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A Comprehensive Survey of Trends in
Oracles for Software Testing
Mark Harman, Phil McMinn, Muzammil Shahbaz and Shin Yoo

Abstract—Testing involves examining the behaviour of a system in order to discover potential faults. Determining
the desired correct behaviour for a given input is called the “oracle problem”. Oracle automation is important to
remove a current bottleneck which inhibits greater overall test automation; without oracle automation, the human
has to determine whether observed behaviour is correct. The literature on oracles has introduced techniques for
oracle automation, including modelling, specifications, contract-driven development and metamorphic testing.
When none of these is completely adequate, the final source of oracle information remains the human, who
may be aware of informal specifications, expectations, norms and domain specific information that provide
informal oracle guidance. All forms of oracle, even the humble human, involve challenges of reducing cost and
increasing benefit. This paper provides a comprehensive survey of current approaches to the oracle problem
and an analysis of trends in this important area of software testing research and practice.

Index Terms—Test oracle; Automatic testing; Testing formalism.
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1 INTRODUCTION

Much work on testing seeks to automate as
much of the test process as practical and de-
sirable, in order to make testing faster, cheaper
and more reliable. In order to automate testing,
we need an oracle, a procedure that determines
what the correct behaviour of a system should
be for all input stimuli with which we wish
to subject the system under test. There has
been much recent progress on the problem
of automating the generation of test inputs.
However, the problem of automating the or-
acle remains a topic of much current study; a
research agenda that involves multiple diverse
avenues of investigation.

Even the problem of automatically generat-
ing test inputs is hard. In general it involves
finding inputs that cause execution to reveal
faults, if they are present, and to give confi-
dence in their absence, if none are found. How-
ever, even the simplest forms of testing involve
an attempt to approximate a solution to an

undecidable problem. For example, attempting
to cover all branches [6], [10], [16], [64], [77],
[159], [177] in a system under test can never be
complete because branch reachability is known
to be undecidable in general [192].

The problem of generating test inputs to
achieve coverage of test adequacy criterion
has been the subject of research interest for
nearly four decades [48], [106] and has been
the subject of much recent development in
research and practice with significant advances
in Search-Based Testing [2], [4], [83], [125], [127]
and Dynamic Symbolic Execution [77], [108],
[159], both of which automate the generation
of test inputs, but do not address the oracle
problem.

We therefore find ourselves in a position
where the automated generation of test inputs
is increasingly being addressed, while the au-
tomated checking that these inputs lead to the
desired outputs remains less well explored and
comparatively less well solved. This current
open problem represents a significant bottle-
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neck that inhibits greater test automation and
wider uptake of automated testing methods
and tools.

Of course, one might hope that the software
under test has been developed with respect
to excellent design-for-test principles, so that
there might be a detailed, and possibly for-
mal, specification of intended behaviour. One
might also hope that the code itself contains
pre– and post– conditions that implement well-
understood contract–driven development ap-
proaches [134]. In these situations, the oracle
cost problem is ameliorated by the presence of
an automatable oracle to which a testing tool
can refer to check outputs, free from the need
for costly human intervention.

Where there is no full specification of the
properties of the system under test, one may
hope that it is possible to construct some form
of partial oracle that is able to answer oracle
questions for some inputs, relying on alterna-
tive means to answer the oracle question for
others. Such partial oracles can be constructed
using metamorphic testing (based on known
relationships between desired behaviour) or by
deriving oracle information from executions or
documentation.

However, for many systems and much of
testing as currently practiced in industry, the
tester has the luxury of neither formal specifi-
cation nor assertions, nor even automated par-
tial oracles [90], [91]. The tester must therefore
face the potentially daunting task of manually
checking the system’s behaviour for all test
cases generated. In such cases, it is essential
that automated software testing approaches
address the human oracle cost problem [1],
[82], [129].

In order to achieve greater test automation
and wider uptake of automated testing, we
therefore need a concerted effort to find ways
to address the oracle problem and to integrate
automated and partially automated oracle so-
lutions into test data generation techniques.
This paper seeks to help address this chal-
lenge by providing a comprehensive review

and analysis of the existing literature of the
oracle problem.

There have been four previous partial sur-
veys of topics relating to test oracles. However,
none has provided a comprehensive survey of
trends and results. In 2001, Baresi and Young
[18] presented a partial survey that covered
four topics prevalent at the time the paper
was published (assertions, specifications, state-
based conformance testing and log file analy-
sis). While these topics remain important, they
capture only a part of the overall landscape
of research in oracles (covered in the present
paper). Another early work was the initial
motivation for considering the oracle problem
contained in Binder’s textbook on software
testing [24], published in 2000. More recently,
in 2009, Shahamiri et al. [162] compared six
techniques from the specific category of de-
rived oracles. Finally most recently, in 2011,
Staats et al. [171] proposed a theoretical anal-
ysis that included test oracles in a revisitation
of the fundamentals of testing.

Despite these works, research into the ora-
cle problem remains an activity undertaken in
a fragmented community of researchers and
practitioners. The role of the present paper is to
overcome this fragmentation of research in this
important area of software testing by providing
the first comprehensive analysis and review of
work on the oracle problem.

The rest of the paper is organised as follows:
Section 2 sets out the definitions relating to or-
acles that allow us to compare and contrast the
techniques in the literature on a more formal
basis. Section 3 analyses some of the growth
trends in the area and presents a timeline
showing the primary development in the field.
Sections 4, 5 and 6 cover the survey of the
literature in three broad categories:
• where there are specified oracles (Sec-

tion 4;
• where oracles have to be derived (Sec-

tion 5) and
• where some form of oracle information is

implicit (Section 6).
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These three sections cover the situations in
which some form of oracle information is avail-
able for use in testing, while Section 7 covers
techniques designed to cater for situations in
which no oracle is available, or for which test-
ing must cover some aspect for which no oracle
information is available. This last case is the
most prevalent in practice, since oracles seldom
cover the entire behaviour of the system. Sec-
tion 8 presents a road map for future research
on software test oracles, based on our analysis
of the literature and Section 9 concludes.

2 DEFINITIONS

This section sets out some foundational def-
initions to establish a common lingua franca
in which to examine the literature on oracles.
These definitions are formalised to avoid am-
biguity, but the reader should find that it is
also possible to read the paper using only
the informal descriptions that accompany these
formal definitions.

A good formalisation should be simple, gen-
eral and revealing. It should be simple so that
it can be easily used. However, though simple,
it should be sufficiently general to capture all
existing instances of the phenomenon to be
studied. It should also be revealing in the sense
that the theory should be able to reveal new
and interesting possibilities, not obvious with-
out the theoretical foundations and the analysis
they support.

We believe our theoretical foundations are
conceptually very simple but, as we shall show
in the remainder of the paper, sufficiently gen-
eral to capture all existing forms of oracle
in the literature. We also will use the theory
to highlight hitherto unrecognised connections
between metamorphic and regression testing in
Section 8.

Testing is a permutation of two types of test
activities, stimuli and observations, which are
supersets of the traditional notion of test input
and output respectively. We define stimuli and
observations as coming from arbitrary infinite
sets, which form a kind of alphabet for the

System Under Test (SUT). This definition of
alphabets is merely intended to make concrete
the set of external stimuli that could be applied
to the SUT, and the set of behaviours that we
can observe.

Definition 1 (Alphabets and Activities): A
stimulus to the System Under Test will be
considered to be drawn from an alphabet, S,
while an observation will be drawn from an
alphabet, O, disjoint from S. The union of all
possible stimuli and observations form the
test activity alphabet, A.

We use the terms ‘stimulus’ and ‘observa-
tion’ in the broadest sense possible to cater for
various testing scenarios, functional and non-
functional. A stimulus can be either an explicit
test input from the tester or an environmen-
tal factor that can affect the testing. Similarly,
an observation can range from an automated,
functional test oracle to a non-functional exe-
cution profile.

For example, stimuli can include the config-
uration and platform settings, database table
contents, device states, typed values at an in-
put device, inputs on a channel from another
system, sensor inputs and so on. Observations
can include anything that can be discerned
and ascribed a meaning significant to the pur-
pose of testing—including values that appear
on an output device, database state, temporal
properties of the execution, heat dissipated
during execution, power consumed and any
other measurable attributes of the execution of
the SUT.

Stimuli and observations are members of
different sets of test activities, but we combine
them in a single test activity sequence. As a
notational convenience in such sequences, we
shall write x when x is a member of the set of
observations (such as outputs) and x when x is
a member of the set of stimuli (such as inputs).

A test oracle is a predicate that determines
whether a given test activity sequence is an
acceptable behaviour or not. We first define
a ‘Definite Oracle’, and then, in the Section 8
relax this definition to ‘Probabilistic Oracle’. In
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the body of the paper we only use definite
oracles; the study of their probabilistic coun-
terparts remains an open problem for future
work.

Definition 2 (Definite Oracle): A Definite Ora-
cle d ∈ D is a function from test activity
sequences to {0, 1 undefined}, i.e., D : I →
{0, 1,undefined}.

