
Evaluating String Distance Metrics for Reducing Automatically
Generated Test Suites

Islam T. Elgendy
University of Sheffield

UK

Robert M. Hierons
University of Sheffield

UK

Phil McMinn
University of Sheffield

UK

ABSTRACT
Regression test suites can have a large number of test cases, es-
pecially automatically generated ones, and tend to grow in size,
making it costly to run the entire test suite. Test suite reduction
aims to eliminate some test cases to reduce the test suite size and
therefore reduce the cost of running it. In this paper, string distances
on the text of the test cases are used as measures of similarity for
reduction. A practical benefit of using string distance is that there
is no need to run the test cases: the test suite source code is the
only requirement, making the approach fast. We reduce test suites
generated from Randoop and EvoSuite; two well-known test gen-
eration tools of Java programs. We implemented a string-based
similarity reduction and compared it against random reduction. In
the experiments, mutation scores using reduced test suites based
on maximising string dissimilarity of test cases were higher than
those for random reduction in over 70% of the test suites generated.
Also, the results showed that test suites generated by Randoop can
be drastically reduced in one case by 99% using the string-based
similarity reduction approach while maintaining the fault-finding
capabilities of the original test suite. Finally, on average, the nor-
malised compression distance was found to be the best similarity
metric choice in terms of fault-detection.
ACM Reference Format:
Islam T. Elgendy, Robert M. Hierons, and Phil McMinn. 2024. Evaluating
String Distance Metrics for Reducing Automatically Generated Test Suites.
In Proceedings of ACM Conference (Conference’17). ACM, New York, NY,
USA, 11 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Regression testing involves testing the software after changing the
software or its execution environment. It ensures that modifications
do not affect existing functionality. However, regression testing can
consume a lot of resources and time [37]. This can even be more
problematic if regression tests are generated automatically using
test generation tools, because the sizes of the generated test suites
are much larger, unless these tools have a minimisation approach
built-in. To deal with this issue, Test Suite Reduction (TSR) ap-
proaches originally aimed to reduce a test suite while maintaining
the original test requirements by removing redundant test cases.
However, subsequent studies [12–14], developed approaches that

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
Conference’17, July 2017, Washington, DC, USA
© 2024 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

aim to gain more reduction at the expense of losing some power
of the original test suite. A study on these approaches has been
presented by Covieloo et al. [12], investigating the trade-off be-
tween the reduction in test suite size and the loss in fault detection
capability. They found that approaches with the partial fulfilment of
the test requirements have a better trade-off between reduction in
test suite size and loss in fault detection capability than approaches
maintaining the same test requirements as the original test suite.

There are different approaches to achieving the reduction of test
suites. A well-known approach for reduction is based on removing
“redundant” test cases, where a redundant test case is one that
covers a test requirement already covered by another test case [37].
However, reduction using code coverage requires instrumentation
of the program under test and requires the test suites to be executed
first, which can be complicated and time-consuming. Similarly,
model coverage requires one to have a model of the software under
test. An alternative, that does not suffer from such problems, is
to base reduction on a notion of textual diversity (i.e., test cases
that “look” different from each other). The idea is that less similar
test cases are more likely to exercise different parts of the system
than more similar test cases. In this similarity-based approach, the
degree of similarities between the test cases is estimated without
the need to execute the test suites first. This way the source code
of the test suite itself is the only requirement for the reduction to
take place, which makes this approach faster to execute than other
reduction techniques.

Similarity-based approaches have been used in test case prioriti-
sation in many works (e.g. [27, 31, 36]) showing the effectiveness
of such similarity-based approaches in terms of average percentage
of fault detection. However, there has been relatively little work
applying similarity-based techniques for TSR and no work for re-
ducing automatically generated test suites. Coutinho et al. [10, 11]
evaluated the use of distance functions for test suite reduction
based on similarity, but within the scope of model-based testing.
Cruciani et al. [14] proposed scalable approaches for test suite re-
duction based on similarity and some big data domain techniques.
These approaches used only developer-written test suites showing
good results. Automatically generated tests also stand to gain from
similarity-based reduction approaches, because these test suites
are much larger than developer-written test suites, resulting in a
higher cost of rerunning these tests. Therefore, it is very appealing
to apply similarity-based reduction on such an automatically gen-
erated test suite. The extent to which similarity-based reduction
can be utilised for automatically generated test suites is the focus
of this empirical study.

In our empirical study, we investigate the effectiveness of reduc-
ing automatically generated test suites based on textual diversity.
We applied two state-of-the-art automatic test case generation tools
for Java, Randoop [32] and EvoSuite [19] on subjects from Defects4J

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Conference’17, July 2017, Washington, DC, USA Islam T. Elgendy, Robert M. Hierons, and Phil McMinn

[26]. We reduced test suites based on the set of most diverse test
cases and also on the set of least diverse test cases. Reduction based
on least diverse test cases serves as a baseline. If the hypothesis is
that maximising diversity would have a good fault-detection rate,
then conversely one would expect that minimising diversity would
result in a lower fault-detection rate. Also, we evaluate our string-
based similarity reduction and compare it against the first-n test
cases, where n is the desired size of the reduced test suite. Then,
we evaluated the reduced test suites based on their fault-finding
capability against random reduction and first-n test cases. We in-
vestigated the trade-off between the number of test cases lost in the
reduction and the loss in mutation scores. In our experiments, we
used Euclidean distance, Hamming distance, Levenshtein (edit) dis-
tance, Manhattan distance, and Normalised Compression Distance
(NCD).We foundmutation scores using reduced test suites based on
maximising string dissimilarity of test cases were higher than those
for random reduction in over 70% of the test suites generated, and
higher than first-n test cases in over 88% of the cases. The main goal
is to study the effectiveness of string-based similarity reduction on
automatically generated test suites. We evaluate the approach on
test suites generated by Randoop, where there is no minimisation
approach built-in, and compare these results with EvoSuite which
has a minimisation mechanism. This paper is the first to investigate
string-based similarity reduction on automatically generated test
suites applying NCD as a similarity metric.

The paper offers the following contributions:

(1) The first paper to evaluate the effectiveness of applying
string-based similarity reduction on test suites generated by
Randoop and EvoSuite using string distance metrics on the
text of the test cases.

(2) A comparison between string-based similarity reduction
against random reduction and first-n test cases.

(3) A comparison of string-based similarity reduction between
Randoop and EvoSuite.

(4) A comparison between the different similarity metrics in
terms of time and fault-finding capability.

2 METHODOLOGY
The goal of this paper is to study the effectiveness of string-based
similarity reduction on regression test suites automatically gener-
ated using tools. We developed a tool to perform the steps of our
technique in an automated way. First, the tool generates regression
test suites. Then, it calculates the similarities between the generated
test cases using the similarity metrics, and applies string-based sim-
ilarity reduction and random reduction using different reduction
sizes. Finally, the tool evaluates the reduced test suites in terms of
fault-finding capabilities.

2.1 Research questions
We answer the following research questions:

• RQ1: How does reduction based on maximising and mini-
mizing diversity compare to random reduction?

• RQ2: How does string-based similarity reduction compare
to a lower time budget for the test generation?

