
An Empirical Study to Determine if Mutants Can Effectively
Simulate Students’ Programming Mistakes to Increase Tutors’

Confidence in Autograding
Benjamin Simon Clegg

University of Sheffield

Phil McMinn

University of Sheffield

Gordon Fraser

University of Passau

ABSTRACT
Automated grading often requires automated test suites to identify

students’ faults. However, tests may not detect some faults, limiting

feedback, and providing inaccurate grades. This issue can be miti-

gated by first ensuring that tests can detect faults. Mutation analysis

is a technique that generates artificial faulty variants of a program

for this purpose, called mutants. Mutants that are not detected by

tests reveal their inadequacies, providing knowledge on how they

can be improved. By using mutants to improve test suites, tutors

can gain the confidence that: a) generated grades will not be biased

by unidentified faults, and b) students will receive appropriate feed-

back for their mistakes. Existing work has shown that mutants are

suitable substitutes for faults in real world software, but no work

has shown that this holds for students’ faults. In this paper, we

investigate whether mutants are capable of replicating mistakes

made by students. We conducted a quantitative study on 197 Java

classes written by students across three introductory programming

assignments, and mutants generated from the assignments’ model

solutions. We found that generated mutants capture the observed

faulty behaviour of students’ solutions. We also found that mutants

better assess test adequacy than code coverage in some cases. Our

results indicate that tutors can use mutants to identify and remedy

deficiencies in grading test suites.

CCS CONCEPTS
• Social and professional topics → CS1; • Software and its
engineering → Software testing and debugging.
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1 INTRODUCTION
Automated grading sees widespread use in programming courses,

as it allows for a growing number of students’ programs to be

assessed without a similar increase in the use of tutors’ time [9,

21]. This is especially important for Massive Open Online Courses

(MOOCs), where students far outnumber tutors, and can learn at

any time of the day [14, 22]. However, automated grading produces

its own challenges. Tutors must define how a grader determines a

solution’s correctness, often using a suite of automated tests. Test

suites can vary in quality; lower quality test suites may not detect

some faults. This is problematic for two reasons. First, students who

make mistakes that are not detected by tests will receive higher

grades than students whose mistakes are detected. Second, students

cannot receive feedback on undetected mistakes. The prevalence

of this issue may be exacerbated by students making mistakes at a

frequency that tutors may not anticipate [2]; tutors may be unaware

of their test suites’ inadequacies in revealing faults. Tutors may

be able to use students’ programs to find deficiencies in their test

suites, but may be limited by assessment deadlines, and awareness

of undetected faults is impossible without costly manual analysis.

Similarly, the instantaneous generation of grades and feedback

by online graders [15] can be a double edged sword; they benefit

students’ learning, but cannot be tuned using knowledge gained

from students’ solutions before they are assessed. In addition, new

programming taskswill not have existing students’ solutions for test

suite evaluation, so their adequacy cannot be determined directly.

Test goals can be used in place of real faults to estimate a test

suite’s adequacy. A test suite capable of achieving an entire set of

test goals is more likely to reveal real faults. One popular technique

to construct test goals is code coverage, where each line of a pro-

gram is a test goal, which a test achieves by executing. If some lines

are not executed by tests, faults cannot be revealed within them;

failure to achieve test goals reflects lower test adequacy. However,

it is possible for a test to execute code without checking its effect.

As such, faults that do not cause an error simply by being exe-

cuted may not be detected; covering every line does not guarantee

test adequacy. An alternate technique is mutation analysis, which

involves the generation of multiple artificial faulty variants of a

program, called mutants, to use as test goals. If a test suite fails on

a mutant, it detects it, achieving a test goal. Mutation analysis has

been shown to be an effective means of determining the quality of

a test suite [10, 12]. Using mutants to automatically identify and

address deficiencies in a grading test suite would resolve the issues

caused by undetected faults, without needing to manually analyse

students’ programs. This would provide a tutor with a greater de-

gree of confidence that they will not have to make corrections to

their test suite either under an encroaching deadline in traditional
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assessment, or after students’ faulty solutions have been accepted in

the case of online graders. However, if real faults behave differently

to mutants, mutation analysis may not be an appropriate means to

measure test adequacy; some tests may pass on every mutant, but

fail for some real faults. It is therefore important to evaluate how

well mutants capture the behaviour of real faults.