A definite oracle responds with either a 1 or
a 0 indicating that the test activity sequence is
acceptable or unacceptable respectively, for a
test activity sequence for which it is defined.
We do not require that a definite oracle be a
total function, so it may be undefined. How-
ever, for a definite oracle, when it is defined, a
test activity sequence is either acceptable or it
is not; there is no other possibility (in contrast
to the probabilistic oracle defined in Section 8).

A test activity sequence is simply a sequence
of stimuli and observations. We do not wish to
over-constrain our definition of oracle, but we
note that, for practical purposes a test activity
sequence will almost always have to satisfy
additional constraints in order to be useful. In
this paper we are only concerned with different
approaches, their definition and their inter-
relationships, so we need not descend too far
into the detail of these constraints. However,
as an illustration, we might at least constrain
a test activity sequence as follows (in order to
obtain a practical test sequence):

A test activity sequence, σ, is a practical test
sequence iff σ contains at least one observation
activity that is preceded by at least one stimu-
lus activity. That is, more formally:

Definition 3 (Test Sequence): A Practical Test
Sequence is a test activity sequence:

σ1 _ x _ σ2 _ y _ σ3

where _ denotes sequence concatenation and
σ1, σ2 and σ3 are arbitrary, possibly empty, test
activity sequences.

This notion of a test sequence is nothing
more than a very general notion of what it
means to test; we must do something to the

system (the stimulus) and subsequently ob-
serve some behaviour of the system (the ob-
servation) so that we have something to check
(the observation) and something upon which
this observed behaviour may depend (the stim-
ulus).

We conclude this section by defining com-
pleteness, soundness and correctness of ora-
cles.

Definition 4 (Completeness): An Oracle is
complete if it is a total function.

In order to define soundness of an oracle we
need to define a concept of the “ground truth”,
G. The ground truth is another form of oracle, a
conceptual oracle, that always gives the “right
answer”. Of course, it cannot be known in all
but the most trivial cases, but it is a useful
definition that establishes the ways in which
oracles might behave.

Definition 5 (Ground Truth): The Ground
Truth, G is a definite oracle.

We can now define soundness of an oracle
with respect to the Ground Truth, G.

Definition 6 (Soundness): An Oracle, D is
sound iff

Dσ ⇔ Gσ

We have a three valued logic, in which the
connective ‘⇔’ evaluates to false if one of the
two terms it relates is undefined. However, in
this context, only the evaluation of the oracle
D can be undefined, since the ground truth is
always defined.

Finally, we define total and partial correct-
ness, in the usual way:

Definition 7 (Correctness): An oracle is par-
tially correct iff it is sound. An oracle is totally
correct iff it is sound and complete.

Observe that an arbitrary oracle AO is totally
correct iff AO = G. That is a totally correct
oracle is indistinguishable from the ground
truth. It is unlikely that such a totally cor-
rect oracle exists in practice. Nevertheless, we
can define and use partially correct oracles in
testing and one could argue, from a purely
philosophical point of view, that where the
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oracle is the human and the ground truth is
provided by the same human, then the human
is a totally correct oracle; correctness becomes
a subjective human assessment. The foregoing
definitions allow for this case. However, this
is a rather special case of a single user, who
is both sole user and sole (acceptance) tester;
a scenario that only occurs for comparatively
uninteresting ‘toy’ examples.

3 ANALYSIS OF TRENDS IN RE-
SEARCH ON TEST ORACLES

The term “test oracle” first appeared in William
Howden’s seminal work in 1978 [98]. In this
section we present an analysis of the research
on test oracles and its related areas conducted
since 1978.

3.1 Volume of Publications

We have constructed a repository of 611 pub-
lications on test oracles and its related areas
from 1978 to 2012 by conducting web searches
for research articles on Google Scholar and Mi-
crosoft Academic Search using the queries “soft-
ware + test + oracle” and “software + test
oracle”, for each year through custom searches.

We classify work on test oracles into four
categories: specified oracles, derived oracles,
implicit oracles and no oracle (handling the
lack of an oracle).

Specified oracles, discussed in detail in Sec-
tion 4, judge all behavioural aspects of a
system with respect to a given formal spec-
ification. For specified oracles we searched
for related articles using queries “formal
+ specification”, “state-based specification”,
“model-based languages”, “transition-based
languages”, “assertion-based languages”, “al-
gebraic specification” and “formal + confor-
mance testing”. For all queries, we appended
the keywords with “test oracle” to filter the
results for test oracles.

Derived oracles (see Section 5) involve arte-
facts from which an oracle may be derived

– for example a previous version of the sys-
tem. For derived oracles we searched for ad-
ditional articles using the queries “specifica-
tion inference”, “specification mining”, “API
mining”, “metamorphic testing”, “regression
testing” and “program documentation”.

An implicit oracle (see Section 6) refers to
the detection of ‘obvious’ faults such as a pro-
gram crash. For implicit oracles we applied the
queries “implicit oracle”, “null pointer + detec-
tion”, “null reference + detection”, “deadlock +
livelock + race + detection”, “memory leaks +
detection”, “crash + detection”, “performance
+ load testing”, “non-functional + error detec-
tion”, “fuzzing + test oracle” and “anomaly
detection”.

There have also been papers researching
strategies for handling the lack of an auto-
mated oracle (see Section 7). Here, we applied
the queries “human oracle”, “test minimiza-
tion”, “test suite reduction” and “test data +
generation + realistic + valid”.

Each of the above queries were appended
by the keywords “software testing”. The re-
sults were filtered, removing articles that were
found to have no relation to software testing
and test oracles. Figure 1 shows the cumulative
number of publications on each type of oracles
from 1978 onwards. We analyzed the research
trend on this data by applying different regres-
sion models. The trend line, shown in Figure 1,
is fitted using a power model. The high vales
for the four coefficients of determination (R2),
one for each of the four types of oracle, confirm
that our models are good fits to the trend data.
The trends observed suggest a healthy growth
in research volumes in these topics related to
the oracle problem for the future.

3.2 Proposal of New Techniques or
Concepts in Test Oracles
We classified the collected publications into
types of techniques or concepts that have been
proposed to (partially) solve the problem. For
example, DAISTIS [72], an algebraic specifica-
tion system to solve the specified oracle prob-
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Fig. 1. Cumulative number of publications from 1978 to 2012 and research trend analysis for
each type of test oracles. The x-axis represents years (x) and y-axis are the cumulative number
of publications (y). The trend analysis is performed through a power regression model. The
regression equation and the coefficient of determination (R2) indicate healthy research trend in
future.

lem, Model Checking [36] for oracle generation,
and Metamorphic Testing [37] for oracle deriva-
tion, and so on.

For each type of oracle and the advent of a
technique or a concept proposed for a type of
oracle, we have plotted a timeline in chrono-
logical order of publications to study research
trends. Figure 2 shows the timeline starting
from 1978 when the term “test oracle” was first
coined. Each vertical bar presents the technique
or concept used to solve the problem appended
by the year of the first publication.

The timeline shows only the work that is
explicit on the issue of test oracles. For ex-
ample, the work on test generation using Fi-
nite State Machines (FSM) can be traced back
to as early as 1950s. But the explicit use of
FSMs to generate oracles can be traced back
to Jard and Bochmann [101] and Howden in
1986 [97]. We record, in the timeline, only the

earliest available publication for that technique
or concept. Moreover, we have only consid-
ered a published work in journals, confer-
ences/workshops proceedings or magazines;
all other types of documentation (such as tech-
nical reports and manuals) were excluded from
the data.

There are few techniques or concepts that are
shown pre-1978 era in Figure 2. Although not
explicitly on test oracles, they address some
of the issues for which test oracles have been
developed in later research. For example, work
on detecting concurrency issues (deadlocks,
livelocks and races) can be traced back to the
1960s. This is an example of implicit oracles
for which no specification is required and tech-
niques can be employed as test oracles for
arbitrary systems. Similarly, Regression Testing,
as an example of derived oracles, can be used
to detect problems in the new system version
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Fig. 2. Chronological order of the techniques/concepts in each type of Test Oracles

for an existing functionality.

The trend analysis suggests that proposals
for new techniques and concepts for the formal
specification of oracles peaked in 1990s, but
have gradually diminished in the last decade.
However, it has remained an area of much
research activity as can be judged from the
amount of publications each year, shown in
Figure 1. For derived oracles, there have been
quite a few solutions proposed throughout this
period; but wide empirical studies on these
solutions were not been conducted until the
late 1990s. Previously, the solutions were pri-
marily theoretical, such as the proposals for

Partial/Pseudo Oracles [195] and Specification
Inference [193]. For implicit oracle types, there
have been solutions established before 1978 for
which research carried on later.

Overall, there are relatively fewer new tech-
niques or concepts proposed for this type of
oracle. For handling the lack of an automated
oracle, Partition Testing is a well-known tech-
nique that can help a human oracle in test
selection. The trend line suggests that it is
only recently that new techniques and concepts
have started to emerge, with an explicit focus
on the human oracle cost problem.
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4 SPECIFIED ORACLES

There has been a lot of work on specifications
and the use of notions of specifications as a
source of oracle information. This topic could
merit an entire survey on its own right. In
this section we attempt to provide an overview
of work on the use of specifications as or-
acles, covering some of the primary types
of specification-as-oracle. We include here the
partial specifications of system behaviour such
as assertions and models.