• RQ3: Which similarity metric performs the best in terms of
time to compute and loss of fault-finding capability?

(a) Test case 1

(b) Test case 2

(c) Test case 3

Figure 1: An example of three test cases generated by Ran-
doop from the Lang project. Test cases 1 and 2 call the same
method, while test case 3 is different from them

• RQ4: What is the effect of string-based similarity reduction
on automatically generated test suites with no built-in min-
imisation (Randoop) compared to an already minimised test
suites (EvoSuite)?

2.2 Test suite generation
We used two state-of-the-art tools, Randoop and EvoSuite, to au-
tomatically generate regression test suites using their default con-
figurations on real-world Java applications from the Defects4J [26]
framework. We set the time budget to 3000 seconds for the gen-
eration of test suites. Randoop and EvoSuite create unit tests in
the JUnit format to cover the classes under test. Randoop gener-
ates unit tests using feedback-directed random test generation [32]
for object-oriented programs. This technique iteratively extends
sequences of method calls for the classes under test until the gener-
ated sequence raises an undeclared exception or violates a general
code contract. Randoop executes the sequences it creates, using
the results of the execution to create assertions that capture the be-
haviour of the program, then creates tests from the code sequences
and assertions. EvoSuite uses search-based techniques applying a
hybrid approach to evolve whole test suites towards satisfying a
coverage criterion [19]. A fitness function guides the process based
on a coverage criterion. When the search is completed, the highest
code coverage test suite is minimized and regression test assertions
are added [20].

2.3 Similarity metrics
A similarity metric is a function that quantifies the similarity be-
tween two objects in a numeric value. There are metrics based
on string distance, while others are based on trace executions or
coverage distance between the test cases.

Evaluating String Distance Metrics for Reducing Automatically Generated Test Suites Conference’17, July 2017, Washington, DC, USA

A test case is a collection of string lines, which we can con-
catenate into a single string. If we do this for two test cases, we
have two long strings that can be compared directly. Similarity is
measured at the character level between the two strings. Figure 1
is an example to show how the notion of diversity can be used
for reduction. The first two test cases are very similar invoking
the max method, while the third one is more different invoking
a different method (toShort). The faults found by the first two
test cases might be similar compared to the third test case calling
an entirely different method. If the goal is to remove one test case
from these three, then from a static point of view, it would make
more sense to remove one of the two similar test cases. This way,
we have two test cases calling two different methods resulting in a
higher probability of coverage and fault detection.

There are many similarity metrics that can be used in similarity-
based approaches. We used five different similarity metrics: Eu-
clidean, Hamming, Levenshtein, Manhattan, and Normalised Com-
pression Distance (NCD) metrics. The selected metrics are used
since the first four metrics are classical string distance metrics used
in many software testing studies [9, 23, 27, 35], and NCD is a recent
method proposed by Li et al. [29] and used by Feldt et al. [18] in
measuring distance between test cases. NCD has been used in test
case prioritisation [21, 24], in selecting between test suites for finite
state machines [25], and to generate a minimised test suite [6, 7].
Furthermore, Elgendy et al. [16] found that the five similarity met-
rics we used were among the top-used similarity metrics in software
testing. However, NCD has not been used in test suite reduction
approaches before, and we use it in our study to compare it with
the classical string similarity metrics.

2.3.1 Euclidean and Manhattan distances. The Euclidean distance
is calculated as the square root of the sum of the squared differences
between the vectors, while the Manhattan distance is computed
as the sum of the absolute differences between two vectors. The
two vectors must have the same length. It is possible to represent a
string of characters as a vector of numbers, where each number is
the ASCII code of the corresponding character. When two strings
have different sizes, we can append to the smaller one 𝑐ℎ𝑎𝑟 (0) to
make them the same size.

2.3.2 Hamming distance. The Hamming distance [22] between two
strings is the number of times when the corresponding characters
are different. Like Euclidean and Manhattan distances, the strings
should be the same size. Again, we can solve this by appending
𝑐ℎ𝑎𝑟 (0) to the smaller one to make them the same size.

2.3.3 Levenshtein distance. The Levenshtein distance [28] or edit
distance between two strings is the minimum number of edits
(insertions, deletions or substitutions) required to change one string
into the other. Levenshtein distance takes into consideration that
parts of the strings can be similar even if not in corresponding
places, and can work with strings of different sizes.

2.3.4 Normalised compression distance (NCD). The Kolmogorov
complexity of a string of symbols, 𝑥 , is the length of the shortest
program that outputs 𝑥 [30]. The normalised compression distance
(NCD) is based on the observation that the size of the output when
compressing a string with real-world compression programs, such

as gzip and bzip2, is a good approximation of its Kolmogorov com-
plexity [17]. Let 𝑥 and 𝑦 be two strings, then NCD is calculated
using:

𝑁𝐶𝐷 (𝑥,𝑦) = 𝐶 (𝑥𝑦) −𝑚𝑖𝑛{𝐶 (𝑥),𝐶 (𝑦)}
𝑚𝑎𝑥{𝐶 (𝑥),𝐶 (𝑦)}

where 𝐶 (𝑥) is the length of the compressed string 𝑥 , 𝐶 (𝑦) is the
length of the compressed string 𝑦, and 𝐶 (𝑥𝑦) is the length of the
concatenated strings 𝑥 and 𝑦 after compression. The NCD value is
in the range [0, 1].

2.4 Reduction
In this step, we explain the reduction using four methods: ran-
dom reduction, first-n test cases, reduction based on maximising
diversity, and reduction based on minimising diversity. To achieve
random reduction, our tool randomly picks a test case to discard
and continues until the desired size is reached. The first-n test cases
are simply using the first generated test cases up to the desired
size. For string-based similarity reduction, the tool calculates all
similarity values between the test cases based on the desired simi-
larity metric and returns the similarity values in a two-dimensional
array that we call the similarity matrix. In this matrix, a cell with
index [2, 5] for example represents the similarity value between
the third and sixth test cases. After calculating all the similarity
scores, the tool reduces the test suite into the most diverse test suite
and the least diverse test suite. We used a greedy algorithm for the
reduction, which is based on the technique by Cartaxo et al. [4, 5],
used for model-based testing and adapted to use on Java tests. Our
technique builds the most diverse test suite by discarding one of
the pair of test cases found in the lowest value in the similarity
matrix. This process continues until we reach the desired reduction
size. Similarly, the least diverse test suite is built by discarding one
of the pair of test cases found in the highest value in the similarity
matrix until we reach the desired reduction size.

To explain this further, consider this example. Assume that the
minimum value in the similarity matrix is in cell [3, 7]. The tech-
nique selects one of these indices randomly, say index three, and
removes the entire row and column. Then it finds the next mini-
mum value and continues until the desired size is reached. If there
is more than one highest or lowest value in the matrix, the first one
is selected as the target for reduction. Because of the random choice
of removing between two possible test cases, the technique repeats
the reduction 30 times for random, the most diverse, and the least
diverse test suites. Later, we analysed this sample size of 30 using
statistical testing to find out the significance level and effect size in
order to justify the validity of the results.

