b == c)
(3) if (a == c)
(4) // ...

}

(d) Example for demonstrating objective function calculation
for the AUSTIN tool

Figure 1: Examples for demonstrating symbolic, concolic and search based testing.

f (dist) = 1 − 1.001−dist

Figure 2: Normalization function used in AUSTIN for branch distances. dist is the branch distance value described in
Section 2.2.
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Should exploratory moves produce no improvement in objective value, with the required test
data not found either, the search has hit a local minima from which it cannot proceed. AVM ter-
minates and restarts with a new random input vector. Typically, the search is afforded a ‘budget’
of objective function evaluations (i.e., program executions) in which to find test data, otherwise
the search is deemed to have failed. This could be because the branch is infeasible. In some
cases, however, the objective function surface can be flat, offering the search no guidance to the
required test data. This is sometimes due to the presence of boolean ‘flag’ variables [26, 27],
which can result in two plateaus for a branch condition; one where the flag is true, and one where
it is false.

2.3. Handling Inputs Involving Pointers
The above descriptions explained how concolic testing and search based testing handle inputs

of a primitive type only. This section explains how CUTE and AUSTIN handle pointer inputs.
The CIL (C Intermediate Language) infrastructure [28] is used to transform and simplify pro-
grams such that all predicates appearing in decision statements contain only either pointer types
or arithmetic types. In addition, the source contains no compound predicates. Thus all condi-
tions involving pointers are of the form x == y or x != y (where x and y could also represent
NULL).

Pointers in CUTE
The first path explored by the CUTE tool is the path executed where inputs of primitive type

are zero (or of a random value, depending on the settings used). If the function involves pointer
variables, these are always initially set to NULL. However, further paths through the program
may require pointers to point to a non-null data structure. In order to find the ‘shape’ of this data
structure, CUTE incorporates symbolic variables for pointers in the path condition. A graph-
based process is used to check that the constraints over the pointer variables are feasible, and
finally, a simple procedure is used to build the data structure required.

For the program of Figure 3a, and the path that executes the true branch at each decision,
CUTE accumulates the path constraint:

ptr0 ! NULL ∧ le f t0 ! NULL ∧ right1 = ptr0

CUTE keeps a map of which symbolic variable corresponds to which point in the data struc-
ture, for example, le f t0 maps to ptr->left. The feasibility check involves the construction
of an undirected graph, which is built incrementally at the same time as the path condition is
constructed from the conditions appearing in the program. The nodes of the graph represent
abstract pointer locations, with node labels representing the set of pointers which point to those
locations. A special node is initially created to represent NULL. Edges between nodes represent
inequalities. After statement 1 in the example, the graph consists of a node for ptr0 with an edge
leading from it to the NULL node. When statement 2 is encountered, a new node is constructed
for le f t0, with an edge to NULL. Finally, right1 is merged into the existing ptr0 node, as they
must point to the same location (Figure 3b). Feasibility is checked as each constraint is added
for each decision statement. An equality constraint between two pointers x and y is feasible if
and only if there is no edge in the graph between nodes representing the locations of x and y. An
inequality constraint between x and y is feasible if and only if the locations of x and y are not
represented by the same node.
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void testme4(item* ptr)
{

(1) if (ptr != NULL)
(2) if (ptr->left != NULL)
(3) if (ptr->left->right == ptr)
(4) // ...

}

(a) Code snippet

(b) CUTE feasibility graph for path which executes all deci-
sions in (a) as true

Figure 3: Example for demonstrating pointer handling in CUTE and AUSTIN.

Table 1: Dynamic data structure creation according to individual constraints encountered along the path condition for
CUTE and AUSTIN.

Constraint CUTE AUSTIN
m0 = NULL Assign NULL to m0
m0 ! NULL Allocate a new memory location pointed

to by m0
m0 = m1 Make m1 alias m0
m0 ! m1 Allocate a new

memory location
pointed to by m1

With an even proba-
bility, assign NULL
or allocate a new
memory location
pointed to by m0

If the path condition is feasible, the data structure is built incrementally. Each new branching
decision adds a new constraint to the path condition, and the data structure is created on the basis
of each constraint using the rules of Table 1. A more detailed treatment can be found in the work
of Sen et al. [1].

Pointers in AUSTIN
There has been little work with respect to generating dynamic data structures in search based

testing. Korel [18] developed a limited method for simple Pascal data structures. In order to
apply search based testing to real world programs this limitation had to be overcome. AUSTIN
uses search based techniques for primitive inputs, a symbolic process akin to that of CUTE is
used for pointers [24]. As with CUTE, pointer inputs are initially set to NULL. During the
search process, a branch distance calculation may be required for a condition that involves a
pointer comparison. However branch distances over physical pointer addresses do not usually
give rise to useful information for test data generation; for example it is difficult to infer the
shape of a dynamic data structure. Therefore, instead of computing a branch distance, AUSTIN
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Table 2: Details of the test subjects used in the empirical study. In the ‘Functions’ column, ‘Non-trivial’ refers to
functions that contain branching statements. ‘Top-level’ is the number of non-trivial functions that a test driver was
written for, whilst ‘tested’ is the number of functions that were testable by the tools (i.e., top-level functions and those
that could be reached interprocedurally). In the ‘Branches’ column, ‘tested’ is the number of branches contained within
the tested functions.