A specified oracle judges all behavioural
aspects of a system with respect to a given
formal specification. In this regard, the formal
specification is D as defined in Section 2. This
purposely general definition covers different
notions dependent on what kind of intended
behaviours are of interest, what level of ab-
straction is considered, and what kind of for-
mal semantics are used.

Over the last 30 years, a large body of work
has developed with respect to testing based on
a formal specification, with the proposal of sev-
eral methods for various different formalisms.
They can grouped into three broad categories:
specification based languages, assertions and con-
tracts, and algebraic specifications.

4.1 Specification-Based Languages
Specification-based languages can further be
divided into the categories: model-based lan-
guages and transition-based languages, which we
cover in more detail below. There are other
categories of specification languages that have
been used as oracles (such as history-based
specifications, which present oracles for or-
dering and timing of events in the form of
properties captured by temporal logic [54]).

4.1.1 Model-Based Languages
Model-based languages are formal languages
that define a mathematical model of a system’s
behaviour, and whose semantics provides a
precise meaning for each description in the
language in terms of this model. Models (when

used for testing) are not usually intended as
a full specification of the system. Rather, for
testing, a model seeks to capture salient prop-
erties of a system so that test cases can be
generated from them and/or checked against
them. Model-based languages are also state-
based and can also be referred to as “state-
based specifications” [109] [180], [181] [100]
in the literature. A variety of different formal
model-based languages exist, for example, B
[110], Z [169], UML/OCL [32], VDM/VDM-SL
[66] and the LARCH family [74] (which include
an algebraic sub-language). These are all ap-
propriate for specifying sequential programs.

Each models the system as a collection of in-
stance variables to represent different instances
or states of the system, with operations to
alter these states. Preconditions and postcon-
ditions are defined to constrain the system
operations. A precondition defines a necessary
condition on input states for the operation to
be applied, while a postcondition describes a
(usually strongest) effect condition on output
states if the operation is applied [109].

If concrete system output can be interpreted
at a higher level of abstraction by a pre-defined
mechanism, such as a specific function, and
if postconditions can be evaluated in a finite
time, the postconditions of the specification can
actually serve as an oracle [3].

Model and specification languages, such as
VDM, Z, and B have the ability to define
invariants. These can be used to drive testing.
Any test case that finds a case where such
an invariant is broken can be thought of as a
failing test case and, therefore, these invariants
are partial oracles.

4.1.2 Transition-Based Languages
Transition-based languages are languages
whose syntax is often (though not always)
graphical, and whose semantics are primarily
concerned with the transitions between
different states of the system. They have
been referred as visual languages in the
literature [196], though their syntax need
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not be graphical and their semantics is often
formally defined. A variety of different formal
transition-based languages exist, for example,
Finite State Machines [111], Mealy/Moore
machines [111], I/O Automata [117], Labeled
Transition Systems [178], SDL [57], Harel
Statecharts [81], UML state machines [29],
X-Machines [94], [95], Simulink/Stateflow
[176] and PROMELA [96].

Unlike model-based languages, which can
describe arbitrarily general systems that can
be infinite, transition-based languages are often
used for modeling finite systems [92]. How-
ever, they can also be used to model systems
with infinite sets of states. The behaviours of
the system are modelled as a set of states1,
with transitions representing the actions or
inputs that cause the system to change from
one state to another. The outputs are normally
represented by the resulting state of the system
(as with Moore machines), a variable value at
the resulting state (as with state charts) or a
value labeled on the transition (as with Mealy
machines).

Much of the work on testing using
transition-based languages has been motivated
by protocol conformance testing [75] and later
work on model-based testing [181]. Given a
specification F in a transition-based language,
e.g. a finite state machine, a test case can
be derived from F to determine whether the
system behaviour on the application of the test
conforms to F. The test oracle is embedded in
the finite state machine model, and therefore,
it can be derived automatically.

However, the definition of conformity comes
in different flavours, depending on whether
the model is deterministic or non-deterministic
and the system behaviour on a given test
is observable and can be interpreted at the

1. In state-based testing, the word ‘state’ can be in-
terpreted in different ways. For example, it can refer to
a ‘snapshot’ of the configuration of s system at some
point during execution (the ‘system state’). However, in
transition-based approaches, the word ‘state’ typically
seeks to abstract for a specific configurations in order to
capture a set of such configurations.

same level of abstraction as the model’s. These
flavours of conformity include alternate no-
tions such as system is isomorphic to F, equiv-
alent to F, or quasi-equivalent to F. They are
defined in the famous survey paper by Lee and
Yannakakis [111], and other notable papers,
including Bochmann et al. [27] and Tretmans
[178].

Börger [30] discusses how Abstract State Ma-
chine language, a generalisation of specifica-
tion languages like B and Z in a transition
machine form, can be used to define high level
oracles.

A rigorous empirical evaluation of state
machine-based testing techniques can be found
in the work of Mouchawrab et al. [73], [136].

4.2 Assertions and Contracts
An assertion is a Boolean expression that is
placed at a certain point in a program to check
its behaviour at runtime. When an assertion
is evaluated to true, the program behaviour is
regarded to be ‘as intended’ for that particu-
lar execution. However, when an assertion is
evaluated to false, an error has been found in
the program for that particular execution. It is
straightforward to see that assertions can be
used as a test oracle.

Assertions have a long pedigree dating back
to Turing [179] who first identified the need
to separate out the tester from the developer
and suggested that they might communicate
through the means of assertions; the developer
writing these formally and the tester checking
them (equally formally). The idea of assertions
gained significant attention as a means of cap-
turing language semantics in the seminal work
of Floyd [68] and Hoare [93] and subsequently
was championed as a means of assisting testing
in the development of the contract-based pro-
gramming approach (notably in the language
Eiffel [134]).

Other widely used programming languages
now routinely provide special constructs to
support assertions in the program; for instance,
C, C++ and Java provide a construct called
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assert, and similarly C# provides a Debug.Assert
method, which simply evaluates a Boolean
expression and notifies if the expression does
not evaluate to true. Moreover, there have been
a variety of assertion systems developed in-
dependently for programming languages. For
instance, Anna [115] for Ada, APP [153] and
Nana [119] for C languages provide means to
embed assertions in the program.

In general, assertion-based approaches only
ensure a limited set of properties that must
hold at a certain point in a program [51]. Lan-
guages based on design by contract principles
attempt to improve the effectiveness of asser-
tions by providing means to check contracts
between client and supplier objects in the form
of method pre- and post- conditions and class
invariants.

This idea was originally proposed in the
design of the Eiffel language [134], but ex-
tended to other languages, e.g., JML – a be-
havioural interface specification language for
Java programs [138]. Many other authors have
developed this idea of assertions as contracts
that allow a formal (and checkable/executable)
description of the oracle to be embedded into
the program.

Cheon and Leavens [47] showed how the
runtime assertion checker of JML can be used
as an assertion-based test oracle language for
Java. For more on specification-based asser-
tions as test oracles, see Coppit and Haddox-
Schatz’s evaluation [51], and later a method
proposed by Cheon [46]. Both assertions and
contracts are enforced observation activity (o ∈
O) that are embedded into the code. Araujo et
al. [9] provide a systematic evaluation of de-
sign by contract principle on a large industrial
system and show how assertion checks can
be implemented for Java Modelling Language
(JML) [8], while Briand et al. [34] showed how
instrumentation of contracts can be used to
support testing.

4.3 Algebraic Specification Languages

Algebraic specification languages describe the
behaviour of a system in terms of axioms that
are expressed in first-order logic and charac-
terise desired properties. These properties are
specified by formally defining abstract data
types (ADT) and mathematical operations on
those data types. An ADT encapsulates data
together with operations that manipulate that
data.

One of the earliest algebraic specification
systems is DAISTS [72] for implementing, spec-
ifying and testing ADTs. The system executes
a test set that is derived from the axioms
with test data provided manually. Each test
compares the execution of the left and right
sides of each respective axiom. If the two
executions generate different results, a failure
is reported with the axiom name and a test
number. Therefore, a test oracle in DAISTS is
specific to test cases, rather than generic for
arbitrary test cases.

Gaudel and her colleagues [20], [21], [75],
[76] first provided a generic theory on testing
based on algebraic specifications. The idea was
that an exhaustive test set composed of all
ground values of the axioms would be suffi-
cient to judge program correctness. Of course,
there is a practical limitation (that pertains to
all testing) because the number of tests could
be infinite. However, a possibility is to select a
finite subset of tests [21].

Further studies by Frankl and Doong [55]
to assess the practicality of Gaudel’s theory
concluded that tests consisting of short opera-
tion sequences may not be adequate for testing.
They proposed a notation that is suitable for
object-oriented programs and developed an
algebraic specification language called LOBAS
and a tool called ASTOOT.