Previous studies have shown that mutants are a valid substitute

for real faults in software projects when assessing a test suite’s

quality [10, 12]. This is performed by measuring how many real

faults are coupled to simple mutants, which occurs when a test that

fails on a real fault also fails on a set of mutants. By showing that

real faults are coupled to a set of mutants, there is evidence that

a test suite that detects all mutants should also detect real faults.

Such a study has not yet been conducted to verify that mutants can

be used to simulate mistakes present in students’ programs.

In this paper, we aim to remedy this by presenting the results of

our empirical study. We used faulty students’ solution programs

for real introductory programming tasks in place of faults made by

experienced programmers. We found that most detected students’

faults are coupled to mutants that were generated by existing muta-

tion tools. This indicates that available tools generate mutants that

can simulate students’ faults, since they cause the same test fail-

ures. Using sampled test suites, we identified a positive correlation

between the proportion of detected mutants and the detection rate

of faulty students’ solutions. We also compared the performance of

mutants to another adequacy measure, code coverage. We found

that mutant detection and code coverage are similarly correlated

to real fault detection, though mutants and real faults can remain

undetected even if 100% code coverage is achieved, which only re-

quires few, weak tests in small programming tasks. Mutants provide

additional information on how to improve test suites when cov-

erage cannot; tutors can gain more confidence in their test suites’

adequacies by using mutants in addition to code coverage metrics.

2 MUTATION ANALYSIS
Mutation analysis involves the generation of artificial faults from

a correct version of a program, with the primary goal of inform-

ing the improvement of software tests [10]. These artificial faults,

mutants, are generated by applying a set of rules, called mutation
operators, to the original program. For example, the arithmetic op-
erator replacement mutation operator could replace the statement

a = b + 1 with a = b - 1. A typical application of mutation anal-

ysis is to determine how effectively a suite of automated software

tests can detect faults. By executing a test suite on every mutant, the

proportion of mutants that it detects can be calculated. This is re-

ferred to as the mutation score, where 0% indicates that no mutants

are detected, and 100% shows that every mutant is detected.

Educational Applications: The principal application of mutation

analysis is to evaluate the adequacy of a test suite’s capability

to detect faults [10]. A test suite that detects more mutants (i.e.

has a high mutation score) should also detect more real faults, as

shown by Just et al. [12] High mutation scores therefore provide

testers with more confidence in the fault detection capabilities of

test suites. Similarly, high mutation scores can provide tutors with

more confidence that their grading test suites will identify students’

faults, even when no existing students’ faults are available.

There is some potential for mutation analysis to enhance the

generation of feedback. There are several existing approaches to

automated feedback generation [16, 19, 20]. Such approaches are

typically data dependent, and often require a set of previously

observed faults. Mutation analysis could be used to increase the

number of observable faults, potentially improving the quality of

the resulting feedback. Additionally, if a new programming task is

defined, no existing students’ faults will be available. In these cases,

generated mutants could be used in their place. Mutation analysis

can also be used in fault localisation [17, 18]. By executing tests on

mutants with known locations, it is possible to generate a model

to estimate the locations of other faults based on their test results.

Providing students with the estimated locations of their faults may

help them to improve their code, serving as effective feedback.

Coupling:Mutation analysis relies on the assumption that these

generated mutants can replicate the behaviour of real faults, despite

typically being less complex. This is supported by the coupling effect,
first defined by DeMillo et al. [5]; if a test suite is sensitive enough

to detect simple faults, it must also be capable of detecting more

complex faults. As such, a real fault is said to be coupled to a set of

mutants if the tests that detect the real fault also detect the mutants.

Just et al. have shown that the majority of real faults from five open

source programs couple to mutants, and that there is a correlation

between real fault detection and mutation score [12]. However, this

has not yet been demonstrated for students’ faults. As students’

faults may differ significantly from those made by experienced pro-

grammers, it is important to demonstrate that mutants are capable

of simulating them before using mutants to inform the development

of grading test suites.

