
Evaluating CAVM: A New Search-Based
Test Data Generation Tool for C

Junhwi Kim1, Byeonghyeon You1, Minhyuk Kwon2, Phil McMinn3, Shin Yoo1

1 Korea Advanced Institute of Science and Technology, Republic of Korea
2 Suresoft Technologies Inc., Republic of Korea

3 University of Sheffield, UK

Abstract. We present CAVM (pronounced “ka-boom”), a new search-
based test data generation tool for C. CAVM is developed to augment an
existing commercial tool, CodeScroll, which uses static analysis and in-
put partitioning to generate test data. Unlike the current state-of-the-art
search-based test data generation tool for C, Austin, CAVM handles dy-
namic data structures using purely search-based techniques. We compare
CAVM against CodeScroll and Austin using 49 C functions, ranging from
small anti-pattern case studies to real world open source code and com-
mercial code. The results show that CAVM can cover branches that neither
CodeScroll nor Austin can, while also exclusively achieving the highest
branch coverage for 20 of the studied functions.

1 Introduction

We introduce and evaluate CAVM (pronounced “ka-boom”), a new search-based
test data generation tool for C. CAVM is based on the Alternating Variable Method
(AVM) [7]: however, unlike the existing AVM-based test data generation tool
Austin [6], CAVM generates inputs consisting of dynamic data structures using
purely a search-based technique: growing the appropriate shape of the dynamic
data structure, as well as filling it with data, is part of the metaheuristic search
performed. It also supports generation of string inputs (i.e., char arrays) for
test data generation problems involving comparisons using the strcmp library
function, using code rewriting.

We compare CAVM against a commercial test data generaton tool, CodeScroll
(developed by Suresoft Technologies), and Austin, with respect to their rela-
tive effectiveness for C code involving dynamic data structures. The empirical
evaluation studies small anti-pattern case studies, known to be challenging for
CodeScroll, as well as real world open source and commercial code. The re-
sults show that our new algorithms, which we implemented into CAVM, can cover
branches that neither CodeScroll nor Austin can.

2 CAVM: A New C Test Data Generation Tool

CAVM is an open source byproduct of an industry collaboration, the aim of which
is to augment CodeScroll with a search-based software testing technique so that
it can deal with challenging branches more effectively.



Extending the basic AVM for primitive types, CAVM adopts different local
search strategies for each input type. For primitive data types, CAVM uses Iterated
Pattern Search (IPS) [4,7]. In case of a struct type argument, CAVM applies AVM
on each of its members: if the struct is nested, CAVM applies its AVM-based search
algorithm recursively.

CAVM considers pointers to primitive types as arrays; CAVM initialises all point-
ers to NULL and applies IPS to each element of the current array, growing the size
of the array by one if the search does not succeed. Note that the first “move”
after failing to cover the given branch with NULL is to instantiate the pointer (i.e.,
growing it to a single element array) using a random value. CAVM grows dynamic
data structures, such as linked lists or trees, by recursively growing nested point-
ers. For pointers to struct, if the current value is NULL, CAVM checks whether it
can cover the current target branch simply by instantiating the pointer. CAVM
randomly initialises primitive members of the instantiated struct. If the search
does not succeed, CAVM subsequently tries to search for the values of the new
instance (i.e., the members of the pointed struct) recursively. For more detailed
description of CAVM and its algorithm, please refer to our technical report [5].

3 Experimental Setup

3.1 Subjects

Table 1 contains the list of subject functions that we study in this paper. The
anti-pattern subject is a set of branches that CodeScroll is known to be un-
able to cover: these are the minimum working examples that contain only the
problematic structural patterns. Line, Calendar, Triangle, and AllZeros ex-
amples are ported to C from McMinn and Kapfhammer [7] and constitute the
baseline examples. LinkedList is a collection of utility function implementa-
tions for the singly linked list in C, taken from an on-line tutorial, whereas
BinaryTree contains seven functions from the textbook by Horowitz et al. [3].
Finally, busybox-ls contains five functions from the open source implementation
of ls utility for the busybox package, whereas decode.c contains 24 functions
chosen from a name demangler module for C++ frontend, developed by the Edison
Design Group. In total, we study 482 branches in 49 functions.

3.2 Configurations

We compare CAVM to Austin and CodeScroll based on the branch coverage they
achieve. Since Austin and CAVM adopt stochastic approaches, we will report the
average coverage over 20 runs. We only evaluate the deterministic heuristic of
CodeScroll, and therefore do not repeat its runs.