2.5 Analysis and evaluation
Each project in Defects4J has faulty versions, where there are one or
two real-faults in that faulty version. A test suite that has a very low
coverage and mutation score can still detect the real fault, but that
test suite would simply be unreliable since it did not even cover the
rest of the program which might contain more faults. Therefore, we
used mutants as representatives for faults because they are better
distributed across the program and mutants are better suited to
perform statistical testing.

Conference’17, July 2017, Washington, DC, USA Islam T. Elgendy, Robert M. Hierons, and Phil McMinn

To evaluate string-based similarity reduction, we determined
the mutation score of each reduced test suite using the Defects4J
framework. Defects4J uses the “Major” mutation framework to
generate mutants and to run the mutation analysis. One issue that
might occur after reduction is that some test suites fail due to
test-dependency issues. We needed to fix these test suites first to
remove the test cases causing the failure, and then run the mutation
analysis. The tool provides bash scripts which we used to fix and
analyse all the test suites. Finally, the tool parsed all the generated
reports and log files producing a CSV file with all coverage and
mutation scores for all 30 attempts. Also, during parsing, the tool
calculated the statistical significance and effect size to verify the
results.

3 EXPERIMENTAL SETUP
Since EvoSuite generates minimised test suites, the number of test
cases varies greatly between the generated test suites from EvoSuite
and Randoop. We limited the number of generated tests to 1,500
tests to make it possible to run the experiments in a reasonable
amount of time.

In order to compare Randoop and EvoSuite, we made the re-
duction using an absolute number of test cases. This decision was
made to control for test suite size. If we used the same reduction
percentages, the Randoop test suite would be much larger than
the EvoSuite test suite. The reduced test suites of Randoop might
perform better simply because they are larger.

For each test subject, we chose the smaller of the two generated
test suites and then picked the size of the reduced test suite to be a
percentage of the smaller test suite size. The selected percentages
for the reduced test suites were 35%, 60%, and 85%. To illustrate
this, consider the "Lang" project, for which given 3000 seconds,
EvoSuite generated a test suite of size 123 test cases, while Randoop
generated the upper limit of 1,500 test cases. Now based on the
selected reduction percentages, the reduction sizes were 43 (35% of
123), 73 (60% of 123), and 104 (85% of 123), with these sizes being
used with the test suites from both tools. However, it is important
to note that in the case of reduced test suites for Randoop, a test
suite of size 43 is 35% of 123 (the size of the smaller test suite), and
2.87% of 1,500 (the size of the test suite generated by Randoop).

The test generation algorithms used are stochastic, so there is
a risk that any results might not hold more generally. In order to
explore this potential threat and verify our findings, we carried out
an additional smaller study in which we generated five different
test suites for 10 projects using the Defects4J framework by chang-
ing the random seed. Then, we applied the reduction approach
to the generated test suites. Due to time constraints we excluded
the “Compress”, “Csv”, and “JxPath” projects. We followed the
same methodology described before, where we used the same abso-
lute numbers for a reduction on both Randoop and EvoSuite. For
example, in the “Codec” project, the first original test suite size
was 14. Thus, we used test suites of sizes five, nine, and 12 on both
test suites generated by Randoop and EvoSuite.

4 RESULTS
In this section, we report the results of the experiments. We made
our experiments on 13 test subjects, taken from the “Defects4J”
framework. For each test subject, we generated test suites using

Table 1: Information about the test subjects and the original
test suites generated to cover them

Project
Name

Total
No. of

Mutants

Randoop EvoSuite

Test
Suite

Mutation
Score

Test
Suite

Mutation
Score

Chart 972 504 27.47 106 36.4
Cli 16 1500 31.25 14 62.5
Codec 934 1500 57.81 37 32.1
Compress 395 1500 17.72 22 52.4
Csv 99 1091 25.25 22 54.5
Gson 266 1209 24.06 66 50.0
JacksonCore 480 1500 50.83 53 56.5
JacksonDatabind 617 341 24.79 128 53.5
Jsoup 203 1496 51.23 19 17.7
JxPath 274 1500 25.91 56 56.2
Lang 941 1500 29.30 123 49.7
Math 884 1500 59.84 112 63.7
Time 415 1500 13.01 75 63.4

EvoSuite and Randoop. Then, we used five similarity metrics and
used three different sample sizes for reduction. We ran our exper-
iments 30 times for random, least diverse, and most diverse test
suites respectively. Finally, we made an evaluation based on muta-
tion scores. In total, we ran 25,740 experiments and this took around
2,436 hours. Also, we ran another 1,100 experiments using different
regression test suites in the smaller study to verify our findings.
Table 1 presents all 13 test subjects with information about the total
number of mutants in each subject, the original test suites’ sizes and
mutation scores generated from both Randoop and EvoSuite given
3000 seconds and an upper size limit of 1,500. The first column
shows the project ID as defined in the Defects4J framework. The
second and third columns display the test suite size and test suite
mutation score for the Randoop test suites, respectively. The fourth
and fifth columns display the test suite size and test suite mutation
score for the EvoSuite test suites, respectively.

Tables 2 and 3 show the analysis results of the “Cli” and “Lang”
projects respectively. The remaining analysis tables for the remain-
ing projects can be found in a public GitHub repository 1. In each
table, the first column is the used similarity metric, and the second
column is the size of the reduced test suite. The third, fourth, and
fifth columns display the average (Avg) and standard deviation
(SD) for the mutation scores using both Randoop and EvoSuite for
least diverse, most diverse, and random reductions, respectively.
The sixth column displays the p-values for both tools’ statistical
significance test between LR (least diverse and random), and MR
(most diverse and random). We used the The Mann-Whitney U test
as our statistical test because the two samples (MR or LR) are inde-
pendent, and the observations are independent and not normally
distributed satisfying the preconditions of the Mann-Whitney U
test. An 𝛼 represents a number lower than 0.001, which is in the
99% significance level. The last column displays the correspond-
ing A12 effect sizes proposed by Vargha and Delaney [33]. Effect
size informs you how meaningful the relationship between LR and
MR is. The effect size is in the range [0, 1], where higher values
1https://github.com/islamelgendy/Diversity-test-suite-reduction

https://github.com/islamelgendy/Diversity-test-suite-reduction

Evaluating String Distance Metrics for Reducing Automatically Generated Test Suites Conference’17, July 2017, Washington, DC, USA

(a) Example of pattern 1 “Cli” project (b) Example of pattern 2 “Csv” project

(c) Example of pattern 3 “Time” project (d) Example of pattern 4 “Lang”

Figure 2: The patterns observed in the experiments. Figure 2a shows the “Cli” project as an example of the pattern where
diversity-based reduction performed better. Figure 2b shows the “Csv” project as an example of the pattern where diversity-
based performed better in EvoSuite, but random reduction was better in Randoop. The “Time” project is shown in Figure 2c
where diversity-based performed better in Randoop but not in EvoSuite. Finally, Figure 2d shows the “Lang” project where
random reduction performed better than diversity-based reduction

(> 0.8) mean large effect, values around 0.5 mean medium effect,
and small values (< 0.2) mean small effect. Our experiments show
four patterns of performance.