Chen et al. have proposed another coupling measure, called

probabilistic coupling [3], which derives an estimated probability, 𝑝 ,

that a real fault, 𝑓 , is detected given that a test goal, 𝑔𝑖 , is satisfied

(e.g. a mutant is detected), or 𝑝 = P(detect 𝑓 | 𝑔𝑖 is achieved). As
such, probabilistic coupling offers some insight into how well a

test goal captures a test suite’s adequacy in revealing a real fault.

Using the maximum probability for a set of test goals for the real

fault allows this insight to be gained without knowledge of every

possible real fault, and without an impact from irrelevant test goals

(e.g. mutants that are not covered by a test). While conventional

coupling shows that a test suite that detects real faults also detects

mutants, probabilistic coupling essentially reveals the inverse; a

test suite that can detect mutants is also able to detect a real fault.

3 EXPERIMENT PROCEDURE
We conducted an empirical study to investigate the following re-

search questions:

• RQ1: Do students’ faults couple to mutants?
• RQ2: Is there a relationship between the detection of mutants
and students’ faults?

• RQ3: How do mutants and code coverage compare in evaluat-
ing test adequacy?

Subject Programs: In this study, we used solutions to end of year

programming assignments that were written by students enrolled in

a first year undergraduate introductory Java programming course.

These solutions were collected across three different cohorts of



Table 1: Subject Classes

Assignment Class
Student

Sltns. Mutants Tests LoC

Major Pit Manual EvoSuite

Chess Board 45 57 204 18 14 25

Queen 40 94 386 9 2 41

Wine Cellar 36 512 1715 16 15 315

Fitness DataLoader 38 44 195 7 1 71

Questions 38 199 808 20 30 263

students, with each cohort completing a different assignment. We

selected five subject classes from these three assignments to use in

our study, and collected students’ solution classes for each. Table 1

shows the number of compilable solutions we used for each subject

class. We also used a correct model solution for each class in our

study. Their lines of code counts are shown in Table 1.

The Chess assignment required students to implement a game of

chess. The Board class stores the state of the chess board, including
the positions of pieces such as Queen, each of which uses this state

to evaluate which moves they can make.

Wine tasked students to write a program that processed a set of

CSV files containing various properties of different wines. Cellar
reads and stores the property values for each wine, and allows for

these values to be queried via various methods.

Fitness called for students to implement a system that can read

structured data files containing readings of several different fitness

trackers. DataLoader parses the data files and constructs a data

structure using several provided classes. Questions is the imple-

mentation of 20 public methods that each return an answer for a

pre-defined question about the data, such as “what is the average

heart rate across the whole dataset?”

We were not able to compile some of the students’ solutions,

usually due to improper packaging or simple syntax errors. We

attempted to repair such simple issues for each of these solutions,

and removed any solutions which required a more complex fix, or

where the intended functionality was unclear. This provided us

with additional testable, faulty solutions. In total, we collected 236

individual solution classes, of which 197 were compilable.

Tests: For three classes, Cellar, DataLoader, and Questions, we
used the original grading test suites in our analysis. These test

suites were not provided to students during the assessment. For

Board and Queen, we did not have access to the grading test suites,

so instead we used our own manually written test suites, which

both achieve 100% coverage on their respective model solutions.

In order to increase variation in test cases, we expanded these

test suites using automated test generation. For this we used Evo-

Suite [6], a search-based test generation tool, to generate tests from

the model solution of each subject class. EvoSuite has been shown

to generate test suites which are capable of revealing real world

faults [1]. However, since the model solutions implement vague

aspects of their specifications, tests generated from the model solu-

tions may test for unspecified functionality. We manually analysed

individual tests and solutions and found that some students’ solu-

tions fail due to deviations from the model solution rather than ac-

tual faults or specification violations, producing false positives. For

example, a model solution would throw a NullPointerException
when a method is called with a parameter of null. A generated test

that checks for this behaviour would incorrectly fail for students’

solutions which defensively handled null inputs, punishing such
good practices. Of the 126 total generated tests, 64 produced such

false positives, which we removed. The remaining tests are shown

in Table 1. We also found that no students’ solutions passed every

test case. We confirmed this by manually analysing every solution;

each contained at least one fault which caused a test to fail.