4 Taken from an on-line tutorial: http://milvus.tistory.com/17
5 BusyBox is a collection of common UNIX utilities in a single small executable:
https://busybox.net.

6 https://www.edg.com/c

http://milvus.tistory.com/17
https://busybox.net
https://www.edg.com/c


Table 1: Subject C Functions Studied
Subject Description Branches * Rec. * struct strcmp

AllZeros

Examples from AVMf [7]
6 3 - - -

Calendar 46 - - - -
Line 14 - - 3 -
Triangle 16 - - - -

CodeScroll

Antipatterns
Set of branches that CodeScroll cannot
cover

16 3 3 3 3

LinkedList 5 utility functions for singly linked list4 26 3 3 3 -

BinaryTree 7 tree-related functions from a textbook by
Horowitz et al. [3]

30 3 3 3 -

busybox-ls 5 functions from ls in Busybox 1.2.05 32 3 - - -

decode.c 22 functions from decode.c6 296 3 - 3 -

Total 49 C functions 482

While CAVM allows the user to set the search range for each input parameter of
the target function, Austin lacks such control. Consequently, we do not narrow
down the input range and use the default range for each primitive type, so that
both tools search in the same space. For both Austin and CAVM, we set the
maximum number of fitness evaluations for each target branch to 1,000, and
the timeout duration for each target function to five minutes. Note that both
tools collect “collateral” coverage [1] (i.e., coverage of branches that are not the
target but nonetheless covered by a test case generated by a tool7). Any collateral
coverage achieved within five minutes counts in the final results. However, if a
tool does not terminate within the five minute timeout, we record 0% coverage.

3.3 Environments

CAVM is written in C/C++ as well as Python. The target code instrumentation is
written in C/C++ and depends on clang version 3.9.0 and GNU gcc version 4.9 or
higher. The AVM search is written in Python 3 and depends on CFFI8 as well
as Python runtime version 3.5 or higher.

For the experiment, CAVM is executed on a machine with Intel Core i7-6700K
4.0GHz and 32GB RAM running Ubuntu 14.04 LTS. Due to specific depen-
dencies, Austin is executed on the same machine running Ubuntu 12.04.5 LTS.
CodeScroll only supports Microsoft Windows and consequently is executed on
a machine with Intel Core i5-6600 3.9GHz and 16GB RAM running Windows 7.
We allow the different hardware environments because we are only interested in
achieved coverage and success rates.

4 Results

Table 2 contains the coverage results from 20 repetitive runs of Austin and
CAVM, as well as single runs of CodeScroll. Note that the functions in decode.c

7 Here, we define collateral coverage as branches that are covered in addition to the
original target by the final, generated test cases.

8 C Foreign Function Interface: http://cffi.readthedocs.io

http://cffi.readthedocs.io


Table 2: Average branch coverage (µ) and standard deviation (σ) from single
runs of CodeScroll, and 20 runs of Austin and CAVM: the highest coverage for
each function is typeset in bold. Br. indicates the number of branches for each
subject; CS stands for CodeScroll.

Function Br. CS
Austin CAVM

Function Br. CS
Austin CAVM

µ σ µ σ µ σ µ σ

AVMf AVMf

allzeros� 6 0.00 0.00 0.00 83.33 0.00 line† 14 100.00 0.00 0.00 28.57 0.00

calendar∗ 46 100.00 0.00 0.00 0.00 0.00 triangle‡ 16 93.75 0.00 0.00 89.06 5.32
Antipatterns decode.c

case1 4 0.00 100.00 0.00 100.00 0.00 func1 2 100.00 0.00 0.00 100.00 0.00
case2 4 75.00 100.00 0.00 100.00 0.00 func2 2 100.00 0.00 0.00 100.00 0.00
case3 2 50.00 100.00 0.00 100.00 0.00 func3 48 10.42 0.00 0.00 29.90 5.63

case4§ 2 0.00 0.00 0.00 100.00 0.00 func4 14 21.43 0.00 0.00 71.07 6.34
case5 2 50.00 100.00 0.00 100.00 0.00 func5 14 21.43 0.00 0.00 0.00 0.00
case6 2 50.00 100.00 0.00 100.00 0.00 func6 16 18.75 0.00 0.00 27.14 9.44