4.1 String-based similarity reduction better on
EvoSuite and Randoop (Pattern 1)

The first and most common pattern is where maximising diversity
gave better mutation scores using tests from both tools. Table 2
shows the reduction analysis for “Cli” as an example of this pat-
tern. Figure 2a shows the box plot for the same project showing
the achieved mutation scores for least diverse, most diverse, and
random reduced test suites. For “Chart”, “Cli”, “Codec”, “Gson”,
“JacksonCore”, “Jsoup”, “JxPath”, and “Math” projects, the
achieved average mutation scores for the most diverse test suites
are higher than randomly reduced test suites and the standard de-
viations are lower as well. Also, random reduction performs better
than reduction based on the least diverse with few exceptions. How-
ever, the reduction in Randoop test suites caused a noticeable drop

of mutation scores in “JacksonCore”, “Jsoup”, “JxPath”, and
“Math” projects.

A slight advantage of string-based similarity reduction over ran-
dom reduction occurred with “Gson” and “JacksonDatabind”
projects. For “Gson” project, using Randoop, the achieved muta-
tion score averages for the most diverse test suites are higher than
randomly reduced test suites and the standard deviations are lower
as well. However, using EvoSuite, for only the Levenshtein metric
were the most diverse results better than those of random reduction.
The results in other metrics are varying, where there is a slight
advantage for the most diverse test suites over random reduction.
For “JacksonDatabind” project, the achieved mutation score
averages for the most diverse test suites are slightly higher than
randomly reduced test suites, but the standard deviations are lower
making the results more consistent. Also, random reduction is per-
forming slightly better than reduction based on the least diverse
across all metrics using both Randoop and EvoSuite.

Conference’17, July 2017, Washington, DC, USA Islam T. Elgendy, Robert M. Hierons, and Phil McMinn

Table 2: The reduction analysis for the Cli project

Similarity
Metric

Reduced
Test
Suite
Size

Least diverse Most diverse Random diverse p-Value Effect size

Randoop EvoSuite Randoop EvoSuite Randoop EvoSuite Randoop EvoSuite Randoop EvoSuite

Avg SD Avg SD Avg SD Avg SD Avg SD Avg SD LR MR LR MR LR MR LR MR

Euclidean
5 25.0 0.00 30.2 15.90 26.9 2.86 51.5 6.79 23.1 7.24 32.9 14.43 0.65 0.24 0.42 𝛼 0.14 0.39 0.41 0.84
8 25.0 0.00 40.4 14.32 29.8 2.64 60.6 2.86 24.2 7.35 49.2 10.17 0.18 𝛼 0.01 𝛼 0.14 0.69 0.30 0.86
12 25.0 0.00 59.6 5.29 31.0 1.12 62.5 0.00 27.3 5.93 58.3 5.43 𝛼 𝛼 0.30 𝛼 0.14 0.69 0.30 0.86

Hamming
5 21.9 5.53 26.9 14.08 30.2 2.33 54.6 3.20 23.1 7.24 32.9 14.43 0.03 𝛼 0.11 𝛼 0.11 0.78 0.35 0.92
8 22.1 5.53 37.5 8.54 31.3 0.00 59.0 3.10 24.2 7.35 49.2 10.17 𝛼 𝛼 𝛼 𝛼 0.11 0.81 0.18 0.79
12 24.2 2.12 58.5 6.14 31.3 0.00 62.5 0.00 27.3 5.93 58.3 5.43 𝛼 𝛼 0.72 𝛼 0.00 0.56 0.46 0.58

Levenshtein
5 18.1 5.19 22.7 10.76 28.1 3.12 53.5 6.39 23.1 7.24 32.9 14.43 𝛼 0.02 𝛼 𝛼 0.06 0.52 0.26 0.88
8 21.3 4.45 40.8 12.15 30.0 2.50 61.0 2.64 24.2 7.35 49.2 10.17 𝛼 𝛼 𝛼 𝛼 0.09 0.70 0.27 0.87
12 23.5 2.64 60.0 5.00 31.0 1.12 62.5 0.00 27.3 5.93 58.3 5.43 𝛼 𝛼 0.19 𝛼 0.00 0.55 0.50 0.58

Manhattan
5 25.0 0.00 28.1 14.77 28.1 3.12 50.0 6.04 23.1 7.24 32.9 14.43 0.65 0.02 0.18 𝛼 0.14 0.52 0.37 0.80
8 25.0 0.00 39.4 14.08 30.0 2.50 61.3 2.50 24.2 7.35 49.2 10.17 0.18 𝛼 𝛼 𝛼 0.14 0.69 0.28 0.90
12 25.0 0.00 60.6 4.88 30.6 1.88 62.5 0.00 27.3 5.93 58.3 5.43 𝛼 0.02 0.09 𝛼 0.00 0.52 0.53 0.58

NCD
5 24.4 1.88 25.8 10.42 25.8 5.53 46.7 8.50 23.1 7.24 32.9 14.43 0.34 0.63 0.07 𝛼 0.13 0.45 0.33 0.76
8 25.0 0.00 44.4 14.19 27.3 4.41 56.5 5.22 24.2 7.35 49.2 10.17 0.18 0.41 0.34 𝛼 0.14 0.48 0.41 0.71
12 25.0 0.00 50.8 7.86 31.0 1.12 62.5 0.00 27.3 5.93 58.3 5.43 𝛼 𝛼 𝛼 𝛼 0.00 0.55 0.20 0.58

Table 3: The reduction analysis for the Lang project

Similarity
Metric

Reduced
Test
Suite
Size

Least diverse Most diverse Random diverse p-Value Effect size

Randoop EvoSuite Randoop EvoSuite Randoop EvoSuite Randoop EvoSuite Randoop EvoSuite

Avg SD Avg SD Avg SD Avg SD Avg SD Avg SD LR MR LR MR LR MR LR MR

Euclidean
43 2.1 1.13 18.8 0.60 8.7 0.73 19.6 1.03 7.9 1.74 24.5 2.24 𝛼 0.12 𝛼 𝛼 0.00 0.62 0.00 0.00
73 3.6 1.17 32.4 1.75 9.9 0.67 29.6 1.29 11.4 1.90 34.7 2.73 𝛼 𝛼 𝛼 𝛼 0.00 0.21 0.26 0.03
104 5.2 0.82 44.6 1.07 10.8 0.56 44.2 0.85 13.8 1.99 55.1 1.48 𝛼 𝛼 0.15 0.79 0.00 0.06 0.60 0.48

Hamming
43 4.0 1.47 21.1 2.42 8.9 0.73 19.4 1.09 7.9 1.74 24.5 2.24 𝛼 0.05 𝛼 𝛼 0.05 0.65 0.15 0.01
73 5.5 1.54 33.8 2.03 11.8 0.86 28.3 0.63 11.4 1.90 34.7 2.73 𝛼 0.70 0.34 𝛼 0.01 0.53 0.43 0.00
104 6.4 1.77 45.8 0.59 12.6 0.92 42.9 1.74 13.8 1.99 55.1 1.48 𝛼 𝛼 𝛼 0.01 0.00 0.28 0.88 0.31