One important aspect of the approach was
the notion of self-checking test cases for classes,
that use a class method that approximates ob-
servational equivalence. Chen et al. [42] [43]
further expanded the ASTOOT approach in
their tool TACCLE and proposed an algorithm
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for generating a relevant finite number of test
sets by employing a heuristic white-box tech-
nique. Several other algebraic specification lan-
guages and tools exist, e.g., Daistish [99], LOFT
[122], CASL [12], CASCAT [204]. Zhu also con-
sidered the use of algebraic specifications as
test oracles [209], while Bochmann et al. [182]
used LOTOS to realise oracle functions from
algebraic specifications.

For specified oracles, the interpretation of
test results and checking their equivalence with
specified results can be a difficult task. The
specified results are usually defined on an
abstract level, and test results depend on pro-
gram executions that may appear in a different
way such that their equivalence to those speci-
fied is not straightforward. Moreover, specified
results could be partially represented or over-
simplified.

Gaudel [75] remarked that the existence of
a formal specification does not guarantee the
existence of a successful test driver. It may
be necessary to leverage the interpretation of
results with some concrete equivalence func-
tions [118]. However, by and large, solutions
to this problem depend largely on the level
of abstraction and also on the implementation
context of the system under test on some extent
(see Gaudel’s discussion [75] for more on this
issue).

5 DERIVED ORACLES

When specified oracles are unavailable, oracles
can be derived from various artefacts (e.g.
documentation, system executions) or proper-
ties (e.g. metamorphic relations) of the system
under test, or other versions of it. Of course,
the derived oracle might then become a partial
‘specified oracle’, so that oracles derived by
the methods discussed in this section could
migrate, over time, to become, those consid-
ered to be the ‘specified oracles of the previ-
ous section. For example, JWalk incrementally
learns algebraic properties of the class under
test [167]. It allows interactive confirmation
from the tester, ensuring that the human is

in the ‘learning loop’. The following sections
discuss research in some of these artefacts for
the purpose of oracle derivation.

5.1 Pseudo Oracles and N-versions
One of the earliest versions of a derived oracle
is the concept of a pseudo-oracle, introduced
by Davis and Weyuker [52], as a means of
addressing so-called non-testable programs —
“Programs which were written in order to
determine the answer in the first place. There
would be no need to write such programs,
if the correct answer were known.” [195]. A
pseudo-oracle is an alternative version of the
program produced independently, e.g. by a
different programming team or written in an
entirely different programming language. A
similar idea exists in fault-tolerant computing,
referred to as multi- or N-versioning [14], [15],
where the software is implemented in mul-
tiple ways and executed in parallel. Where
results differ at run-time, a “voting” mecha-
nism is used to decide which output would be
used. More recently, Feldt [61] investigated the
possibility of automatically producing differ-
ent versions using genetic programming, while
McMinn [126] explored the idea of producing
different software versions for testing through
program transformation and the swapping of
different software elements with those of a
similar specification.

5.2 Metamorphic Relations
Metamorphic testing is a process of generating
partial oracles for follow-up test cases: it checks
important properties of the SUT after certain
test cases are executed [37]. The important
properties are captured by metamorphic rela-
tions. It is often thought that the metamorphic
relations need to concern numerical properties
that can be captured by arithmetic equations,
but metamorphic testing is, in fact, more gen-
eral than this. For example, Zhou et al. [208]
used metamorphic testing to test search en-
gines such as Google and Yahoo!, where the
relations considered are clearly non-numeric.
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A metamorphic relation is an expected re-
lation among multiple test activity sequences.
For example, let us assume that we are testing
an implementation of a double precision sine
function, f . One possible metamorphic relation
can be defined as follows: let i1 be the first test
activity sequence, which is a sequence 〈x, f(x)〉
for a valid double value x. From the definition
of the sine function, we expect to obtain the
second test activity sequence i2, which is a
sequence 〈x + π, f(x)〉, if the implementation
f is correct.

More formally, we define metamorphic ora-
cles in terms of the definitions from Section 2
as follows: There is a reliable reset, which is
a stimulus, R, that allows us to interpose a
reset between a previous test case, 〈x1, y1〉,
and a subsequent test case, 〈x2, y2〉, to form a
five-element test sequence 〈x1, y1, R, x2, y2〉, for
which we can define a relationship, the “meta-
morphic testing relationship”, π, between x1,
y1, x2 and y2.

For the formulation of metamorphic testing
in the current literature π is a 4-ary predicate2,
relating the first input-output pair to the sec-
ond:

D〈x1, y1, R, x2, y2〉 if π(x1, y1, x2, y2)

It is a natural step to generalise this meta-
morphic relationship to an arbitrary property,
p, of the test activity sequence. Such an arbi-
trary property must respect the oracle D, for
all test activity sequences, σ so

Dσ if pσ

of which, D〈x1, y1, R, x2, y2〉 if π(x1, y1, x2, y2)
is clearly a special case. This generalisation is
considered in more detail in Section 8.

For deterministic SUTs, oracles from meta-
morphic relations are complete and sound, but
only with respect to the properties that form
the relations. For example, if f : R → 0, it

2. Our formalism is more general than traditional meta-
morphic testing and can handle arbitrary relations.

passes the aforementioned metamorphic test-
ing but is still incorrect. However, metamor-
phic testing provides useful means of testing
non-testable programs introduced in the last
section.

When the SUT is not deterministic, it is not
possible to use equality relations in the process
of metamorphic testing. Murphy et al. [137],
[138] relaxed the equality relation to set mem-
bership to cope with stochastic machine learn-
ing algorithms. Guderlei and Mayer intro-
duced statistical metamorphic testing, where
the relations for test output are checked using
statistical analysis [80], which was later used
to apply metamorphic testing to stochastic op-
timisation algorithms [202].

The biggest challenge in metamorphic test-
ing is the automated discovery of metamor-
phic relations. Some of those in the literature
are mathematical [37], [39], [44] or combinato-
rial [137], [138], [158], [202]. There is also work
on the discovery of algebraic specifications
[87], and the JWalk lazy testing approach [167],
both of which might be adapted to discover
oracles. There also exists early work on the
use of metamorphic relations based on domain
specific knowledge [40], however it is still at an
early stage, and not automated.

5.3 Regression Test Suites
With regression testing, the aim is to detect
whether the modifications made to the new
version of SUT have interfered with any ex-
isting functionalities [203]. There is an implicit
assumption that the previous version can serve
as an oracle for regression testing.

For corrective modifications, the functionali-
ties remain the same and the oracle for version
i, Di, can serve for the next version as Di+1.
Orstra [199] generates assertion-based test or-
acles by observing the program states of the
previous version while executing the regres-
sion test suite. The regression test suite, now
augmented with assertions, can be used with
the newer versions. Similarly, spectra-based ap-
proaches uses the program and value spectra
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obtained from the original version to detect
regression faults in the newer versions [85],
[200].

For perfective modifications that add new
features to the SUT, Di should also be modi-
fied to cater for newly added behaviours, i.e.
Di+1 = Di ∪∆D. Test suite augmentation tech-
niques specialise in identifying and generating
∆D [5], [130], [201].

There is also a class of modifications that
proceed by changing the specification (which is
deemed to fail to meet requirements, perhaps
because the requirements have changed). This
is generally regarded as “perfective” mainte-
nance in the literature but no distinction is
made between perfections that add new func-
tionality to code (without changing require-
ments) and those changes which arise due to
changed requirements (or incorrect specifica-
tions).

Our formalisation of oracles in Section 2
forces a distinction of these two categories
of perfective maintenance, since the two have
profoundly different consequences for oracles.
We therefore refer to this new category of per-
fective maintenance “changed requirements”.
For changed requirements:

∃σ · Di+1σ 6= Diσ

which implies, of course dom(Di+1) ∩
dom(Di) 6= ∅ and the new oracle cannot
be simply ‘unioned’ with the old oracle. The
relationship between this observation and
the emerging issues pertaining to Software
Product Lines and their inherent connections
to regression testing are all explored in
Section 8.

5.4 System Executions

A system execution trace is a critical arti-
fact that can be exploited to derive oracles.
The two main techniques, invariant detection
and specification mining for oracle derivation,
are discussed in the following sections. Both

techniques produce automated checking of ex-
pected behaviour similar to assertion-based
specification, discussed in Section 4.2.

5.4.1 Invariant Detection
Program behaviours can be checked against the
given invariants for violations automatically.
Thus, invariants can serve as test oracles to
help determine the correct and incorrect out-
puts.

When invariants are not available for a pro-
gram in advance, they can be learned from the
program (semi) automatically. A well-known
technique proposed by Ernst et al. [59], imple-
mented in the Daikon tool [58], is to execute a
program on a collection of inputs (test cases)
and infer likely invariants from program execu-
tions dynamically. The invariants inferred cap-
ture program behaviours, and thus can be used
to check program correctness. For example, in
regression testing, invariants inferred from the
previous version can be checked as to whether
they still hold in the new version.

Invariant detection can be computationally
expensive, but there have been incremental
[23], [168] and light weight static analyses [41],
[67] that can be brought to bear in this problem.
There is a technical report available that sum-
marises various dynamic analysis techniques
[155]. Model inference [89], [185] could also be
regarded as a form of invariant generation in
which the invariant is expressed as a model
(typically as an FSM). Ratcliff et al. [151] used
Search-Based Software Engineering (SBSE) to
search for invariants, guided by mutation test-
ing.