LinkedList func7 30 6.67 0.00 0.00 11.56 1.79

delete♦ 6 100.00 100.00 0.00 16.67 0.00 func8 6 50.00 0.00 0.00 75.83 12.65

insert♦ 8 87.50 100.00 0.00 50.00 0.00 func9 44 4.55 0.00 0.00 69.66 7.31

modify♦ 4 75.00 100.00 0.00 38.75 12.76 func10 28 7.14 0.00 0.00 62.32 10.20
print list 2 100.00 100.00 0.00 100.00 0.00 func11 2 100.00 0.00 0.00 100.00 0.00
search 6 100.00 0.00 0.00 100.00 0.00 func12 4 25.00 0.00 0.00 27.50 7.69

busybox-ls func13 4 50.00 0.00 0.00 73.75 5.59
bold 2 50.00 100.00 0.00 100.00 0.00 func14 2 50.00 0.00 0.00 52.50 11.18
dnalloc 2 100.00 100.00 0.00 100.00 0.00 func15 2 50.00 0.00 0.00 97.50 11.18
fgcolor 2 100.00 100.00 0.00 100.00 0.00 func16 12 8.33 0.00 0.00 22.50 18.56
my stat 10 0.00 0.00 0.00 0.00 0.00 func17 4 25.00 0.00 0.00 27.50 11.18
scan one dir 16 6.25 0.00 0.00 0.00 0.00 func18 4 50.00 0.00 0.00 64.17 6.11

BinaryTree func19 28 3.57 0.00 0.00 8.75 3.57
inorder 2 100.00 100.00 0.00 100.00 0.00 func20 8 87.50 0.00 0.00 100.00 0.00
iter inorder 4 0.00 0.00 0.00 100.00 0.00 func21 4 100.00 0.00 0.00 100.00 0.00
iter search 6 100.00 0.00 0.00 100.00 0.00 func22 18 100.00 0.00 0.00 100.00 0.00
level order 8 62.50 0.00 0.00 100.00 0.00 Section 4/RQ1 discusses the following issues.
postorder 2 50.00 100.00 0.00 100.00 0.00 �: indirect dependency. ∗: large search space.
preorder 2 50.00 100.00 0.00 100.00 0.00 †: low success rates. ‡: infeasible branches.
search 6 100.00 0.00 0.00 100.00 0.00 ♦: imprecise dependency analysis. §: strcmp.

have been renamed in the table to save space: their full names, as well as their
source code and the box plots of the coverage results will be available from the
accompanying web page. For Austin and CAVM, we report mean (µ) and standard
deviation (σ): the highest coverage is typeset in bold. Out of 49 functions, there
are 5 functions for which CodeScroll alone achieves the highest branch coverage,
and two functions for which Austin does the same. CAVM alone achieves the
highest branch coverage for 20 functions. Notably, Austin fails to cover any
branch of functions in decode.c within five minutes.

We manually analysed the hard-to-cover branches in the smaller benchmarks
and identified the following common issues (each issue can be cross-referenced
to Table 2 through the symbols):

(1) Indirect control dependency (�): one of the branches in the allzeros

function requires the number of zeros in the input array to be equal to the size of
input: CAVM fails to cover this branch. CAVM does not receive any guidance through
the fitness function because the counter for the number of zeros is changed in
another branch that does not depend on the target branch, similar to the flag
problem [2]. This results in CAVM repeating random restarts.



(2) Large search spaces (∗): a for loop in calendar consumes a large amount
of time when inputs are initialised from a large range. Since the loop iterates
over the range between two integer inputs, the number of iterations can be up to
the range of integers in C. This leads to frequent timeouts and, consequently, 0%
coverage. When the input variable range is set to [-100, 100], CAVM consistently
achieves 100% coverage.

(3) Low success rate (†): some branches in the line function are simply hard
to cover under the given timeout and evaluation budget. While CAVM sometimes
succeeds to cover all branches in line, the average coverage suffers from runs
that failed to cover the hard branches.

(4) Infeasible branches (‡): the function triangle contains an infeasible
branch. Consider the following code snippet from triangle:

if(a == b) { ... } else { if(a == b) { ... }}

The true branch of second predicate is logically infeasible because of the first one.
Apart from this branch, CAVM and CodeScroll cover all branches in triangle.

(5) Use of strcmp (§): case4 in Antipatterns contains a call to strcmp, which
neither CodeScroll nor Austin supports.