Levenshtein
43 1.3 0.12 25.4 1.37 9.5 1.18 19.7 1.73 7.9 1.74 24.5 2.24 𝛼 𝛼 0.16 𝛼 0.00 0.76 0.60 0.04
73 2.0 0.23 35.4 0.76 11.1 0.86 27.6 1.58 11.4 1.90 34.7 2.73 𝛼 0.16 0.13 𝛼 0.00 0.39 0.62 0.00
104 2.4 0.12 45.5 0.38 12.3 1.06 43.1 0.64 13.8 1.99 55.1 1.48 𝛼 𝛼 𝛼 𝛼 0.00 0.25 0.82 0.26

Manhattan
43 1.9 0.68 18.9 0.91 8.5 0.76 18.7 1.23 7.9 1.74 24.5 2.24 𝛼 0.33 𝛼 𝛼 0.00 0.57 0.00 0.00
73 3.0 1.13 32.8 1.88 10.3 0.77 29.0 1.16 11.4 1.90 34.7 2.73 𝛼 𝛼 𝛼 𝛼 0.00 0.26 0.28 0.01
104 4.8 0.95 44.2 1.07 10.8 0.70 42.8 1.48 13.8 1.99 55.1 1.48 𝛼 𝛼 0.81 𝛼 0.00 0.07 0.52 0.27

NCD
43 2.7 0.22 24.9 1.95 10.9 0.82 20.7 2.09 7.9 1.74 24.5 2.24 𝛼 𝛼 0.60 𝛼 0.00 0.94 0.54 0.12
73 3.6 0.43 36.1 0.70 13.5 1.45 28.9 1.22 11.4 1.90 34.7 2.73 𝛼 𝛼 𝛼 𝛼 0.00 0.81 0.70 0.00
104 4.4 0.45 44.9 0.41 14.9 1.16 43.1 0.92 13.8 1.99 55.1 1.48 𝛼 0.03 0.03 𝛼 0.00 0.66 0.66 0.28

4.2 String-based similarity reduction better on
EvoSuite (Pattern 2)

The second pattern occurs where maximising diversity performed
better in EvoSuite but not in Randoop. Figure 2b shows the box
plot for “Csv” as an example of this pattern, showing the achieved
mutation scores for least diverse, most diverse, and random reduced
test suites. For “Compress” and “Csv” projects, using EvoSuite,
the achieved average mutation scores for the most diverse test

suites are higher than randomly reduced test suites in EvoSuite test
suites. Also, the standard deviations are lower.

The reduction of the Randoop test suites caused a huge drop
in mutation scores using any reduction technique. The mutation
score drop from 17.72% to 4.4-6.8% in “Compress”, while the mu-
tation score dropped from 25.25% to 1.0-5.1% in “Csv”. There was
no clear-cut advantage to either random reduction or reduction
based onmaximising diversity in “Compress”. However, for “Csv”
project reductions based on random were better than most diverse

Evaluating String Distance Metrics for Reducing Automatically Generated Test Suites Conference’17, July 2017, Washington, DC, USA

Ch
art
_Ra

n

Ch
art
_Ev

o

Co
de
c_R

an

Co
de
c_E

vo

Jso
up
_Ra

n

Jso
up
_Ev

o

Ma
th_
Ra
n

Ma
th_
Ev
o

Tim
e_R

an

Tim
e_E

vo
0

10

20

30

40

50

60

70

80

M
ut
at
io
n
sc
or
e

Least diverse
Most diverse

Cli
_Ra
n

Cli
_Ev
o

Gs
on
_Ra
n

Gs
on
_Ev
o

J.C
ore
_Ra
n

J.C
ore
_Ev
o

J.D
ata
_Ra
n

J.D
ata
_Ev
o

Lan
g_R

an

Lan
g_E
vo

0

10

20

30

40

50

60

70

80

M
ut
at
io
n
sc

or
e

Least diverse
Most diverse

Figure 3: The reduction analysis for all repeated test subjects

in terms of mutation scores. These results suggest that the reduc-
tion was drastic for these two projects, and higher sizes would
have achieved better mutation scores. This also might explain why
random reduction was slightly better than string-based similarity.

4.3 String-based similarity reduction better on
Randoop (Pattern 3)

The third pattern occurs where maximising diversity performed
better in Randoop but not in EvoSuite. Figure 2c shows the box
plot showing the achieved mutation scores for least diverse, most
diverse, and random reduced test suites of “Time” project. Using
Randoop, the achieved mutation score averages for the most di-
verse test suites and randomly reduced test suites are very close to
each other. However, the standard deviations for most diverse test
suites are lower than randomly reduced test suites. On the other
hand, using EvoSuite, reductions based on random were better than
most diverse in terms of mutation scores. Also, random reduction
performed better than the reduction based on the least diverse.

4.4 Random reduction better on EvoSuite and
Randoop (Pattern 4)

The last pattern is where random reduction performed better than
string-based similarity reduction for both Randoop and Evosuite.
This only occurred with “Lang” project, as the achieved mutation
score averages for the randomly reduced test suites, are higher than
both most and least diverse test suites with a few exceptions, but
the standard deviations are lower for most and least diverse than
those in randomly reduced. The exceptions occurred in Randoop
using NCD and other metrics with sizes 43 (35% of the original
size). Furthermore, the reduction of Randoop test suites caused a
big drop in mutation scores from 29.3% to 7.9-14.9%. Table 3 shows
the reduction analysis of the “Lang” project, and Figure 2d shows
the box plot for the same project, showing the achieved mutation
scores for least diverse, most diverse, and random reduced test
suites.

Figure 3 shows the box plots of the reduction analysis of our
smaller study. We included all the reduction analysis data using
all similarity metrics and different reduction sizes in the plot. The

Randoop EvoSuite
0

20

40

60

80

100

M
ut
at
io
n
sc
or
e

First-n
Worst diversity
Avg diversity

Figure 4: Mutation analysis for all projects presenting the
first-n test cases, worst cases of maximising diversity, and
average scores of maximising diversity

mutation scores for the most diverse test suites are higher than the
mutation scores for the least diverse except for the “Lang” project.
These results are consistent with our findings reported earlier.

4.5 Generate smaller test suite sizes
To solve the problem of having a large regression test suite size,
we can apply reduction as we did in this paper. However, another
possibility is just to simply set a lower time budget for Randoop
and EvoSuite to generate a smaller test suite. Thus, saving even
more time than the reduction approach.

Therefore, we evaluated the string-based similarity reduction
against using the first-n test cases. Figure 4 shows the box plots of
all mutation scores for the first-n test case, the worst cases in string-
based similarity reduction, and the average scores of string-based
similarity reduction.

Conference’17, July 2017, Washington, DC, USA Islam T. Elgendy, Robert M. Hierons, and Phil McMinn

5 DISCUSSION
Wediscuss the findings of our results and relate them to our research
questions.

Answer to RQ1 - How does reduction based on
maximising and minimizing diversity compare to
random reduction?
We had a total of 195 records of reduced test suites for each genera-
tion tool. Based on average mutation scores for test suites generated
by Randoop, the reduction based on maximising diversity was bet-
ter than random reduction in 71.28% of the cases, where random
reduction performed better in 15.9%. In the remaining 12.82% ran-
dom and most diverse gave almost identical mutation scores (±0.5
difference). For test suites generated by EvoSuite, the reduction
based on maximising diversity was better in 70.26% of the cases
than random reduction, where random reduction performed better
in 17.44%. In the remaining 12.3% random and most diverse gave
very close mutation scores.