Test Lines Functions Branches
Object of Code Total Non-Trivial Top Level Tested Total Tested
libogg 2,552 68 33 32 33 290 284
plot2d 6,062 35 35 35 35 1,524 1,522
time 5,503 12 10 8 10 202 198
vi 81,572 474 399 383 405 8,950 8,372
zile 73,472 446 339 312 340 3,630 3,348
Total 169,161 1,035 816 770 823 14,596 14,084

performs symbolic evaluation for the path taken up to the predicate as executed by the current
input generated by the AVM. The result is a path condition of the same form as generated by
CUTE. As with CUTE, the constraints added to the path condition are used to incrementally build
the dynamic data structure. The rules for doing this appear in Table 1. AUSTIN does not perform
a feasibility check; if the branching condition at the control dependent node is not executed as
required, the AVM process restarts afresh. For a more in-depth treatment, see reference [24].

3. Motivation and Research Questions

One of the first tests for any automatic test data generation technique is that it outperforms
random testing. Many authors have demonstrated that both concolic based and search based
techniques can outperform purely random test data generation. However, there are fewer studies
that have attempted to evaluate concolic and search based approaches on real world programs.

Previous studies have tended to be small-scale [18, 21] or, at least in the case of search
based approaches, concentrated on small ‘laboratory’ programs. Where production code has
been considered, work has concentrated solely on libraries [22] or individual units of applications
[23]; usually with the intention of demonstrating improvements or differences between variants
of the techniques themselves.

Studies involving concolic approaches have also tended to focus on illustrative examples [1,
29, 30, 3], with relatively little work considering large scale real world programs such as the vim
text editor [5, 31], network protocols [32] or windows applications [33]. Furthermore, no studies
have compared the performance of concolic and search based testing on real world applications.

The research questions to be answered by the empirical study are therefore as follows:

RQ 1: How effective are CUTE and AUSTIN for real world programs? Given a set of real
world programs, how good are CUTE and AUSTIN at achieving structural coverage?

RQ 2: What is the relative efficiency of each tool? If it turns out that both tools are similarly
effective at generating test data, efficiency will be the next issue of importance as far as a practi-
tioner is concerned. If one tool is more effective but less efficient than the other, what is the trade
off that the practitioner has to consider?
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RQ 3: Which types of program structure did each tool fail to cover? Which functions could
the tools not handle, and for the functions which could be handled, what types of branches
remained stubborn to the test generation process? What are the challenges that remain for auto-
matic test data generation tools?

4. Empirical Study

The empirical study was performed on a total of 169,161 pre-processed lines of C code
contained within five open-source programs. This is the largest study of search based testing by
an order of magnitude and is similar in size to the largest previous study of any form of concolic
testing.

4.1. Test subjects
Details of the subjects of the empirical study are recorded in Table 2. A total of 770 functions

were tested. Since the study is concerned with branch coverage, trivial functions not containing
any branches were ignored. In addition, further functions had to be omitted from the study
because they could not be handled by CUTE or AUSTIN. These included functions whose inputs
were files, data structures involving function or void pointers, or had variable argument lists.
These problems are discussed further in Section 4.3 in the answer to research question 3.

The programs chosen are not trivial for automated test data generation. libogg is a library
used by various multimedia tools and contains functions to convert to and from the Ogg multi-
media container format, taking a bitstream as input. plot2d is a relatively small program which
produces scatter plots directly to a compressed image file. The core of the program is written in
ANSI C, however the entire application includes C++ code. Only the C part of the program was
considered during testing because the tools handle only C. time is a GNU command line utility
which takes, as input, another process (a program) with its corresponding arguments and returns
information about the resources used by a specific program, including wall-clock and CPU times.
vim is a common text editor in Unix, and makes heavy use of string operations; as does zile,
another GNU program, designed to be a more lightweight text editor than Emacs.

4.2. Experimental Setup
Each function of each test subject was taken in turn (hereinafter referred to as the ‘FUT’ -

Function Under Test), with the aim of recording the level of coverage that could be achieved by
each tool.

Since CUTE and AUSTIN take different approaches to test data generation, care had to be
taken in setting up the experiments such that the results were not inadvertently biased in favour
of one of the tools. The main challenge was identifying suitable stopping criteria that were ‘fair’
to both tools. Both tools place limits on the number of times the function under test can be
called, yet this is set on a per-function basis for CUTE and a per-branch basis for AUSTIN.
Furthermore, one would expect CUTE to call the function under test less often than AUSTIN,
because it carries out symbolic evaluation. Thus, setting a limit that was ‘equal’ for both tools
was not feasible. Therefore it was decided that each limit would be set to a high value, with a
time limit of 2 minutes of wall clock time per FUT used as an additional means of deciding when
a tool’s test data generation process should be terminated.

CUTE’s limit was set to the number of branches in the FUT multiplied by 10,000. CUTE can
reach this limit in only two cases; firstly if it keeps unfolding a loop structure, in which case it
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won’t cover any new branches; or secondly if the limit is less than the number of interprocedural
branches, i.e., the total number of branches reachable from the FUT (which was not the case
for any of the test subjects considered). AUSTIN’s limit was set to 10,000 FUT executions per
branch, with branches in the FUT attempted sequentially in reverse order. Oftentimes the search
process did not exhaust this limit but was terminated by the overall time limit instead.

Thirty ‘trials’ were performed for each tool and each function of each test subject. AUSTIN
is stochastic in nature, using random points to restart the search strategy once the initial search,
starting with all primitives as zero, fails. Thus, several runs need to be performed to sample its
behaviour. Since some test subjects exhibit subtle variations in behaviour over different trials
(e.g. in the time program), CUTE was also executed thirty times for each function, so that
AUSTIN did not benefit unfairly from multiple executions. For example, some branches of the
time function (transitively) depend on the result of computations involving the gettimeofday
function.