(6) Imprecise control dependency analysis (♦): currently CAVM suffers
from imprecise control dependency analysis; it cannot detect implicit control
dependencies between branches caused by, for example, a return in the middle
of a function. Consider the following code snippet:

if(x > 42) return; if(y == 7)...

Both the true and the false branch of the second if statement depend on the
false branch of the first one. However, this dependency is implicit, as it is not
expressed as part of a nested structure. CAVM’s current control dependency anal-
ysis fails to capture this. Consequently, CAVM cannot compute the fitness values
correctly for these branches and cannot cover them. When we manually made
the control dependency explicit (by inserting the appropriate else structure),
CAVM achieves an average of approximately 60% branch coverage for functions
delete, insert, and modify in the LinkedList subject, with some individual
runs achieving 100% coverage. Precise control dependency analysis for the full
set of C structural constructs is a part of future work.

Finally, let us discuss the performance of Austin. Austin requires an explicit
pointer constraint in the source code of the target function in order to instantiate
any pointer. If the code does not compare a given pointer to NULL, the pointer will
not be instantiated. After confirming this behaviour to be intended with the main
developer of Austin, we inserted explicit NULL checks to smaller benchmarks
(Antipatterns, AVMf, LinkedList, and BinaryTree), but opted not to modify
the real world subjects (ls and decode.c). This results in the consistent 0%
coverage for functions in decode.c, as they all require pointer parameters.

Based on the results in Table 2, we answer RQ1: CAVM can cover branches
that neither CodeScroll nor Austin can. In particular, Austin has a significant



limitation regarding pointer instantiation. The accompanying webpage9 contains
results about efficiency of CAVM, including the number of required fitness evalu-
ations and the average wall clock execution time.

5 Conclusion

We present CAVM, an AVM-based test data generation tool that handles dy-
namic data structures using a purely search-based approach. Unlike the current
state-of-the-art tool, Austin, which determines the shape of the required data
structure using symbolic analysis, CAVM simply grows the data structure by suc-
cessive pointer instantiations. The empirical comparison of CAVM against Austin
and a commercial test data generation tool, CodeScroll, shows that CAVM can
cover many branches that neither of the other tools can. Future work include
improvement of CAVM as well as its integration to CodeScroll.

Acknowledgement. This work was supported by the ICT R&D program of
MSIP/IITP [Grant No. R7117-16-0005: A connected private cloud platform for
mission critical software test and verification].

References

1. Harman, M., Kim, S.G., Lakhotia, K., McMinn, P., Yoo, S.: Optimizing for the
number of tests generated in search based test data generation with an application
to the oracle cost problem. In: Proceedings of the 3rd International Workshop on
Search-Based Software Testing (SBST 2010). pp. 182 –191 (apr 2010)

2. Harman, M., Hu, L., Hierons, R., Wegener, J., Sthamer, H., Baresel, A., Roper, M.:
Testability transformation. IEEE Transactions on Software Engineering 30(1), 3–16
(Jan 2004)

3. Horowitz, E., Sahni, S., Anderson-Freed, S.: Fundamentals of Data Structures in C.
W. H. Freeman & Co., New York, NY, USA (1992)

4. Kempka, J., McMinn, P., Sudholt, D.: Design and analysis of different alternating
variable searches for search-based software testing. Theoretical Computer Science
605, 1–20 (2015)

5. Kim, J., You, B., Kwon, M., McMinn, P., Yoo, S.: Evaluation of CAVM, Austin,
and CodeScroll for test data generation for C. Tech. Rep. CS-TR-2017-413, School
of Computing, Korean Advanced Institute of Science and Technology (2017)

6. Lakhotia, K., Harman, M., Gross, H.: AUSTIN: A tool for search based software
testing for the C language and its evaluation on deployed automotive systems. In:
2nd International Symposium on Search Based Software Engineering. pp. 101–110
(Sept 2010)

7. McMinn, P., Kapfhammer, G.M.: AVMf: An open-source framework and imple-
mentation of the Alternating Variable Method. In: International Symposium on
Search-Based Software Engineering (SSBSE 2016). Lecture Notes in Computer Sci-
ence, vol. 9962, pp. 259–266. Springer (2016), code and examples available at:
http://avmframework.org

9 http://coinse.kaist.ac.kr/projects/cavm/

http://coinse.kaist.ac.kr/projects/cavm/

	Evaluating CAVM: A New Search-BasedTest Data Generation Tool for C