Mutants: We generated mutants using two Java mutation tools;

Pit 1.5.2 [4] and Major 1.3.4 [11, 13]. We executed both mutation

tools on the model solutions of each of our subject classes, with all

mutation operators enabled. In total, Pit implements 29 operators,

and Major implements 9. Major 1.3.4 only supports the mutation

of classes that are compatible with Java 1.7. However, some of

the model solutions use features of newer Java versions, such as

streams. Prior to running Major, we modified these solutions to

use only Java 1.7 compatible features, while remaining functionally

identical. We also created a third set of mutants by combining the

mutants generated by Pit and Major. We refer to this combined set

as Both in our results for RQ2. We did not use this combined set for

RQ1, since if a student’s solution is coupled to mutants generated

by one tool it must be coupled to mutants from both.

Execution:We executed each test on all students’ solutions and

mutants, and recorded whether the test passes or fails. We treated

test errors as failures; for example if the test exceeds a time budget,

it indicates that the class under test will not halt due to an endless

loop. For each subject class, we also executed all of its tests on the

model solution, to ensure that the tests are valid. We confirmed that

all of our unit tests were valid. For the model solutions, we also used

JaCoCo [8] to record the lines covered by each test, allowing us to

compare the use of code coverage metrics and mutation scores.

Coupling: If a set of simple faults are detected by a test that also

detects a complex fault, the complex fault is coupled to the simple

faults. Existing work on coupling uses individual known faults to

evaluate the coupling effect [12]. However, it is possible (and likely)

that faulty students’ solutions contain multiple complex faults;

students’ solutions cannot be considered as individual faults. It is

therefore not sufficient for only one test that fails on a student’s

solution to also fail on a mutant, as this would only show that

the solution contains a coupled fault; it may also contain other

uncoupled faults. As such, we performed our coupling analysis on

each individual failing test of each solution. For each solution, we

identified the failing tests. For each failing test, we determined if

the solution is coupled with any mutants; i.e. the test also detects

at least one mutant. If the solution is coupled with any mutants

for this test, we defined the test as a coupling test. Otherwise, we

defined it as an uncoupling test.

We then calculated the coupling ratio for each solution, the pro-

portion of coupling tests to failing tests for the solution. This allows

us to determine to what extent a solution’s faults are coupled to

the available mutants. If a solution has a coupling ratio of > 0, it

has at least one coupling test; it is partially coupled to the mutants,

as it has at least one fault that is coupled to at least one mutant. If

all of a solution’s tests either pass or are coupling (coupling ratio

= 1), then it is absolutely coupled to a set of mutants; every fault

in the solution is coupled to at least one mutant. In our results



(Table 2), we show the mean coupling ratio for each subject class.

We found that for some subject classes, some generated mutants

failed on every test. For example, some mutants would cause an

exception to be thrown when calling a class’s constructor, causing

any executed tests to immediately fail. We removed these trivially

detected mutants prior to running our coupling analysis, since they

would introduce bias by being coupled to every student’s fault.

We also used probabilistic coupling to evaluate the test suite

adequacy estimation performance of mutation analysis and code

coverage. We grouped test goals into sets: Major’s mutants, Pit’s

mutants, and covered lines of the model solution. We then com-

puted the detection probability for each test goal and each student’s

solution, by selecting the tests that achieve a test goal (i.e detect

a mutant or cover a line) and calculating the proportion of these

that fail on the student’s solution. Where no tests achieved a test

goal, we used a probability of zero. We then found the maximum

probability of a test goal in each set for every student’s solution.

Correlation: By finding evidence of a relationship between the

detection rates of mutants and students’ faults, we can assert that

mutation analysis is an effective measure of test adequacy. As such,

we investigated their correlation to one another. Since we only had

one test suite for each subject class, we generated test suites which

are subsets of the main test suite for each class. We controlled for

test suite size, targeting a consistent number of test suites for each

possible size from two tests to 70% of the total number of tests.