Coverage was measured in two ways. The first is respective to the branches covered in the
FUT only. A branch is counted as covered if it is part of the FUT, and is executed at least once
during the thirty trials. The second measure takes an interprocedural view. A branch is counted
as covered if it is part of the FUT or any function reachable through the FUT. Interprocedural
coverage is important for CUTE, since path conditions are computed in an interprocedural fash-
ion. Any branches covered interprocedurally by AUSTIN, however, are done so serendipitously,
as the tool only explicitly targets branches in the FUT.

Apart from the settings necessary for a fair comparison, as discussed above, both tools were
applied ‘out of the box’, i.e., with default parameters and without the writing of special test
drivers for any of the test subjects. As mentioned in Section 2.1, CUTE has an option to limit the
level of its depth-first search, thus preventing an infinite unfolding of certain loops. However, as
it is not generally known, a priori, what a reasonable restriction is, CUTE was used in its default
mode with no specified limit, i.e., an unbounded search.

The test driver for both tools is not only responsible for initializing input parameters but also
the place to specify any pre-conditions for the function under test. AUSTIN generates a test
driver automatically by examining the signature of the FUT. The test drivers for CUTE had to
be written manually but were constructed using the same algorithm as AUSTIN. Writing pre-
conditions for functions without access to any specifications is non-trivial. For the study only
the source code was available with no other documentation (including virtually no comments in
the source code). Thus, pre-conditions of functions would have had to be inferred manually by
inspection, clearly not a feasible task. Yet, without capturing a functions’ pre-condition in a test
driver, a tool is likely to produce ‘invalid’ inputs, especially for pointer type inputs. Preliminary
experiments showed that a common pre-condition of functions was that pointers do not point to
NULL in order to prevent NULL-pointer dereferences. Therefore it was decided the only pre-
condition to use was to require top level pointers to be non-NULL (as described in Section 2.3).

4.3. Answers to Research Questions
RQ 1: How effective are CUTE and AUSTIN for real world programs? Figure 4 plots three
different ‘views’ of the coverage levels obtained by CUTE and AUSTIN with the test subjects.
The first view, Figure 4a, presents coverage of branches in the FUT only. However, CUTE places
an emphasis on branches covered in functions called by the FUT, building up path conditions in-
terprocedurally. For AUSTIN interprocedural branch coverage is incidental, with test generation
directed at the FUT only. Therefore, Figure 4b plots interprocedural coverage data which, in the-
ory, should be favourable to CUTE. Finally, CUTE could not attempt 138 functions, containing
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(a) Branches covered only as part of the function under test

(b) Branches covered in the function under test and interprocedurally

(c) Branches covered in functions that CUTE can handle only

Figure 4: Branch coverage for the test subjects with CUTE and AUSTIN. Graph (a) counts only branches covered in
each function tested individually. Graph (b) counts branches covered in the function under test and branches covered in
any functions called. Graph (c) is graph (b) but with certain functions that CUTE cannot handle excluded.
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Table 3: Comparing wall clock time and interprocedural branch coverage for a sample of branches. FUT refers to the
Function Under Test and IP to the number of Interprocedural branches, i.e., the number of branches reachable from the
FUT (including the branches in the FUT itself).

FUT Branches CUTE AUSTIN
Time Covered Time Covered

FUT IP (s) FUT IP (s) FUT IP
libogg:
ogg stream clear 8 10 0.84 7 10 134.75 5 7
oggpack read 14 14 0.24 2 2 0.18 2 2
plot2d:
CPLOT BYTE MTX Fill 4 8 131.25 4 4 130.05 1 1
CPLOT DrawDashedLine 56 56 130.43 13 13 130.40 37 37
CPLOT DrawPoint 16 16 0.51 13 13 131.82 13 13
time:
resuse end 6 6 0.42 4 4 131.84 5 5
vi:
compile 348 348 2.11 26 26 34.14 24 24
exitex 4 4 146.47 1 1 0.22 1 1
plod 174 174 1.58 18 18 137.17 18 18
pofix 4 4 0.41 1 1 135.08 1 1
vappend 134 426 0.53 6 6 0.26 6 6
vgetline 220 228 0.81 3 3 0.26 3 3
vmain 404 480 0.27 3 3 0.3 3 3
vmove 30 30 0.79 3 3 0.24 3 3
vnpins 6 108 0.22 2 2 0.25 2 2
vputchar 148 212 0.2 4 4 0.25 4 4
zile:
astr rfind cstr 6 6 0.45 2 2 0.17 2 2
check case 6 6 0.38 1 1 130.49 6 6
expand path 82 84 0.37 0 1 0.16 0 1
find window 20 20 0.4 1 1 131.4 1 1
Total 1,690 2,240

1,740 branches. Some of these functions involved void pointers, which cannot be handled by
CUTE. However, a number of functions could not be tested by CUTE because the test subject did
not compile after CUTE’s instrumentation. For certain functions of the zile test subject, the in-
strumentation casts a data structure to an unsigned integer, and subsequently tries to dereference
a member of the data structure, which results in an error. Since CUTE’s exploration behaviour
is interprocedural, all functions within this source file became untestable. Thus, Figure 4c plots
interprocedural branch coverage, but removing these branches from consideration.