On the other hand, for Randoop, reduction based on minimis-
ing diversity was better only in 11.28% of the cases than random
reduction, where random reduction performed better in 78.46% of
the cases. In the remaining 10.26% random and most diverse gave
almost identical mutation scores (±0.5 difference). For test suites
generated by EvoSuite, the reduction based on minimising diversity
was better in 20% of the cases than random reduction, where ran-
dom reduction performed better in 68.21%. In the remaining 11.79%
of the cases random and most diverse gave very close mutation
scores.

Conclusion for RQ1: The experiments show that reduction
based on maximising diversity has higher mutation scores
than random reduction in 71.28% of the cases for Randoop
and 70.26% of the cases for EvoSuite. Also, reduction based on
minimising diversity has lower mutation scores than random
reduction in 78.46% of the cases for Randoop and 68.21% of
the cases for EvoSuite. We conclude that reduction based on
similarity plays a role in fault-finding capabilities.

Answer to RQ2 - How does string-based
similarity reduction compare to a lower time
budget for the test generation?
As we mentioned before, setting a lower time budget will generate
a smaller test suite. However, the generated test suites will have
much smaller fault-detection capabilities. The average of string-
based similarity reduction gave better mutation scores than the
first-n test cases in 88.5% of the cases. Furthermore, even the worst
cases of string-based similarity reduction were still better than the
first-n test cases in 74.4% of the cases.

Conclusion for RQ2: String-based similarity reduction is bet-
ter than using the first-n test cases in terms of fault-detection.
Therefore, it is more effective to generate a large regression
test suite, and then reduce it based on similarity.

(a) The reduction time for all metrics

(b) A closer inspection of the metrics without the Levenshtein
metric

Figure 5: Test suite reduction time

Answer to RQ3 - Which similarity metric
performs the best in terms of time to compute
and loss of fault-finding capability?
For test suites generated by Randoop, NCD performed best in
38.5% of the cases giving the highest average mutation scores for
“Chart”, “Gson”, “JxPath”, “Lang”, and “Math” projects. Leven-
shtein came in second performing best in 30.8% of the cases giving
the highest average mutation scores for “Codec”, “Compress”,
“JacksonDatabind”, and “Jsoup” projects. Manhattan, Ham-
ming, and Euclidean gave the highest average mutation scores for
“JacksonCore”, “Cli”, and “Csv” projects respectively. There
was no clear advantage for any of the metrics in the “Time” project.
Manhattan distance gave the highest for the 35% test suite size,
while Euclidean distance gave the highest for the 60% test suite size,
and NCD gave the highest for the 85% test suite size.

For test suites generated by EvoSuite, NCD performed best in
46.2% of the cases giving the highest average mutation scores for
“Codec”, “Compress”, “Csv”, “JxPath”, “Lang”, and “Time”
projects. Manhattan distance came in second performing best in
30.8% of the cases giving the highest average mutation scores for
“Cli”, “Chart”, “Jsoup”, and “Math” projects. Hamming distance
gave the highest average mutation score for “JacksonCore”,
and “JacksonDatabind” projects. Also, it is worth noting that
Levenshtein and NCD both performed the best in the “JxPath”,
and “Time” projects. There was no clear advantage for any of the
metrics in the “Gson” project.

Evaluating String Distance Metrics for Reducing Automatically Generated Test Suites Conference’17, July 2017, Washington, DC, USA

Similarity metrics varied in effectiveness from one project to an-
other and varied between Randoop and EvoSuite as well. However,
NCD performed better than the other metrics at 42.3% across all ex-
periments using both Randoop and EvoSuite. Also, NCD performed
the best using Randoop and EvoSuite in the “JxPath”, and “Lang”
projects.

The box plots of Figure 5 show the time for the reduction of
the compared similarity metrics. In Figure 5a, all similarity metrics
are shown. However, it takes much more time to compute the
Levenshtein metric than the others, so we can not observe the time
spent on them properly. Thus, the box plots in Figure 5b show only
the Euclidean, Hamming, Manhattan, and NCD metrics to get a
better view of the time spent in reduction. As shown, Levenshtein
takes the most time by far, which conforms with Ledru et al. [27].
NCD comes in next as it spends a little more time computing than
Euclidean, Hamming, and Manhattan, which are very close to one
another in time spent for reduction. NCD was nine to 53 times
faster to compute than Levenshtein distance.

Conclusion for RQ3: The best similarity metric in terms of
maintaining fault-finding capabilities is NCD. NCD performed
best in 42.3% of cases in test suites generated by Randoop
and EvoSuite. Also, the reduction time spent is close to other
metrics. The Levenshtein comes in second performing best
in 23% of cases, followed by Manhattan performing 19.2% of
cases. However, Levenshtein distance spends a huge amount
of time to compute compared to other metrics. It is nine to 53
times slower than NCD.

Answer to RQ4 - What is the effect of
string-based similarity reduction on
automatically generated test suites with no
built-in minimisation (Randoop) compared to an
already minimised test suites (EvoSuite)?
The test suite sizes generated by EvoSuite are already minimised,
and further reduction of the test suites can negatively affect the
fault-finding capabilities. However, if resources are limited, reduc-
tion based on the most dissimilar test cases is preferable. We man-
aged to achieve a 15% reduction in size with only a 5% drop in
mutation scores. On the other hand, the test suites generated by
Randoop are considerably larger. In the “Cli” project, we managed
to achieve the mutation score of the original test suite after reduc-
ing the size by 99.2%. In the “Codec” project, we maintained 97.2%
of the mutation score of the original test suite after making a 97.9%
reduction. Although other projects did not achieve strong results,
in almost every project we made a huge reduction in size.

Considering all 13 test subjects, where we made reduction using
five similarity metrics on three different size batches, we have a
total of 195 records of most and least diverse test suites per tool
(Randoop and EvoSuite). The most diverse test suites performed
better at 175 for Randoop (89.7%), and 159 for EvoSuite (81.5%).

Conclusion for RQ4: Randoop can benefit much more from
similarity-based reduction, often reducing the size of the test

suites considerably and maintaining either the same mutation
score of the original or a very close number. On the other hand,
since EvoSuite has its minimisation techniques, any further
reduction tends to drop the mutation score. However, string-
based similarity reduction still achieved a 15% reduction in
size with only a 5% drop in mutation scores.

5.1 Threats to validity
We address validity threats that can affect our results.

(1) Construct validity: The selected similarity metrics and
the used test subjects can be a construct risk in our study.
To mitigate this risk, we selected widely-used metrics in
software testing research, and the dataset used [26] has been
constructed by external researchers and is also used in many
research studies such as [12, 14].