The accuracy of inferred invariants depends
in part on the quality and completeness of the
test cases; additional test cases might provide
new data from which more accurate invariants
can be inferred [59]. Nevertheless, inferring
“perfect” invariants is almost impossible with
the current state of the art, which tends to
frequently infer incorrect or irrelevant invari-
ants [149]. Wei et al. [190] and [191] recently
improved the quality of inferred invariants.
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Human intervention can, of course, be used
to filter the resulting invariants, i.e., retaining
the correct ones and discarding the rest. How-
ever, manual filtering is an error-prone process
and the misclassification of invariants is fre-
quent. As found by Staats et al. [172] in a recent
empirical study, half of the incorrect invari-
ants were misclassified that were originally in-
ferred by Daikon from a set of Java programs.
However, despite these issues, research on the
dynamic inference of program invariants has
gained a strong momentum in the recent past
with a prime focus on its application for test
generation [11] [140] [206].

5.4.2 Specification Mining / Inference
Specification mining or inductive inference is
a concept for hypothesizing a formal model of
program behaviours from a set of observations.
In her seminal work [193], Weyuker made the
connection between inference and testing as
inverse processes. The testing process starts
with a program, and looks for I/O pairs that
characterise every aspect of both the intended
and actual behaviours, while inference starts
with a set of I/O pairs, and derives a program
to fit the given behaviour. Weyuker defined
this relation for assessing test adequacy which
can be stated informally as follows.

A set of I/O pairs T is an inference adequate
test set for program P intended to fulfil spec-
ification S iff the program IT inferred from T
(using some inference procedure) is equivalent
to both P and S. Any difference would imply
that the inferred program is not equivalent to
the actual program, indicating that the test set
T used to infer the program P is not adequate.

The inference procedure mainly depends
upon the set of I/O pairs used to infer be-
haviours. These pairs can be obtained from sys-
tem executions either passively, e.g., by apply-
ing monitors, or actively, e.g., by querying the
system [104]. However, equivalence checking is
undecidable in general, and therefore inference
is only possible for programs in a restricted
class, e.g., those with behaviours that can be

modelled by finite state machines [193]. With
this, equivalence can be accomplished by per-
forming checking experiments [88]. Neverthe-
less, serious practical limitations are associated
with such experiments (see the survey by Lee
and Yannakakis [111] for complete discussion).

The marriage between inference and testing
has produced wealth of techniques, especially
in the context of “black-box” systems, i.e, when
source code/behavioural models are unavail-
able. Most work has applied a well-known
learning algorithm, called L∗ [7] for learning
a black-box system B having n states. The
algorithm infers a state machine model by
querying B and observing the corresponding
outputs iteratively. At each iteration, an in-
ferred model Mi with i < n states is given.
Then, the model is refined with the help of a
distinguishing string (that distinguishes B and
Mi) to produce a new model, until the number
of states reaches to n.

Lee and Yannakakis [111] showed how to
use L∗ for conformance testing of B with a
specification S. Suppose L∗ starts by inferring
a model Mi, then we compute a string that
distinguishes Mi from S and refine Mi through
the algorithm. If, for i = n, Mn is S, then we
declare B to be correct, otherwise faulty.

Apart from conformance testing, inference
techniques have been used to guide test gen-
eration to focus on particular system behav-
ior and to reduce the scope of analysis. For
example, Li et al. [113] have applied L∗ for
integration testing of a system of black-box
components. In this context, the oracle is the
system architecture that can be stimulated to
obtain faulty interactions between the compo-
nents, by comparing them with their inferred
models.

Further work in this context has been com-
piled by Shahbaz [163] with industrial appli-
cations. Similar applications of inference can
be found in system analysis [79] [186] [187]
[22], [133], component interaction testing [114],
[121], regression testing [200] [198], security
testing [19] [165] and verification [146] [78] [56].
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Zheng et al. [207] mine test oracles for web
search engines, which had been thought to be
untestable. Frouchni et al. [71] apply machine
learning to learn oracles for image segmen-
tation programs. Memon et al. [131], [132],
[197] introduced and developed the GUITAR
tool, which has been evaluated by treating
the current version as correct, inferring the
specification, and then executing the generated
test inputs. GUITAR is a GUI-based testing
tool that allows test cases to be constructed
in terms of GUI feature interactions. Artificial
Neural Networks have also been applied to
learn system behaviour and detect deviations
from it [160], [161]

5.5 Textual Documentation
Textual documentation ranges from natural
language descriptions of requirements to struc-
tured documents detailing the functionalities
of APIs. These documents describe the func-
tionalities expected from the SUT to varying
degrees, and therefore can serve as a basis
for generating test oracles. In other words, the
documentation is D (as defined in Section 2).

At first sight, it may seem impossible to
derive oracles automatically because natural
languages are inherently ambiguous and tex-
tual documentation is often imprecise and in-
consistent. The use of textual documentation
has often been limited to humans in practical
testing applications [142]. However, some par-
tial automation can assist the human in testing
using documentation as a source of oracle in-
formation. Attempts to make such automated
use of textual documentation can be grouped
into three categories.

5.5.1 Converting Textual Documents to For-
mal Specification
The first category of work builds techniques to
construct a formal specification out of the given
textual specification and resolve ambiguities
and inconsistencies during the process. There-
after, techniques to derive test oracles from a
formal specification can be employed.

Prowell and Poore [150] introduced a se-
quence enumeration method to develop a for-
mal specification from an informal one. This
is done by systematically enumerating all se-
quences from the input domain and mapping
the corresponding outputs to produce an ar-
guably complete, consistent, and correct spec-
ification. However, it can suffer from an expo-
nential explosion of the possible input/output
sequences. Prowell and Poore suggest to em-
ploy abstraction techniques for controlling the
growth of an inherently combinatorial process.
The end result of the process is a formal specifi-
cation that can be transferred into a number of
notations, e.g., transition-based languages. One
benefit of the approach is that many inconsis-
tent and missing requirements can be found
during the process, which helps in making the
specification more complete and precise.

5.5.2 Formalising Textual Documents

The second category of work imposes struc-
tures and formalities to the textual documents
in order to make them clear, formal and precise
such that oracles can be derived automatically.

Parnas et al. [141] [144] [147] proposed TOG
(Test Oracles Generator) from program docu-
mentation. In their method, the documentation
is written in fully formal tabular expressions
[103] in which the method signature, the exter-
nal variables, and relation between its start and
end states are specified. Thus, oracles can be
generated automatically to check the outputs
against the specified states of a program. The
work by Parnas et al.3 has been developed
over a considerable period of more than two
decades [50], [62], [63], [143], [148], [188], [189].

5.5.3 Restricting Natural Languages

Restrictions on natural languages can reduce
complexities in their grammar and lexicon.

3. This work could also have been categorised as an
assertion-based method, but we located this work here in
the survey, since it is derived from documentation.
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These restrictions allow expressing require-
ments with minimum vocabulary and ambi-
guity. Thus, interpretation of the documents is
easier and automatic derivation of test oracles
can be possible.

Schwitter [157] introduced a computer-
processable controlled natural language called
PENG. It covers a strict subset of standard En-
glish with a restricted grammar and a domain
specific lexicon for content words and prede-
fined function words. The documents written
in PENG can be translated deterministically
into first-order predicate logic. Schwitter et
al. [31] provided a writing guideline for test
scenarios in PENG which can be used to judge
the runtime program behaviours automatically.

6 IMPLICIT ORACLES

A critical aspect of the implicit oracle is that
it requires no domain knowledge or formal
specification to implement, and therefore it
can be applied to all runnable programs in a
general sense. An oracle that detects anomalies
such as abnormal termination (due to a crash
or an execution failure) is an example of an
implicit oracle [35], [164]. This is because such
anomalies are blatant faults, that is, no more
information is required to ascertain whether
the program behaved correctly or not. More
generally, an implicit oracle defines a subset of
observation alphabets O as guaranteed failures.

Such implicit oracles are always context sen-
sitive; there is no single universal implicit or-
acle that can be applied to all programs. Be-
haviours that are considered abnormal for one
system in one context may not be abnormal in
a different context (or for a different system).
Even crashing may be considered acceptable
(or even good behaviour for some systems; for
example those that are designed to find such
issues).

Research on implicit oracles is evident
from early work in software engineering. The
very first work in this context was related
to deadlock, livelock and race detection to
counter system concurrency issues [26] [105]

[183] [17] [166]. Similarly, research on testing
non-functional attributes such as performance
[120], [123] [194], robustness [107] and memory
leak/access [210] [60] [13] [86] have garnered
much attention since the advent of the object-
oriented paradigm. Each one of these topics
deserves a survey of its own, and therefore
the interested reader is directed elsewhere (e.g.,
Cheng [45], Luecke et al. [116]).

Fuzzing [135] is one effective way of finding
implicit anomalies. The main idea is to gener-
ate random (or “fuzz”) inputs and attack the
system to find those anomalies. If an anomaly
is detected, the fuzz tester reports the anomaly
with the set of inputs or input sequences
caused it. Fuzzing is commonly used to detect
security vulnerabilities, such as buffer over-
flows, memory leaks, unhandled exceptions,
denial of service etc. [174].