Strikingly, all three views of the coverage data show that in most cases, the majority of
branches for an application were not covered by either tool. The only exception is the plot2d test
subject. Here, AUSTIN managed 77% coverage taking interprocedural branches into account,
compared to CUTE’s 29%. Code inspection revealed that 13 functions in plot2d contained
unbounded loops. Whenever a loop exit condition of an unbounded loop forms the last (yet)
un-inverted condition, CUTE will keep inverting the same condition over and over again. It
therefore never attempted to cover any more branches in the unit and instead kept increasing the
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void foo(int n, ...) {
for(int i = 0; i < n; i++) ...

}

Figure 5: Example used to illustrate how unbounded loops can slow down the test data generation process, thus leading
to a premature timeout after 2 minutes.

number of loop iterations by one until its timeout or iteration limit was reached. For all other
subjects, coverage for either tool does not exceed 50% whatever ‘view’ of the data is considered.
It has to be noted, however, that AUSTIN does seem to cover a higher number of the branches.
When a modified path condition falls outside the supported theory of CUTE’s constraint solver,
unlike AUSTIN, CUTE does not try a fixed number of random ‘guesses’ in order to find test data.
AUSTIN on the other hand will spend 10,000 attempts at covering the branch. In the worst case
this is equal to performing 10,000 random searches. Nevertheless, this gives AUSTIN a higher
chance of finding test data than CUTE.

Section 5 will examine in more detail if the observed results are a consequence of the tech-
niques implemented by AUSTIN and CUTE or due to limitations of the tools. First though, the
efficiency of each of the tools is examined with respect to a subset of the branches before research
question 3 aims to identify where the problems were and where the challenges remain.

RQ 2: What is the relative efficiency of both tools? In order to answer this research question,
a random sample of 20 functions (from the programs in Table 2) were taken and the performance
of each individual tool analysed further. These functions are listed in Table 3 and comprise 1690
branches, with a further 550 reachable interprocedurally.

CUTE times out (reaching the 120 second limit) on three occasions. This is because CUTE
gets stuck unfolding loops in called functions. AUSTIN times out on eight occasions. For ex-
ample, the function ogg stream clear from libogg takes as input a pointer to a data structure
containing 18 members, one of which is an array of 282 unsigned characters, while 3 more are
pointers to primitive types. Since AUSTIN does not use any input domain reduction, it has to
continuously cycle through a large input vector in order to establish a direction for the search
so it can start applying its pattern moves. The second cause of timeouts was indirectly related
to unbounded loops. If the number of loop iterations is controlled by an input parameter to the
function under test, AUSTIN will, on average, assign a large number to this parameter. Consider
the example in Figure 5.

After a random restart, AUSTIN will pick any value for n from the range of [INT MIN,INT MAX].
Assigning large values to n can slow down the overall execution of the function under test and
thus increase the wall clock time of the test data generation process.

Overall the table indicates that CUTE is more efficient than AUSTIN, though the results very
much depend on the function under test as well as the execution mode of CUTE. Using CUTE
with an unbounded depth-first search on units containing unbounded loops (or recursion) is very
inefficient. For all other functions CUTE is very efficient, in large parts due to its relatively
simple constraint solver (lp solve) and its own internal optimization steps. These ensure calls
to the constraint solver are minimized whenever possible.

AUSTIN is a prototype research tool and thus not optimized for performance. Despite this,
AUSTIN terminates within a second for many functions. For the functions where AUSTIN
timed out, its efficiency could have been improved by incorporating an input domain reduction
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void foo(int a) {
if( a == 4 )

//target
}

Figure 6: Example used to illustrate the relative inefficiency of AUSTIN for certain branches.

as proposed by Harman et al. [34].
We speculate however that in general a constraint solver will be faster than the search method

implemented in AUSTIN (though perhaps at the cost of effectiveness). Consider the example
from Figure 6. A concolic testing tool will be very fast in achieving 100% branch coverage of
the function in Figure 6, having to execute the function twice to achieve its coverage. AUSTIN
on the other hand requires 7 executions of the function in order to achieve 100% branch coverage
(assuming AUSTIN starts with primitives initialized to zero).

RQ 3: Which types of program structure did each tool fail to cover?

Table 4: Errors encountered during test data generation for the sample of branches listed in Table 3.

CUTE AUSTIN
Timeout 91 277
Aborted 0 113
Segmentation fault 419 180
Floating point error 60 90
Failed to take predicted path 30 n/a

Table 4 logs common reasons why the tools terminated abnormally for the 23 sample func-
tions shown in Table 3.

Segmentation faults. CUTE terminated prematurely 419 times, and AUSTIN 180 times because
of segmentation faults. These faults are the result of implicit constraints on pointers (i.e., missing
guarding statements) and a consequence of assigning ‘bad’ values to input parameters. Consider
the example in Figure 7 (taken from libogg). The variable vals is an indication of the number
of elements in the array b. If this relationship is not observed during testing, e.g. by assigning
NULL to b and setting vals > 0, the program will crash with a segmentation fault.

Floating point exceptions. Another cause of system crashes for both tools were floating point
exceptions. The IEEE 754 standard classifies 5 different types of exceptions: invalid operation;
division by zero; overflow; underflow; inexact calculation.

During the sample study CUTE raised 60 floating point exceptions and AUSTIN 90. The
signal received for both tools was S IGFPE, which terminates the running process. Code inspec-
tion revealed that in all cases the cause of the exception was a division by zero error. This is not
surprising since all primitive inputs are initialized to zero by both tools.