For each suite size, we generated a set of test suites by randomly

sampling from the complete set of tests for the class. We discarded

duplicate test suites. Our generation strategy aimed to generate

80 randomly sampled suites for each class, split evenly between

each possible test suite size. We repeated this process 30 times,

generating 30 sets of ∼80 suites for every class. For Queen and

DataLoader, some suite sizes cannot reach the target number of

tests. As such, these subjects have fewer test suites overall.

By evaluating the results of tests in each generated suite on stu-

dents’ solutions and mutants, we were able to determine how many

mutants and faulty students’ solutions are detected by each suite.

This allows us to calculate the mutation scores and real fault detec-

tion rate for each suite. Since the solutions may contain multiple

faults, this real fault detection rate is truly the proportion of faulty

students’ solutions that have been detected. However, Gopinath et

al. note that if tests which detect many mutants are highly likely

to detect real faults, the fact that the mutants do not entirely re-

semble real faults is irrelevant [7]. As such, if we identify a positive

correlation between mutation score and the detection of faulty stu-

dents’ solutions, we can demonstrate the ability of simple mutants

to simulate students’ faults, despite their lower complexity.

We also used the model solution’s line coverage of each test to

determine the coverage ratio for each generated suite. We only con-

sider the model solution’s coverage to simulate a tutor developing

a test suite before any students’ solutions have been collected.

Since we found that the observations for each repetition were

not normally distributed, we required a non-parametric measure of

correlation. As such, we computed Spearman’s correlation between

the mutation score of each group of mutants (Pit, Major, and Both)

and the real fault detection rate. We also calculated the correlation

between the coverage ratio and the real fault detection rate.

Table 2: Coupling Results

Class Coupling Ratio
% Students’ Solutions

Fail All Tests % Solutions Pass All Tests

Major Pit Students Major Pit

Board 1 1 6.98 0 7.27 14

Queen 1 1 0 0 4.26 16.6

Cellar 0.99 0.99 8.57 0 52.1 45

DataLoader 1 1 0 0 13.2 23.6

Questions 1 1 0 0 13.6 16.2

Unlike our analysis of the coupling effect, we did not remove

mutants that failed on every test prior to evaluating the correlation

of mutation score to real fault detection. We chose to include such

mutants as this would better represent how a tutor would use a

mutation tool to evaluate their grading test suites; determining how

many mutants are detected by a test suites, and identifying those

which are not. All of the students’ solutions are detected by at least

one test; no undetectable solutions will skew the measurement of

the real faulty solution detection rate.

Threats to Validity:We only used the solutions of students who

volunteered to participate in the study. As such, the collected data

may suffer from a degree of self-selection bias. It is possible that

other students’ solutions may contain different faults. Similarly,

the faults present in these solutions may differ to those in other

introductory Java programming courses at other institutions, or

from those in other learning environments (e.g. MOOCs). This

limits generalisability.

It is also possible that our students’ solutions may contain addi-

tional faults that are not detected by any of the unit tests that we

used in this study. This could entail that there are some unidenti-

fied faults that are not coupled with any mutants. We attempted to

mitigate this issue by using EvoSuite to generate additional tests,

but there is still no guarantee that every fault was detected. It may

be possible to manually analyse every individual solution for every

fault, but such an approach is out of scope for this paper.

4 RESULTS
4.1 RQ1: Do students’ faults couple to mutants?
Coupling: Table 2 shows the results of our coupling analysis. We

find that most subjects have a coupling ratio of one; each solution’s

failing tests also fail on at least one mutant. This reveals that these

solutions are completely coupled to a set of generated mutants. We

however identify that some students’ faults for Cellar are not fully
coupled by the mutants of either tool. We find that two tests fail

for five of the students’ solutions, but do not fail for any mutants.

Upon inspecting the output of these tests for these five solutions,

we identify two causes for the test failures. One of these causes is

that some solutions use the default scope for the class’s constructor,

instead of public, which causes the constructor of the super class

to be used instead. The other cause is that some solutions modify a

reference to a list rather than a copy of the list, causing some data to

be incorrectly changed. These faults are therefore not simulated by

mutants, but mutation operators could be implemented to simulate

them. With the exception of these faults, every detected fault is

coupled to at least one mutant. Solutions are coupled to mutants
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Figure 1: Maximum solution detection probabilities of every
student’s solution for each set of test goals.
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(b) Pit’s mutants

Figure 2: Observations of coupled mutants and failing tests
for each student’s solution. (Points share the same opacity.)

generated by both Pit and Major. This suggests that existing muta-

tion operators of both tools are typically capable of simulating the

behaviour of students’ faults in this dataset.