(2) Internal validity: The accuracy of the results can be af-
fected by random factors. To mitigate this risk, we repeated
the reduction 30 times for each of the random, least and
most diverse test suites. Also, we applied the same reduction
approach using five different test suites for each test subject.

(3) External validity: This risk is concerned with how much
can we generalize the results to different Java programs and
different test suites generated by different tools, or even
developer-written test suites. To mitigate this risk, we used
13 different projects. However, we still need to use more
test subjects and conduct more experiments to try to draw
general conclusions.

(4) Reliability: This concerns how other researchers can repli-
cate our study. To mitigate this risk, we explained the reduc-
tion approach and similarity metrics used. Also, we specified
the test subjects which can be accessed from the web to repli-
cate the study. Furthermore, all the data and test subjects are
available on the web in a replication package [15].

6 RELATEDWORK
Diversity-based approaches have been used in many areas of test-
ing, such as test suite generation, test suite reduction, test case
prioritisation, test suite evaluation, and so on. Elgendy et al. [16]
made a survey about diversity-based techniques in software testing.
They reported the similarity metrics used in the literature, software
artefacts used as a basis for diversity, software testing problems
where diversity-based techniques were used to solve, application
domains where diversity-based techniques were utilised, and the
diversity-based tools developed in the literature. They identified
test suite reduction as one area where diversity-based approaches
were not utilised as much as other areas in software testing. It is
clear that diversity is a hot research topic in software testing, and
this paper is related to investigating diversity in the context of test
suite reduction.

Some TSR techniques involve applying clustering algorithms to
group test cases with similar characteristics or behaviours into clus-
ters, then from each cluster, one or more representative test cases

Conference’17, July 2017, Washington, DC, USA Islam T. Elgendy, Robert M. Hierons, and Phil McMinn

are selected [1, 8, 34]. Coviello et al. [13] proposed a clustering-
based approach for test suite reduction. The clustering-based ap-
proach places similar test cases into groups based on their statement
coverage, and then treats the test cases in each group as redundant.
In order to fix scalability issues, Cruciani et al. [14] proposed a
family of scalable approaches based on similarity for test suite re-
duction, that uses techniques from the big data domain. The tester
specifies the desired number of test cases. Then, they model each
test case as a point in some D-dimensional space, and use Euclidean
distance to select evenly spaced test cases. Similar to our study,
these techniques do not maintain the same test requirements as the
original test suite. However, they do not study the effectiveness of
reduction on automatically generated test suites.

Similarity metrics were used for test suite reduction in the con-
text of model-based testing. Coutinho et al. [10, 11] proposed using
similarity-based approaches to reduce test suites in the context of
model-based testing. They made an analysis of the effectiveness
of six different string distances to compute the similarity between
the test cases and applied them to three test subjects. The distance
functions they used were Similarity function, Levenshtein distance,
Sellers algorithm, Jaccard index, Jaro distance, and Jaro-Winkler
distance. They concluded that the choice of the similarity metric
does not affect the size of the reduced test suite, but it affects the
fault coverage. These studies are in the context of model-based
testing while our work is traditional test suite reduction of Java
test suites.

Diversity-based techniques have been used for test data gener-
ation in many works. Some used evolutionary algorithms guided
by diversity-based fitness functions [3, 17, 18], a diversity-based
system-level web test generation [2], or to generate a minimized
test suite [6, 7]. These are important to understand how to use
similarity metrics in software testing.

None of the above papers have used the reduction using auto-
matic test suite generators like EvoSuite and Randoop, and to the
best of our knowledge, this paper is the first to evaluate the effec-
tiveness of similarity-based reduction on automatically generated
test suites.

7 CONCLUSIONS AND FUTUREWORK
Regression test suites usually have numerous test cases, and run-
ning the entire test suite will be costly. A number of ways have been
suggested to address this issue such as TSR approaches. This paper
evaluates the effectiveness of applying similarity metrics to reduce
the size of automatically generated regression test suites. The study
used two widely used tools, Randoop and EvoSuite, that generate
test suites. Five different similarity metrics were employed in the
study, Euclidean distance, Hamming distance, Levenshtein distance,
Manhattan distance, and NCD. We compared these similarity met-
rics, and compared the reduced test suites from random (Randoop)
and search-based (EvoSuite) in terms of fault-finding capabilities.
The reduction approach was evaluated on 13 test subjects from the
Defects4J framework available on the web.

The results showed that reducing test suites based onmaximising
diversity is more efficient than random reduction in 71.28% of the
cases in test suites generated by Randoop, and 70.26% of the cases
in test suites generated by EvoSuite. When minimising diversity,

random reduction gave higher mutation scores in 78.46% of the
cases using Randoop and 68.21% of the cases using EvoSuite. Also,
the comparison between the similarity metrics shows that NCD is
the best similarity metric. The time to compute NCD is comparable
to other similarity metrics and much faster than the Levenshtein
metric, and NCD performed better than the other metrics in 42.3%
of the experiments. Furthermore, string-based similarity reduction
is more effective than using the first n test cases in terms of fault-
detection. Finally, we found that it was possible to make significant
reductions in the test suite sizes generated by Randoop andmaintain
the same fault-finding capabilities of the original test suites.

In the future, we plan to consider more similarity metrics and
apply the study to different test subjects. Also, we plan to extend
this work to reduce the loss in fault detection after reduction for
the test suites generated by Randoop. Furthermore, we will apply
string-based similarity reduction on developer-written tests and
explore the differences in applying string-based similarity reduction
between test suites generated automatically and developer-written
tests.

REFERENCES
[1] R. Beena and S. Sarala. 2014. Multi objective test case minimization collaborated

with clustering and minimal hitting set. Journal of Theoretical and Applied
Information Technology 69, 1 (2014), 200–210.

[2] M. Biagiola, A. Stocco, F. Ricca, and P. Tonella. 2019. Diversity-based web test
generation. In Proceedings of the Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering. 142–153.

[3] P. MS Bueno, W E. Wong, and M. Jino. 2007. Improving random test sets using
the diversity oriented test data generation. In Proceedings of the 2nd international
workshop on Random testing: co-located with the 22nd IEEE/ACM International
Conference on Automated Software Engineering (ASE 2007). 10–17.

[4] E. G Cartaxo, P. D. L. Machado, and F. G. O. Neto. 2011. On the use of a similarity
function for test case selection in the context of model-based testing. Software
Testing, Verification and Reliability 21, 2 (2011), 75–100.

[5] E. G Cartaxo, F. G. O. Neto, and P. D. L. Machado. 2007. Automated test case
selection based on a similarity function. In Jahrestagung der Gesellschaft für
Informatik, Informatik trifft Logistik, Vol. P-110. 399–404.

[6] J. Chen, X. Shen, and T. Menzies. 2019. Building very small test suites (with
SNAP).

[7] J. Chen, X. Shen, and T. Menzies. 2021. Faster SAT Solving for Software with
Repeated Structures (with Case Studies on Software Test Suite Minimization).

[8] N. Chetouane, F. Wotawa, H. Felbinger, and M. Nica. 2020. On using k-means
clustering for test suite reduction. In Workshop on Testing: Academia-Industry
Collaboration, Practice and Research Techniques (TAIC PART). 380–385.