Unhandleable functions. Out of all functions considered during the main study, 46 could not
be tested by both tools and an additional 138 not by CUTE because of unhandled input types.
AUSTIN, for example, initializes void pointers to NULL and does not attempt to assign any
other value to them. CUTE cannot handle such pointers at all, and generates an undefined
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void
cliptest(unsigned long *b,int vals,...) {
...
for(i=0;i<vals;i++)
oggpack_write(&o,b[i],bits?bits:ilog(b[i]));

...
}

Figure 7: CUTE and AUSTIN require a human to write preconditions to functions. This can be a laborious task, espe-
cially in the context of function calls made from within the function under test. This examples illustrates the need for
tools to be able to infer simple preconditions, such as NULL pointer checks, in order to avoid program crashes, from
which neither CUTE nor AUSTIN can recover.

_cu__unhandledInputType call. It is not clear what would be a good strategy for setting
such pointers. Source code analysis may be required to determine the possible data types.

A similar problem to void pointers can be observed with the va_list type, allowing variable
length argument functions in C. This type is essentially a linked list container and the data types
of the data items cannot always be established a priori. An implementation issue is also related to
variable argument lists. A call to __builtin_va_arg in the version of the glibc library, takes
the data type:

__builtin_va_arg(marker, mytype)

as its second parameter. CIL transforms such calls into an internal representation of

__builtin_va_arg(marker, sizeof(mytype), &x);

where x is a variable of mytype. When printing the source code from CIL, the printer will
try to print the original code. Due to the code simplification transformations used, the internal
CIL form is printed instead, causing a compilation error.

Out of all available functions in the preprocessed C code, 19 had a function pointer as one
of their formal parameters. This is another input type that causes problems for both CUTE and
AUSTIN. Currently the tools lack the infrastructure to either select a matching function from the
source code, or, to generate a stub which matches the function signature. One way to address the
problem would be to manually supply the address of a function, but then the test data generation
process would not be fully automated.

A special case exists for AUSTIN when a function pointer is declared as a member of an
input data structure. AUSTIN treats such members like any other pointer and will assign NULL
or a block of newly allocated memory to the pointer during input initialization. Of course this
will crash the program as soon as the application attempts to use the function pointer.

Another implementation related drawback for both CUTE and AUSTIN 1 is the failure to
handle bitfields in input data structures. Both tools use the address of variables during input
initialization (see the example in Figure 8), and thus attempt to take the address of a bitfield
when generating inputs. This is, of course, not possible and results in the gcc compilation error
“cannot take address of bit-field ‘bf’ ”.

1This has been fixed in the current version of AUSTIN so that it now supports bitfields.
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typedef struct mystruct {unsigned int bf : 5;}
mystruct;

//CUTE / AUSTIN:
_IUInt(
(unsigned long)&(((struct mystruct*)maddress)->bf));

Figure 8: Example used to illustrate that CUTE and AUSTIN cannot handle code which contains bitfields.

Many real world programs contain some form of file I/O operation. Yet neither tool fully
supports functions whose parameter list contains a pointer to a file structure. During this study,
the FILE data structure contained incomplete type information in the accessible source code,
and thus neither tool had the information required to instantiate such inputs. Even if all the type
information had been available, the tools would not have been able to generate ‘valid’ inputs.
This is because each member of the data structure has a semantic meaning. Therefore it would
not make sense to populate it with random values. The same applies to any _IO_FILE data
structure (e.g. as used by stderr or stdout). Populating these with arbitrary values will likely
result in nothing more than program crashes, or extensive testing of error handling procedures.

CUTE-specific issues. During the study, CUTE failed to cover branches for the following rea-
sons. As explained in our experimental setup, only the source file containing the current function
under test was instrumented. Any other source files of the program remained untouched, and
thus formed a ‘black box’ library as far as CUTE was concerned. Black box functions (system
or application specific) influence CUTE’s effectiveness in two ways.

Return values from black box functions cannot be represented symbolically and are thus
treated as constants in a path condition where applicable. The underlying assumption is that
their value remains unchanged over successive iterations with similar inputs. If this is not the
case, successive executions may not follow the sub-path predicted by CUTE (which results in
CUTE aborting its current search, reporting “... CUTE failed to take the predicted path”, and
restarting afresh).

Worse still, formal parameters of the function under test may be passed by reference to a
black box function which, in turn, modifies their value. Since CUTE cannot be aware of how
these inputs may change, it is likely that solutions generated by CUTE do not satisfy the real
path conditions and thus also result in prediction errors by CUTE.

An illustrative example can be found in the time program, involving the function gettimeofday,
which populates a data structure supplied as input parameter to the function. While CUTE at-
tempts to set members of this structure in order to evaluate the predicate shown in Figure 9 with
a true outcome, any values of the data structure are overridden before reaching the predicate. A
weakness of CUTE is that it fails to recognize the indirect assignment to the input data structure
via the function gettimeofday. A better approach would be to assume any pointer passed to an
uninstrumented piece of code may be used to update blocks of memory reachable through that
pointer.

One of the claimed strengths of concolic testing is its ability to overcome weaknesses in
constraint solvers by simplifying symbolic expressions so they can be handled through existing
theories. The light-weight solver used by CUTE requires many such simplifications. CUTE only
handles additions, subtractions, (side effect free) assignments and linear multiplication state-
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resuse_end (pid_t pid, RESUSE *resp) {
...
gettimeofday (&resp->elapsed,(struct timezone *) 0);
...
if (resp->elapsed.tv_usec < resp->start.tv_usec)
//target

}

Figure 9: Example used to illustrate how black box function calls can inhibit dynamic symbolic execution based tech-
niques.