While fuzzing can be used for detecting
anomalies in black-box systems, finding con-
currency issues in such systems is hard. Groz
et al. [79] proposed an approach that extracts
behavioural models from systems through ac-
tive learning techniques (see Section 5.4.2 for
details) and then performs reachability analysis
[28] to detect issues, notably races, in asyn-
chronous black-box systems.

Other work has focused on developing pat-
terns to detect anomalies. For instance, Ricca
and Tonella [152] considered a subset of pos-
sible anomalies that can be found in Web ap-
plications, e.g., navigation problems, hyperlink
inconsistencies etc. Their empirical assessment
showed that 60% of the Web applications con-
sidered in their study exhibited anomalies and
execution failures.

7 HANDLING THE LACK OF ORACLES

The above sections give solutions to the oracle
problem when some artefact exists that can
serve as either a full or partial oracle. However,
in many cases no such artefact exists (i.e.,
there is no automated oracle D) and as such,
a human tester is required to verify whether
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software behaviour is correct given some stim-
uli.

Despite the fact that there is no automated
oracle, there is still a role that software engi-
neering research can play, and that is to reduce
the effort that the human tester has to expend
in being the oracle. This effort is referred to
as the Human Oracle Cost [124]. Research tech-
niques can be employed to reduce the human
oracle cost by a quantitative reduction in the
amount of work the tester has to do for the
same amount of test coverage, or by making
the evaluation of test cases easier to process in
a qualitative sense.

7.1 Reducing Quantitive Human Oracle
Cost

Test suites can be unnecessarily large, covering
few test goals in each individual test case. Or,
the test cases themselves may be unnecessarily
long—for example containing large numbers of
method calls, many of which do not contribute
to the overall test case. The goal of quantitative
human oracle cost reduction is to reduce test
suite and test case size so as to maximise the
benefit of each test case and each component
of that test case. This consequently reduces the
amount of manual checking effort that is re-
quired on behalf of a human tester performing
the role of an oracle.

7.1.1 Test Suite Reduction
Traditionally, test suite reduction has been ap-
plied as a post-processing step to an existing
test suite, e.g. the work of Harrold et al, [84],
Offutt et al. [139] and Rothermel et al. [154].
However, there has been recent work in the
search-based testing literature that has sought
to combine test input generation and test suite
reduction into one phase to produce smaller
test suites.

Harman et al. [82] propose an approach
that attempts the generation of test cases that
penetrate the deepest levels of the control
dependence graph for the program, in order

to encourage each generated test case to ex-
ercise as many elements of the program as
possible. Ferrer et al. [65] attack the same
problem but with a number of multi-objective
optimisation algorithms, including the well-
known Non-dominated Sorting Genetic Al-
gorithm II (NSGA-II), Strength Pareto EA 2
(SPEA2), and MOCell amongst others. On a
series of randomly-generated programs and
small benchmarks, MOCell was found to per-
form the best.

Taylor et al. [175] use an inferred model as
a semantic oracle to reduce a test suite. Fraser
and Arcuri [69] report on the EvoSuite tool for
search-based generation of test suites for Java
with maximal branch coverage. Their work is
not directly aimed at reducing oracle cost, but
their approach attempts to generate an entire
test suite at once. The results show that not
only coverage is increased, but test suite sizes
are also reduced.

7.1.2 Test Case Reduction
When using randomised algorithms for gen-
erating test cases for object-oriented systems,
the length of individual test cases can become
very long very quickly—consisting of a large
number of method calls that do not actually
contribute to a specific test goal (e.g. the cov-
erage of a particular branch). Method calls that
do not contribute to a test case unnecessarily
increase oracle cost, and there has been work
[112] where such calls have been removed us-
ing Zeller’s Delta Debugging technique [205].

7.2 Reducing Qualitative Human Oracle
Cost

Human oracle costs may also be minimised
from a qualitative perspective. That is, the
extent to which test cases may be easily un-
derstood and processed by a human. Due to
a lack of involvement of domain knowledge
in the test data generation process, machine-
generated test data tend not to match the
expected input profile of the software under
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test. While this may be beneficial for trapping
certain types of faults, the utility of the ap-
proach decreases when oracle costs are taken
into account, since the tester must invest time
comprehending the scenario represented by test
data in order to correctly evaluate the corre-
sponding program output. Arbitrary inputs are
much harder to understand than recognisable
pieces of data, thus adding time to the checking
process.

In order to improve the readability of
automatically-generated test cases, McMinn et
al. propose the incorporation of human knowl-
edge into the test data generation process [124].
With search-based approaches, it is possible to
inject this knowledge by “seeding” the algo-
rithm with test cases that may have originated
from a human source such as a “sanity check”
performed by the programmer, or an already
existing, partial test suite.

The generation of string test data is particu-
larly problematic for automatic test data gen-
erators, which tend to generate non-sensical
strings. In [128], McMinn et al. propose the
use of strings mined from the web to assist in
the test generation process. Since the content
in web pages is generally the result of human
effort, the strings contained in web pages tend
to be real words or phrases that can be utilized
as ‘realistic’ sources of test data.

A similar idea is employed by Bozkurt and
Harman [33], where web services are tested
using the outputs of other test services. Since
the outputs of web services are ‘realistic’, they
form realistic test inputs for other web services.

Afshan et al. [1] propose the use of a natu-
ral language model to help generate readable
strings. The language model scores how likely
a string is to belong to a language based on the
character combinations. By using this probabil-
ity score as a component of a fitness function,
a metaheuristic search can be used not only
to cover test goals, but also to generate string
inputs that are more comprehensible than the
arbitrary strings normally generated. Afshan et
al. found that for a number of case studies, test

strings generated with the aid of a language
model were more accurately and more quickly
evaluated by human oracles.

Fraser and Zeller [70] improve the familiarity
of test cases by mining the software under test
for common usage patterns of APIs. They then
seek to replicate these patterns in generated
test cases. In this way, the scenarios generated
are more likely to be realistic and represent
actual usages of the software under test. JWalk
[167] simplifies longer test sequences, thereby
reducing oracle costs where the human is the
oracle.

Staats et al. [170] seeks to reduce the human
oracle cost by guiding human testers to those
parts of the code they need to focus on when
writing oracles. This reduces the cost of oracle
constriction, rather than reducing the impact of
a human testing in the absence of an oracle.

7.3 Crowdsourcing the Oracle
A recent approach to handling the lack of an
oracle is to outsource the problem to an online
service to which large numbers of people can
provide answers—i.e., through crowdsourcing.
Pastore et al. [145] demonstrated the feasibility
of the approach but noted problems in present-
ing the test problem to the crowd such that
it could be easily understood, and the need
to provide sufficient code documentation so
that the crowd could determine correct out-
puts from incorrect ones. In these experiments,
crowdsourcing was performed by submitting
tasks to a generic crowdsourcing platform—
Amazon’s Mechanical Turk4. However, some
dedicated crowdsourcing services now exist
for the testing of mobile applications. They
specifically address the problem of the explod-
ing number of devices on which a mobile
application may run, and which the developer
or tester may not own, but which may be
possessed by the crowd at large. Examples
of these services include Mob4Hire5, MobTest6

4. http://www.mturk.com
5. http://www.mob4hire.com
6. http://www.mobtest.com
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and uTest 7.

8 FUTURE RESEARCH DIRECTIONS

In this section we set out an agenda for fur-
ther research on the oracle problem. We use
our formalisation of oracles from Section 2 to
explore some of the extensions that might be
applied for metamorphic oracles and for soft-
ware product line testing, and show how we
might combine notions of metamorphic and
regression testing. We also consider extensions
to our oracle definition to cater for probabilistic
oracles, and to cater for the highly prevalent
and therefore practically important problem of
handling situations where there simply is no
automated oracle.

8.1 Extending Metamorphic Testing
Metamorphic testing has great potential as a
means to overcome the lack of an oracle and
it continues to be extended (for example to
context-sensitive middleware [38] and service-
oriented software [39]). In this section, we con-
sider other possible extensions to metamorphic
testing. Recall that metamorphic testing can be
regarded as a special case of property testing
for an arbitrary property p that must respect
the oracle D, for all test activity sequences, σ
so

Dσ if pσ

This simple generalisation reveals that meta-
morphic testing is a form of property testing
and, thereby, allows us to consider other forms
of property testing that retain the essence of
metamorphic testing, but extend current meta-
morphic concepts. For example, we can, rather
trivially, extend the sequence of input-output
pairs. We need not consider the metamorphic
property to be a 4-ary predicate, but can simply
regard it as a unary predicate on arbitrary-
length test activity sequences, a simple general-
isation that allows metamorphic testing of the
form:

7. http://www.utest.com/

D〈x1, y1, . . . , xk, yk, R, xk+1, yk+1, . . . , xn, yn〉
if

π(x1, y1, . . . , xn, yn)

for some sequence of n stimulus-observation
pairs, the first k of which occur before the reset
and the final n−k of which occur after the reset.