Probabilistic Coupling: Figure 1 shows the results of our proba-
bilistic coupling analysis. We observe that four of the five subjects

typically have maximum fault detection probabilities of one. This

indicates that mutants can behave similarly to real faults, some

mutants fully capture the behaviour of faulty students’ solutions.

However, we also identify that Queen has maximum probabilities

of less than one. In this case, mutants can cause more tests to fail

than real faults do. As such, in some cases a test suite may detect

every mutant, but may not be able to distinguish between solutions

with slightly different faults.

Coupled Mutants vs. Failing Tests: Figure 2 shows the propor-
tion of mutants that each student’s solution is coupled to with

respect to all tests that fail on the student’s solution, and the pro-

portion of tests that fail on each student’s solution. We find that

there is typically a positive relationship between the test failure

rate of students’ solutions and the quantity of mutants that they

are coupled to. This indicates that students’ solutions will be cou-

pled to more mutants overall if they have more severe faults or a

greater quantity of faults. Cellar has less of a clear positive rela-
tionship between coupling and failing tests due to uncoupled faults,

particularly evident for solutions where every test fails.

Table 3: Mean Spearman’s correlations (𝑟𝑠 ) to the detection
rate of faulty students’ solutions. 𝑝 = p-value.

Class Mutation Score Line Coverage Ratio

Both Major Pit

𝑟𝑠 𝑝 𝑟𝑠 𝑝 𝑟𝑠 𝑝 𝑟𝑠 𝑝

Board 0.61 <0.01 0.54 <0.01 0.63 <0.01 0.65 <0.01

Queen 0.47 <0.01 0.46 <0.01 0.46 <0.01 0.26 0.08

Cellar 0.75 <0.01 0.77 <0.01 0.74 <0.01 0.77 <0.01

DataLoader 0.29 <0.05 0.21 0.12 0.31 <0.05 0.49 <0.01

Questions 0.81 <0.01 0.81 <0.01 0.81 <0.01 0.84 <0.01

Mean 0.58 <0.01 0.56 <0.05 0.59 <0.01 0.61 <0.05

We observe that there are typically a relatively high number of

solutions with few test failures. This suggests that students often

make mistakes which cause few tests to fail. The impact of this

lower number of faults on mutant coupling varies between subject

classes. Questions has a very low proportion of mutants coupled

to students’ solutions with few failing tests. This class must have a

relatively high degree of isolation between faults; making a mistake

in one section of the program does not have greatly detrimental

effect on the rest of the code. Comparatively, DataLoader has a

higher minimum proportion of mutants coupled to faulty solutions.

This is likely due to this class depending on reading data from

input files; a fault in this functionality will impact the rest of the

class, causing multiple tests to fail. As such, programs’ architectures

influence how students’ solutions couple to mutants.

For Queen, we observe a separation in the number of coupled

mutants, depending on whether one or multiple tests fail on a

student’s solution. Where students’ solutions fail only one test, the

fact that this is often a test that fails on few mutants suggests that

such tests only fail for more subtle faults. Such tests may only fail

under specific conditions. Comparatively, where students’ solutions

fail multiple tests, these tests also fail on disproportionately many

mutants; mutants are detected by them easily. As such, despite the

students’ faults being coupled to the mutants, they may still behave

differently regarding how regularly they fail in some programs.

This is a limitation of the coupling effect. It is therefore necessary

to also consider the relationship between the detection frequency

of mutants and students’ solutions.

RQ1: Students’ faulty solutions typically couple to mutants
generated by existing mutation tools.

4.2 RQ2: Is there a relationship between the
detection of mutants and students’ faults?

Table 3 shows the Spearman’s correlations between faulty student

solution detection rates and mutation scores for our generated test

suites. We observe mean correlations (𝑟𝑠 ) of 0.58, 0.56, and 0.59

for mutants produced by both tools, Major, and Pit, respectively.