BOOL CPLOT_DrawDashedLine(...,const int x, ...
const int to_x,
const int to_y, ...) {
...
if( to_x - x == 0 ) {
for( row=y; row<=to_y; row++ ){ ... }
return TRUE;

}
//CODE NEVER EXECUTED BY CUTE

}

Figure 10: Example used to illustrate how CUTE can get stuck unfolding loops when used with an unbounded depth-first
exploration strategy.

ments symbolically. Non-linear expressions are approximated as described in Section 2.1, while
all other statements (e.g. divisions) are simply ignored (in symbolic terms). Inspection of the
source code for the different programs revealed that path conditions become very quickly domi-
nated by ‘constant’ values due to the nature of operations used in the code. The lack of symbolic
information means inverted constraints quickly become infeasible within the given path condi-
tion. Thus CUTE is restricted in the number of execution paths it can explore.

Finally CUTE failed to cover certain branches because of an unbounded DFS (CUTE’s de-
fault mode), which resulted in CUTE unfolding unbounded loops, without ever attempting to
cover any alternative branches in the code. Consider the example in Figure 10, taken from the
plot2d program. The first predicate if( to_x - x == 0 ) is satisfied by default (all prim-
itive inputs are instantiated with equal values). The unbounded loop contained within the if
statement ensures CUTE has an unlimited number of paths to explore before returning. Any
code following the if statement is never explored, even though it makes up the bulk of the
function.

The function exitex highlighted an interesting behaviour in CUTE. Its input space consists
of two integer variables, one a global parameter and the other a formal parameter. The body of
the function is shown in Figure 11.

In the first iteration, both i and failed will be 0. This means the function _exit is called
with a value of 0, the status code for EXIT_SUCCESS. The _exit function terminates the running
process and exits with the supplied status code. Since it indicates no error, it does not get caught
by the registered signal handlers. CUTE however terminates before it can save its branch history
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int exitex(int i) {
if (failed != 0 && i == 0)

i = failed;
_exit(i);
return 0;

}

Figure 11: Example of a function which causes CUTE to run until its iteration budget has been exhausted.

(of what has been covered) to a file for subsequent iterations. CUTE’s constraint solver can easily
find a solution to the constraint failed != 0 && i == 0 and thus CUTE is left with an infinite
amount of feasible branches and continues to run until its iteration limit is reached. However, the
true branch of the if statement in Figure 11 will not be covered by CUTE in the process.

AUSTIN-specific issues. Search based testing is most effective when the fitness landscape used
by an algorithm provides ubiquitous guidance towards the global (maximum) minimum. As
discussed in Section 2.2, a landscape containing plateaus often reduces a guided search to a
random search in an attempt to leave a flat fitness region. The ‘shape’ of the fitness landscape
primarily depends on the fitness function used to evaluate candidate solutions (test cases).

Data dependencies between variables are a major contributor to plateaus in a fitness land-
scape, best illustrated by the flag problem [35]. While work has been done to tackle this problem,
no standardized approach exists for including such information in the fitness computation. The
fitness function used by AUSTIN does not explicitly consider any data dependencies.

The test subjects used during the empirical study contained many predicates exhibiting flag
like properties, introducing spikes and plateaus into the fitness landscape. Consider the example
shown in Figure 12 (taken again from plot2d), where the predicate depends on a function re-
turned flag. When a flag only has relatively few input values which make it adopt one of its two
possible values, it will be hard to find such a value [36].

For the above example, a random strategy of setting the input (and its members) to NULL or
non-NULL will have a good chance of reaching the bulk of the body from CPLOT_BYTE_MTX_Fill.
The code snippet was chosen not to illustrate the problem of function assigned flags, but to high-
light another problem in AUSTIN’s strategy. While symbolic information is collected across
function calls, AUSTIN only computes intraprocedural control flow information. In order to
take the false branch of the first if statement in CPLOT_BYTE_MTX_Fill, execution needs to
follow the false branches of both conditionals in CPLOT_BYTE_MTX_isNull. The false branch
shown in CPLOT_BYTE_MTX_Fill is not control dependent on the predicates in the function
CPLOT_BYTE_MTX_isNull, and thus AUSTIN will not attempt to modify dst. AUSTIN’s
pointer rules (shown in Table 1) can only be applied to critical branching nodes (Section 2.2).

During the sample study, AUSTIN reached its runtime limit 9 times while attempting cov-
erage of a function. No input domain reduction was used, and thus at times AUSTIN had to
optimize large input vectors. In the worst case, it has to execute a function at least 2 ∗n+1 times
to cover a target branch, where n is the size of the input vector. Previous work [34] has shown
that reducing the search space for an AVM significantly improves its efficiency. When efficiency
and a runtime limit are linked, it has an impact on the effectiveness of the search.