We can also relax the constraint that the
test input should contain only a single reliable
reset to allow multiple resets as is common
in state-based testing [53]. We could also relax
the constraint that between the reliable resets
where there is exactly one stimulus and one ob-
servation. Perhaps metamorphic testing would
be more useful if it allowed a more complex
interplay between stimuli and observations.
The constraint that the oracle would place on
such a relaxed notion of metamorphic testing
would be

Dσ if πσ

for all test activity sequences σ that contain at
least one reliable reset. This raises the question
about whether or not we should even require
the presence of a single reliable reset operation;
i.e, why the case of zero reliable resets not
considered?

Of course, were we to relax this constraint
and allow arbitrarily many reliable resets (in-
cluding none) then we would have generalised
Metamorphic Testing to the most general case;
simply property testing, formulated within our
framework in terms of test activity sequences.
That is

Dσ if πσ

This seems to be an over-generalisation be-
cause it does not seem to retain the spirit of
metamorphic testing. For instance, using such
a formulation, we could capture the property
that the first n outputs (observations) of the
system under test should be sorted in ascend-
ing order and should appear without any input
being required (no stimuli):

D〈y1, . . . , yn〉 if ∀i.1 ≤ i < n · yi ≤ yi+1
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This does not have any of the feeling of
the original definition of metamorphic testing
because there is no concept of relating one
input-output observation to another. It seems
that the concept of the reliable reset is central
to the notion of metamorphic testing. Perhaps
a generalised definition of metamorphic testing
that may prove useful for future work would
define a metamorphic relation to be a relation
on a sequence of at least two test sequences,
separated by reliable resets and for which each
test sequence contains at least one observation
preceded by at least one stimulus.

Recall that a test sequence contains at least
one observation activity preceded by at least
one stimulus activity, according to Definition 3,
and that stimuli and observations, as construed
in this paper, are deliberately very general: the
stimulus could merely consist of calling the
main function, starting the system or reseting,
while the observation could be that the system
terminates within a specified time without any
output, or that it prints 42 on a console, or that
it consumes no more than 0.002 watts of power
in its first second of operation.

We can define a metamorphic test sequence
more formally as follows:

σ1 _ 〈R〉_ σ2 _ 〈R〉_ . . . _ 〈R〉_ σn

for some set of test sequences {σ1, . . . , σn},
where n ≥ 2.

This makes clear the importance of reli-
able resets and the constraint that a meta-
morphic test process involves at least two
test sequences. Finally, having formally de-
fined a (general) metamorphic test sequence,
we can define Generalised Metamorphic Test-
ing (GMT) as follows: Given a metamorphic
test sequence, Σ, GMT respects the oracle con-
straint

DΣ if πΣ

That is, GMT is nothing more than prop-
erty testing on (general) metamorphic test se-
quences.

Using GMT we can capture more complex
metamorphic relationships than with tradi-
tional metamorphic testing. For example, sup-
pose that a tester has three stimuli activi-
ties available, each corresponding to different
channels. Stimulus s1 stimulates an output on
channel c1, while stimulus s2 stimulates an out-
put on channel c2. There is a third channel that
must always contain a log of all outputs on the
other two channels. The contents of this third
channel are output in response to stimulus s3.
This metamorphic logging relationship, πL, can
be captured quite naturally by GMT:

πL〈s1, y1, R, s2, y2, R, s3, y3〉 iff {y1, y2} ⊆ y3

We can also capture properties between mul-
tiple executions that rely on persistence, the
archetype of which is a persistent counter. For
example, the generalised metamorphic relation
below, πP , captures this archetype of persis-
tence that stimulus t causes the observation
c, which reports a count of the number of
previous stimuli s that have occurred. Let
{σ1, . . . , σn} be a set of n test sequences, such
that σi contains Ti occurrences of the stimulus
s.

πP (σ1 _ 〈R〉_ . . . _ 〈R〉_ σn _ 〈t, c〉)
iff

c =
∑n

i Ti

This analysis shows that there may be inter-
esting and potentially useful generalisations of
metamorphic testing. Of course, this discussion
has been purely theoretical. Future work on
metamorphic oracles could explore the prac-
tical implications for these more general forms
of metamorphic relation, such as those we
briefly discussed above.

8.2 Extending Regression Testing

Software Product Lines (SPLs) [49] are sets of
related versions of a system. A product line
can be thought of as a tree of related software
products in which branches contain new alter-
native versions of the system, each of which
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shares some core functionality enjoyed by a
base version. Since SPLs are about versions of a
system, there should be a connection between
regression testing and SPL testing upon which
our definition of oracles may shed some light:
we should be able to formulate oracles for SPLs
in a similar way to those for regression testing.
Indeed, the sequence of releases to which we
might apply regression testing ought to be
merely a special case of an SPL testing, in
which the degree of the tree is 1 and thus the
tree is a degenerate tree (i.e., a sequence).

Recall that, for regression testing, we have
two releases, R1 and R2 for which we have
oracles D1 and D2 respectively. We clarified the
distinction between perfective maintenance,
corrective maintenance and changed function-
ality. In corrective maintenance, the implemen-
tation is found to be faulty and has to be fixed,
but this has no impact on the oracle, which
remains unchanged:

D1 = D2

In perfective maintenance R2 adds new func-
tionality to R1 (in which case the domains of
D1 and D2 are expected to be distinct):

dom(D1) ∩ dom(D2) = ∅

With changed functionality, the requirements
are altered so that the new implementation
must change the behaviour of the previous im-
plementation, not because the previous version
is incorrect (which would have been merely
an instance of corrective maintenance), but be-
cause the requirements have changed. In this
‘changed requirements’ case, there is a clash
between the two oracles:

∃σ · D1σ 6= D2σ

Suppose we have two branches of an SPL, B1

and B2, each of which shares the functionality
of a common base system B. We can think
of the sequence of releases: B followed by B1

as a regression testing sequence. Similarly, we
can think of B followed by B2 as a different
regression test sequence.

Now suppose that the oracles for B, B1 and
B2 are D, D1 and D2 respectively. If D = D1

then this branch of the SPL is really a correction
to the base system and it should be merged
back into the base system (and similarly for the
case where D = D2). Furthermore, we can see
that if D = D1 = D2 then there is no need for
a branch at all; the same oracle, D can be used
to test all versions of the system, and so we
can meaningfully say that there are no separate
versions.

It is not hard to imagine how such a situation
might arise in practice: an engineer, burdened
with many bug fix requests, is concerned that
some specific big fix is really a feature ex-
tension and so a new branch is created for a
specific customer to implement their ‘bug fix’
request, while leaving the existing base system
as a separate line in the SPL (for all other
customers). This is understandable, but it is
not good practice. By reasoning about the ora-
cles and their relationships, we can determine
whether such a new branch is truly required at
the point at which it might be created.

This observation leads us to define the min-
imal requirements on the oracle of a version
for it to be necessary to create a new SPL
branch. Suppose we seek to branch into two
new versions. This is a typical (but special)
case, that easily generalises to the case of one
and n new branches. We expect that the two
new versions extend the base system with
new functionality and that they do so without
interfering with the existing core functionality
of the base system and that each extension is
conflicting, so that two branches are required,
one for each different version. More formally:

dom(D) ∩ dom(D1) = ∅
∧

dom(D) ∩ dom(D2) = ∅
∧

∃σ · D1σ 6= D2σ

We can see that this is none other than
requiring that the two branches are ‘perfec-
tive maintenance’ activities on the base sys-
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tem and that each has changed requirements.
Where these constraints are not met, then the
branches may be unnecessary and could (per-
haps should) be merged. Using such a simple
formulation we might search for such “merge-
able” branches, thereby reducing the problem-
atic SPL phenomenon of “branchmania” [25].

8.3 Metamorphic Regression Testing

Using the formalisation of the oracle concepts
introduced in this paper, we can also define
and investigate entirely new forms of oracle
that straddle existing forms of testing and
approaches to oracle definition. For instance,
suppose we consider what it would mean to
combine metamorphic testing with regression-
based testing.

First, we observe that we can define some
forms of regression testing in terms of meta-
morphic testing. Consider corrective mainte-
nance tasks. For these tasks we seek to correct
a bug, but we use an unchanged oracle.

Suppose we interpret the reliable reset as
the “bridge” between the two versions of the
system. That is, we construct a composition of
the original version and the new version with
the reliable reset R denoting the stimulus of
switching execution in the composition from
original to corrected version. For clarity, we
shall use prime variables when referring to
the new version of the system. That is x′ will
refer to the stimulus x, but applied to the
new version of the system (to which we could
apply stimulus x), while y′ will refer to the
observation y applied to the new version of
the system.