[9] I. Ciupa, A. Leitner, M. Oriol, and B. Meyer. 2008. ARTOO: adaptive random
testing for object-oriented software. In Proceedings of the International conference
on Software engineering. 71–80.

[10] A. V. B. Coutinho, E. G. Cartaxo, and P. D. L. Machado. 2013. Test suite reduction
based on similarity of test cases. In 7st Brazilian workshop on systematic and
automated software testing—CBSoft, Vol. 2013.

[11] A. V. B. Coutinho, E. G. Cartaxo, and P. D. L. Machado. 2016. Analysis of distance
functions for similarity-based test suite reduction in the context of model-based
testing. Software Quality Journal 24, 2 (2016), 407–445.

[12] C. Coviello, S. Romano, and G. Scanniello. 2018. An empirical study of inadequate
and adequate test suite reduction approaches. In Proceedings of the International
symposium on empirical software engineering and measurement. 1–10.

[13] C. Coviello, S. Romano, G. Scanniello, A. Marchetto, G. Antoniol, and A. Corazza.
2018. Clustering support for inadequate test suite reduction. In International
Conference on Software Analysis, Evolution and Reengineering (SANER). 95–105.

[14] E. Cruciani, B. Miranda, R. Verdecchia, andA. Bertolino. 2019. Scalable approaches
for test suite reduction. In International Conference on Software Engineering (ICSE).
419–429.

[15] I. T. Elgendy. 2024. Replication package. https://github.com/islamelgendy/
Diversity-test-suite-reduction/tree/main. [Online; accessed 15-Janurary-2024].

[16] I. T. Elgendy, R. M. Hierons, and P. McMinn. 2023. A Survey of the Metrics, Uses,
and Subjects of Diversity-Based Techniques in Software Testing. arXiv:2311.09714

[17] R. Feldt, S. Poulding, D. Clark, and S. Yoo. 2016. Test set diameter: Quantifying
the diversity of sets of test cases. In IEEE International Conference on Software
Testing, Verification and Validation (ICST). 223–233.

https://github.com/islamelgendy/Diversity-test-suite-reduction/tree/main
https://github.com/islamelgendy/Diversity-test-suite-reduction/tree/main
https://arxiv.org/abs/2311.09714

Evaluating String Distance Metrics for Reducing Automatically Generated Test Suites Conference’17, July 2017, Washington, DC, USA

[18] R. Feldt, R. Torkar, T. Gorschek, and W. Afzal. 2008. Searching for cognitively
diverse tests: Towards universal test diversity metrics. In International Conference
on Software Testing Verification and Validation Workshop. IEEE, 178–186.

[19] G. Fraser and A. Arcuri. 2011. Evosuite: automatic test suite generation for object-
oriented software. In Proceedings of the SIGSOFT symposium and the European
conference on Foundations of software engineering. 416–419.

[20] G. Fraser and A. Zeller. 2011. Mutation-driven generation of unit tests and oracles.
IEEE Transactions on Software Engineering 38, 2 (2011), 278–292.

[21] A. Haghighatkhah, M. Mäntylä, M. Oivo, and P. Kuvaja. 2018. Test prioritization
in continuous integration environments. Journal of Systems and Software 146
(2018), 80–98.

[22] R. W. Hamming. 1950. Error detecting and error correcting codes. The Bell system
technical journal 29, 2 (1950), 147–160.

[23] H. Hemmati, A. Arcuri, and L. Briand. 2013. Achieving scalable model-based
testing through test case diversity. ACM Transactions on Software Engineering
and Methodology (TOSEM) 22, 1 (2013), 1–42.

[24] C. Henard, M. Papadakis, M. Harman, Y. Jia, and Y. Le Traon. 2016. Compar-
ing white-box and black-box test prioritization. In International Conference on
Software Engineering (ICSE). 523–534.

[25] A. Ibias, M. Núñez, and R. MHierons. 2021. Using mutual information to test from
Finite State Machines: Test suite selection. Information and Software Technology
132 (2021), 106498.

[26] R. Just, D. Jalali, and M. D Ernst. 2014. Defects4J: A database of existing faults
to enable controlled testing studies for Java programs. In Proceedings of the
International Symposium on Software Testing and Analysis. 437–440.

[27] Y. Ledru, A. Petrenko, S. Boroday, and N. Mandran. 2012. Prioritizing test cases
with string distances. Automated Software Engineering 19, 1 (2012), 65–95.

[28] V. I. Levenshtein. 1966. Binary codes capable of correcting deletions, insertions,
and reversals. 10, 8 (1966), 707–710.

[29] M. Li, X0 Chen, X. Li, B. Ma, and P. MB Vitányi. 2004. The similarity metric. IEEE
transactions on Information Theory 50, 12 (2004), 3250–3264.

[30] M. Li and P. Vitányi. 1997. An introduction to Kolmogorov complexity and its
applications. Vol. 3. Citeseer.

[31] B. Miranda, E. Cruciani, R. Verdecchia, and A. Bertolino. 2018. FAST approaches
to scalable similarity-based test case prioritization. In International Conference on
Software Engineering (ICSE). 222–232.

[32] C. Pacheco and M. D Ernst. 2007. Randoop: feedback-directed random testing for
Java. In Companion to the SIGPLAN conference on Object-oriented programming
systems and applications companion. 815–816.

[33] A. Vargha andH. D. Delaney. 2000. A critique and improvement of the CL common
language effect size statistics of McGraw and Wong. Journal of Educational and
Behavioral Statistics 25, 2 (2000), 101–132.

[34] Markos Viggiato, Dale Paas, Chris Buzon, and Cor-Paul Bezemer. 2023. Identifying
similar test cases that are specified in natural language. Transactions on Software
Engineering 49, 3 (2023), 1027–1043.

[35] X. Wang, S. Jiang, P. Gao, X. Ju, R. Wang, and Y. Zhang. 2017. Cost-effective
testing based fault localization with distance based test-suite reduction. Science
China Information Sciences 60, 9 (2017), 1–15.

[36] X. Xie, P. Yin, and S. Chen. 2022. Boosting the Revealing of Detected Violations in
Deep Learning Testing: A Diversity-Guided Method. In International Conference
on Automated Software Engineering. 1–13.

[37] S. Yoo and M. Harman. 2012. Regression testing minimization, selection and
prioritization: a survey. Software testing, verification and reliability 22, 2 (2012),
67–120.

	Abstract
	1 Introduction
	2 Methodology
	2.1 Research questions
	2.2 Test suite generation
	2.3 Similarity metrics
	2.4 Reduction
	2.5 Analysis and evaluation

	3 Experimental setup
	4 Results
	4.1 String-based similarity reduction better on EvoSuite and Randoop (Pattern 1)
	4.2 String-based similarity reduction better on EvoSuite (Pattern 2)
	4.3 String-based similarity reduction better on Randoop (Pattern 3)
	4.4 Random reduction better on EvoSuite and Randoop (Pattern 4)
	4.5 Generate smaller test suite sizes

	5 Discussion
	5.1 Threats to validity

	6 Related work
	7 Conclusions and Future Work
	References