AUSTIN reported an abnormal termination of the program in 113 runs during the sample
study. This does not mean having executed the abort function, but rather that the program
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BOOL
CPLOT_BYTE_MTX_isNull(CPLOT_structByteMatrix *M)
{
if( !M )
return (1);

if( M->data == ((void *)0) )
return (1);

return (0);
}

BOOL
CPLOT_BYTE_MTX_Fill(CPLOT_structByteMatrix *dst,
{

...
if( CPLOT_BYTE_MTX_isNull( dst ) )

return 0;

//TARGET BRANCHES NEVER EXECUTED BY AUSTIN
}

Figure 12: Example used to demonstrate how function assigned flags cause problems for AUSTIN.

under test returned an unrecognised error code. Twenty three of these were caused by passing
an unrecognised status code to an exit function, propagated through by inputs from the func-
tion under test. The remainder were triggered by longjmperror, which aborts a program. An
execution environment is saved into a buffer by a call to setjmp. The longjmp command en-
ables a program to return to a previously saved environment. The longjmperror is raised if the
environment has been corrupted or already returned.

5. Tool vs Technique

It is important for different test data generation techniques, developed within different re-
search communities, to be compared against each other. In order to perform such a comparison
one needs tools which implement the different techniques. Yet, whenever one seeks to compare
two different techniques, as is the case in this paper, one has to consider whether one is compar-
ing the tools rather than the techniques implemented by the tools. The following section attempts
to distinguish between shortcomings of a test data generation technique and its implementation,
based on the findings in answering RQ3 (Which types of program structure did each tool fail to
cover?).

5.1. Search Based Testing
Investigation of RQ3 revealed that search based testing suffered greatly from the ‘flat fitness

landscape’ problem. When the fitness function produces the same fitness value for many differ-
ent inputs (to the program), the fitness landscape will contain plateaus. These offer no guidance
for the search algorithm and thus deteriorate a guided search into a random search. The problem
is most acute in the presence of flag variables [37]; variables that can only take on one of two
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values. Function returned flags (such as the example shown in Figure 12) were found to be par-
ticularly common. Many authors have worked on the flag problem [38, 39, 40, 41] in the context
of search based test data generation. Wappler et al. [36] were the first to address the problem of
function assigned flags by proposing a testability transformation [41]. Such transformations are
independent of the underlying (search based) test data generation technique. While the testabil-
ity transformation for function assigned flags has been shown to work on small examples, the
feasibility of using such a transformation on medium to large scale, real world software has yet
to be demonstrated. Furthermore, the transformation as proposed by Wappler et al. is not di-
rectly applicable to function assigned flags which depend on pointers, as is the case in Figure 12.
This is because the testability transformation relies on similar branch distance calculations to the
ones described in Section 2.2. However, as previously explained, branch distances over physical
pointer addresses do not usually give rise to useful information for test data generation.

Another well known problem for search based testing are rugged fitness landscapes. In gen-
eral the AVM works best on concave (up or down) functions with few local optima. While the
random restart strategy described in Section 2.2 is designed to overcome local optima, the AVM
will deteriorate more and more to a random (and thus an inefficient) search as the number of lo-
cal optima increases. The fitness landscapes encountered for the different test subjects displayed
some characteristics of a rugged landscape, though overall the problem of flat fitness landscapes
was much more common.

In summary, more research is required to integrate landscape analysis into search based test-
ing. Besides such landscape analyses, the search based community also needs to address the
problem of generating input values for the following types:

• union - Currently there is no mechanism to track which member of a union is required in
order to cover a particular target branch.

• void* - Void pointers are a commonly used feature in C programs, yet they present a big
challenge to search based testing, because there is no analysis of the data types a void
pointer may get cast to.

• vararg - Variable argument length lists present similar problems to void pointers for
search based testing, in that required type information is missing.

5.2. Dynamic Symbolic Execution
One of the biggest problems with dynamic symbolic execution based techniques is deciding

on a good path exploration strategy. In its default mode, CUTE uses an unbounded depth-first
search. As the graphs in Figure 4 indicate (and the example in Figure 10 illustrates) this may
be suboptimal. Choosing an adequate bound however, may not always be straightforward, es-
pecially if the unit under test contains many function calls. Further, Burnim and Sen [5] have
shown that even a bounded depth-first path exploration is still inferior to other path exploration
strategies. Other authors have also considered alternative approaches [42], though finding a (uni-
versally) good strategy remains an open problem.

A related problem is the well known path explosion problem in symbolic execution based
techniques. CUTE reports the level of branch coverage it achieves, but in fact tries to explore
all feasible execution paths (up to a specified length if one restricts its depth-first search). The
problem of infinitely many paths has already been described. Many functions however contain
a limited, yet very large number of feasible paths, and therefore the technique implemented in
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CUTE cannot achieve high levels of coverage in a practical amount of time, even if all other
implementation related details described in Section 4.3 could be addressed.

Finally, many of the problems listed in answer to RQ3 (Which types of program structure
did each tool fail to cover?) could be solved by improving and refining the implementation of
concolic testing in CUTE. In particular, if CUTE would be extended to handle more arithmetic
operations, its effectiveness could be greatly increased. What impact a more advanced symbolic
executor would have on the efficiency of CUTE remains an open question. Two other main
deficiencies in CUTE remain. Support for strings and floating point operations. Other dynamic
symbolic execution tools such as Pex [4] already support constraints over strings, and work is
under way to develop constraint solvers for symbolic execution which support constraints over
floating point variables [43].

6. Threats to Validity

Any attempt to compare two different approaches faces a number of challenges. It is impor-
tant to ensure that the comparison is as fair as possible. Furthermore, the study presented here,
as we are comparing two widely studied approaches to test data generation, also seeks to explore
how well these approaches apply to real world code. Naturally, this raises a number of threats to
the validity of the findings, which are briefly discussed in this section.