Recall our original definition of (ungener-
alised) metamorphic testing:

D〈x1, y1, R, x2, y2〉 if π(x1, y1, x2, y2)

Suppose we are regression testing a cor-
rected deterministic system. Let T be the set
of stimuli for which the original program is
already correct. We can define the regression
testing task for corrective maintenance in terms

of traditional metamorphic testing of the com-
position of old and new versions as follows:

∀x1 ∈ T.D〈x1, y1, R, x′2, y′2〉 if π(x1, y1, x2, y2)

where π(x1, y1, x2, y2) iff x1 = x2 ⇒ y1 = y2. In
this way π constrains the oracle such that:

∀x ∈ T.D〈x, y,R, x′, y′〉

revealing that we can define the metamorphic
relation π in such a way as to exactly capture
corrective maintenance. That is, the relation-
ship between the original and the corrected
version is that the behaviour is unchanged (all
observations remain the same) for all stimuli
in the correct set (there are no regressions).
In this way we see that, while traditional
metamorphic testing is a relationship between
two executions of the same system, regression
testing can be thought of as a metamorphic
relation between the same execution on two
different versions of the system.

This treatment covers traditional regression
testing, which seeks to check that the soft-
ware has not regressed. That is, we check that
previously correct behaviour remains correct.
Of course, regression testing is usually also
accompanied by testing new changed func-
tionality that has been added to the system
under test. This is traditionally thought of as
an entirely separate activity, which requires a
new specification (and oracle) for the changes
made.

Where those changes are the result of per-
fective maintenance, we will indeed need a
new oracle. However, what of those changes
in requirements that are defined in terms of
the original behaviour? Customers often report
buggy behaviour with an implicit specification
of desired behaviour in terms of existing be-
haviour. For example, consider a customer who
makes statements like this:

“the system is correct, but needs to be
at least twice as fast to be useful.”

or
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“the reading is always off by one; it
should be one lower than reported.”

or
“the battery life needs to be at least
10% longer.”

When testing changes made to achieve these
improvements, we will perform regression
testing and, at the same time, the tester will
also check that the desired improvements have
been made. In practice, the tester will not
separate out the act of regression testing from
testing for improvements, so why should the
theory do so and why should the research com-
munity regard these two kinds of test activity
as entirely different?

Fortunately, with our notion of “metamor-
phic regression testing”, we can capture these
kinds of “upgrade”; changes that improve the
system’s behaviour with respect to its existing
behaviour.

Consider our generalised metamorphic re-
quirement, but in which we are testing the
composition of the original and upgraded sys-
tem and, as before, R denotes switching exe-
cution from the old to the new version of the
system. To capture the first form of upgrade
above:

D(σ _ 〈t1, R〉_ σ _ 〈t′2〉 if π( , t1, , t2)

where σ is an arbitrary test activity sequence
and t1 and t2 are observations of execution
time and π( , t1, , t2) iff t2 ≥ 2t1.
To capture the second form of upgrade above:

D〈x, y1, R, x, y′2〉 if π( , y1, , y2)

where x is the stimulus that causes the incor-
rect reading and π( , y1, , y2) iff y2 = y1 − 1.
To capture the third form of upgrade above:

D(σ _ 〈b1, R〉_ σ _ 〈b′2〉 if π( , b1, , b2)

where σ is an arbitrary test activity sequence
and b1 and b2 are observations of the remaining
battery time and π( , b1, , b2) iff b2 ≥ 1.1b1.

As can be seen, metamorphic regression test-
ing can be used to capture situations in which

the new system is, in some sense, an up-
grade of the behaviour of the original. In such
cases the desired behaviour of the upgrade
is expressed in terms of the less favourable
existing behaviour, and regression testing can
be thought of as a new form of metamorphic
testing; one which relates two different ver-
sions of a system rather than the traditional
form of metamorphic testing, which relates two
different executions of the same system.

These definitions of regression testing in
terms of metamorphic testing open up the pos-
sibility of research into new ways of combin-
ing these two important, but hitherto separate,
forms of testing through a shared understand-
ing of the oracle. Future research could explore
the practical implications of the theoretical re-
lationships our analysis has uncovered.

8.4 Generalisations of Oracles and Their
Properties
Future work may also consider the way in
which our notion of oracles could be gener-
alised and the theoretical properties of oracles.
In this section we illustrate these more theoret-
ical possibilities for future work, but exploring
probabilistic notions of oracles and concepts
of soundness and completeness of oracles. Be-
cause oracles (and their approximations) are
typically computationally expensive, an ap-
proach to the provision of oracle information
may use a probabilistic approach even where
an complete and precise answer is possible.

Recall that a definite oracle responds with
either a 1 or a 0 indicating that the test ac-
tivity sequence is acceptable or unacceptable
respectively, for each sequence of test activities
(i.e., stimuli and observations). It may also be
useful to generalise this definition to allow for
probabilistic oracles:

Definition 8 (Probabilistic Oracle): A
Probabilistic Oracle D̃ is a function from a test
activity sequence to [0, 1], i.e., D̃ : I→ [0, 1].

A probabilistic oracle returns a real number
in the closed interval [0, 1], denoting a less
precise response than a definite oracle. As with



24

definite oracles, we do not require a probabilis-
tic oracle to be a total function. A probabilistic
oracle can be used to model the case where
the oracle is only able to offer a probability
that the test case is acceptable, or for other
situations where some degree of imprecision
is to be tolerated in the oracle’s response.

Since a definite oracle is merely a special case
of a probabilistic oracle, we shall use the term
oracle, hereinafter, to refer to either definite
or probabilistic oracles where the terminology
applies to both.

We can relax our definition of soundness to
cater for probabilistic oracles:

Definition 9 (Soundness): A Probabilistic Ora-
cle, D̃ is sound iff

D̃σ ∈
{

[0, 0.5) when Gσ = 0
[0.5, 1] when Gσ = 1

Notice that the constant oracle λ(i). 12 is vacu-
ously sound (but offers no information). Also,
notice that Definition 9 above, specialises by
instantiation to the case of a definite oracle,
such that a definite oracle is sound iff DO ⊆ G.

The definitions of completeness and correct-
ness already defined for definite oracles in
Section 2 simply carry over to probabilistic
oracles as defined above without modification.

8.5 Measurement of Oracles and Their
Properties

There is work on using oracle as the measure
of how well the program has been tested (a
kind of oracle coverage), [184], [102], [173] and
other measurements regarding oracles in gen-
eral such as to assess the quality of assertions
[156].

However, more work is required on the
measurement of oracles and their properties.
Perhaps this denotes a challenge to the “soft-
ware metrics” community to consider “oracle
metrics”. In a world in which oracles become
more prevalent, it will be important for testers
to be able to assess the features offered by
different alternative oracles.

It is also important to understand (and mea-
sure) the interplay between oracles and testing.
That is, if testing is poor at revealing faults this
may be due to a poor oracle that only partly
covers the system’s intended behaviour. Alter-
natively, it might be that the oracle achieves
higher coverage, but with great inaccuracy rel-
ative to the ground truth, thereby misleading
the testing process. We therefore need ways
to measure the coverage (and “quality”) of
overall behaviour captured by an oracle.

8.6 What if There Simply is No Automated
Oracle?

A recent area of growth has been handling
the lack of an automated oracle, by reducing
the number of test cases, and easing test case
evaluation.

In terms of test suite reduction, further re-
search is required to establish which tech-
niques are the best in reducing test suite size
whilst obtaining high levels of a test adequacy
criterion. Work to date has largely concentrated
on heuristics without a full understanding of
how adequacy criteria relate to particular pro-
grams. For example, optimal minimisation of a
test suite for branch coverage involves knowl-
edge about which branches are executed by
the same inputs – i.e. how so-called “collateral
coverage” [82] can be maximised. Research to
date has largely concentrated only on reducing
test suite size with respect to branch coverage,
where high branch coverage is taken to mean
that the test suite will be good at detecting
faults. Instead of branch coverage, some other
test adequacy criterion could be tested, for
example the ability of a test suite to kill as
many mutants as possible in as few test cases
as possible—and whether it is feasible to pro-
duce smaller test suites for mutation testing as
opposed to structural coverage.

Further in test case reduction, there has
been no work on “reducing” test input values.
For example, test values such as “0.0” con-
vey much less information than a long double
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value such as “0.15625”, and should be pre-
ferred for use in test case generation. More-
over, there has been no work on the converse
problem of outputs. In order to reduce manual
checking time, short, readable outputs are also
required. This will produce further reductions
in terms of the checking load placed on a hu-
man oracle. Much of the techniques have also
concentrated solely on test suites produced
for structural coverage, ignoring the numerous
other ways in which to test a program.

Easing the test burden is a qualitative prob-
lem that involves reducing the time to under-
stand test case scenarios and evaluate corre-
sponding program outputs. In this area, there
has not been much work on improving the
realism of automatically generated test cases.
With the exception of Afshan et al. [1], very
little of this work, however, has been evaluated
using humans. Further work needs to develop
a deeper understanding of the cognitive and
psychological aspects behind test case evalua-
tion in order to further reduce oracle cost.

9 CONCLUSIONS

This paper has provided a comprehensive sur-
vey of oracles in software testing, covering
specified, derived and implicit oracles and
techniques that cater for the absence of ora-
cles. The paper also provided an analysis of
trends in the literature and sets out a road
map for future work at the interfaces between
existing definitions (such as metamorphic and
regression-based oracles). The paper is accom-
panied by a repository of papers on oracles
which we make available to the community8.
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