The first issue to address is that of the internal validity of the experiments, i.e., whether there
has been a bias in the experimental design that could affect the obtained results. One potential
source of bias comes from the settings used for each tool in the experiments and the possibility
that the setup could have favoured or harmed the performance of one or both tools. In order to
address this, default settings were used where possible. Where there was no obvious default (e.g.
termination criteria), care was taken to ensure that reasonable values were used, and that they
allowed a sensible comparison between performance of both tools.

Another potential source of bias comes from the inherent stochastic behaviour of the meta-
heuristic search algorithm used in AUSTIN. The most reliable (and widely used) technique for
overcoming this source of variability is to perform tests using a sufficiently large sample of data.
In order to ensure a large sample size, experiments were repeated 30 times. Due to the stochastic
nature of some of the test subjects in the study, experiments were also repeated 30 times for
CUTE, so as not to bias the results in favour of the AUSTIN tool.

A further source of bias includes the selection of the programs used in the empirical study,
which could potentially affect its external validity; i.e., the extent to which it is possible to gen-
eralise from the results obtained. The rich and diverse nature of programs makes it impossible
to sample a sufficiently large set of programs such that all the characteristics of all possible pro-
grams could be captured. However, where possible, a variety of programming styles and sources
have been used. The study draws upon code from real world open source programs. It should
also be noted that the empirical study drew on over 700 functions comprising of over 14,000
branches, providing a large pool of results from which to make observations.

The data were collected and analysed in three different ways; taking into account coverage
in the FUT only, interprocedural coverage and removing functions that CUTE could not handle
from the sample. No matter which analysis was conducted, the results always showed a consis-
tently poor level of coverage. Nevertheless, caution is required before making any claims as to
whether these results would be observed on other programs, possibly from different sources and
in different programming languages. As with all empirical experiments in software engineering,
further experiments are required in order to replicate the results here.

23



7. Related Work

There have been several tools developed using Directed Random Testing. The first tool was
developed by Godefroid et al. [2] during their work on directed random testing and the DART
tool. Unlike CUTE, DART does not attempt to solve constraints involving memory locations.
Instead, pointers are randomly initialized to either NULL or a new memory location. DART
does not transform non-linear expressions either and simply replaces the entire expression with
its concrete value. Cadar and Engler independently developed EGT [3]. EGT starts with pure
symbolic execution. When constraints on a programs input parameters become too complex,
symbolic execution is paused and the path condition collected thus far instantiated with concrete
inputs. Runtime values are then used to simplify symbolic expressions so that symbolic execution
can continue with a mix of symbolic variables and constants. CREST [5] is a recent open-
source successor to CUTE. Its main difference to CUTE is a more sophisticated, CFG based,
path exploration strategy.

Pex [4] is a parametrized unit testing framework developed by Microsoft. Contrary to the
majority of structural testing tools, it performs instrumentation at the .NET intermediate lan-
guage level. As a result it is able to handle all ‘safe’ .NET instructions and can also include
information from system libraries. Pex can be fully integrated into the Visual Studio develop-
ment environment. Its tight coupling with the .NET runtime also allows it to handle exceptions,
e.g. by suggesting guarding statements for objects or preconditions to functions.

Several tools have also been developed for search based testing. ET-S, developed by Daimler
[21], uses evolutionary algorithms to achieve various coverage types, including path, branch and
data flow coverage. IGUANA [44] is a tool developed for researchers, and incorporates different
search approaches, as well as an API for the development of different objective functions. The
eToc tool [22], implements an evolutionary strategy for JAVA classes. The tool evolves sequences
of method calls in order to achieve branch coverage.

Xie et al. [45] were the first to combine concolic and search based testing in a framework
called EVACON, which aims to maximize coverage of JAVA classes using both eToc and jCUTE,
a JAVA version of CUTE [46].

There have been a number of previous empirical studies involving concolic and search based
approaches.

Burnim and Sen [5] considered different search strategies to explore program paths in con-
colic testing and evaluated their findings on large open source applications including the Siemens
benchmark suite [47], grep [48], a search utility based on regular expressions, and vim [49], a
common text editor. An extended version of CUTE [31] has also been applied to the vim ed-
itor. Since its introduction, DART has been further developed and used in conjunction with
other techniques to test functions from real world programs in an order of magnitude of 10,500
LOC [50, 32]. Concolic testing has also been used to search for security vulnerabilities in large
Microsoft applications as part of the SAGE tool [33].

Studies in search based software testing have largely involved small laboratory programs,
with experiments designed to show that search based testing is more effective than random testing
[20, 21]. There are comparatively fewer studies which have featured real world programs; those
that have, considered only libraries [22] or parts of applications [23] in order to demonstrate
differences between different search based approaches.

The present paper complements and extends this previous work. It is the first to compare both
approaches on the same set of non-trivial real world test subjects, without the need to modify
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them in order to enable the application of test data generation tools. It is also the largest study of
search based testing by an order of magnitude.

8. Conclusions

This paper has investigated the performance of two approaches to automated structural test
data generation, the concolic approach embodied in the CUTE tool, and the search based ap-
proach implemented in the AUSTIN tool. The empirical study centred on five complete open
source applications. The results show that both tools faced many challenges, with neither cov-
ering more than 50% of the branches in each application’s code. A notable exception is the
plot2d program for which AUSTIN achieves 77% coverage. The paper presents an analysis of
the problems encountered by both tools, and aims to separate the shortcomings of each tool from
its underlying technique.
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