Since these correlations are not perfect, mutation score does not

necessarily predict the real fault detection rate. However, we find

that there is an overall positive correlation between the mutation

score and real fault detection rates of our sampled test suites. This

indicates that there is a relationship between the detection of gen-

erated mutants and real students’ solutions. As such, a test suite

that detects a majority of mutants is likely to also detect real faulty
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Figure 3: Correlations to detection rate of faulty students’
solutions for each test suite, across 30 repetitions.

students’ solutions. This suggests that failing mutants can be used

to inform the improvement of a test suite.

The correlations vary across the subject classes for all three

mutant groups. In particular, the correlation is much lower for

DataLoader, and it is the only subject where some correlations are

not statistically significant; Major’s mutants only achieve a corre-

lation of 0.21 on this subject, with a p-value of 0.12. Upon closer

inspection, we identify three tests that fail on every student’s solu-

tion for this subject. Two of these tests pass on approximately half

of all mutants, and one passes on most of the mutants. Any suite

that includes these tests will therefore have a faulty solution detec-

tion rate of 100%, but could have a low mutation score, depending

on how effectively the other tests can detect mutants.

RQ2: There is a positive correlation between mutation score and
the detection rate of faulty students’ solutions.

4.3 RQ3: How do mutants and code coverage
compare in evaluating test adequacy?

Since Pit’s mutants have the highest correlation overall, and each

of their correlations are statistically significant, we only use Pit’s

mutation scores for this comparison. Figure 3 shows the corre-

lations to the faulty solution detection rate for the line coverage

ratios and Pit’s mutation scores of our randomly sampled test suites.

The means of these correlations are also shown in Table 3. Figure 4

shows the observed values for each of the properties.

We find that, overall, the correlation for mutation score is similar

to that of coverage, which is also true for three of the five subjects.

However, for Queen and DataLoader, their correlations differ con-
siderably. Coverage has a low correlation for Queen (0.26), and is

not statistically significant. This class’s model solution is very small,

so most of the the sampled test suites achieve 100% coverage. As

such, most observed test suites have the same coverage level, caus-

ing this low correlation. Comparatively, Pit’s mutation score has a

low correlation for DataLoader (0.31), due to the issues discussed

in Section 4.2, while coverage has a moderate positive correlation.

We observe that coverage and mutation score have similar over-

all positive correlations to the real fault detection rate. However,

mutation score’s correlation is still relatively high when coverage’s

is low due to 100% coverage being reached. This can be observed in

Figure 4, where the generated suites for Queen often achieve 100%

coverage, but do not always detect all of the real faulty solutions,

and never detect all of Pit’s mutants. The utility of coverage is ex-

hausted once 100% coverage is reached, but mutants can still guide
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Figure 4: Observed propertymeasurements for each test suite,
across 30 repetitions.

improvements to a test suite. This is also supported by mutation

score’s higher probabilities in Figure 1; tests that detect mutants

are more likely to fail for students’ faults than tests that simply

cover lines of code. As such, mutants offer a clear benefit in the

development of grading test suites.

RQ3: Mutation score and code coverage have similar positive
correlations to the detection rate of faulty students’ solutions, but

mutants still reveal deficiencies when coverage cannot.

5 RECOMMENDATION TO TUTORS
We observe that students’ faulty solutions are often coupled to mu-

tants generated by existing tools. We also find a positive correlation

between mutation score and the detection rate of faulty solutions,

even when code coverage cannot yield additional information on

test adequacy, such as when all lines are covered by a few tests

in small programming tasks. As such, we recommend that tutors

use artificial mutants in addition to code coverage when develop-

ing grading test suites. First, a suite should achieve 100% coverage

on a model solution; uncovered code may contain faults which

no test would be able to detect. Coverage in students’ solutions

may not directly reflect the model solution’s 100% coverage, but

any uncovered code in their solutions would either be unreachable

or implement undefined behaviour. Once 100% coverage has been

obtained, tutors should generate mutants using an off the shelf

mutation tool, such as Pit, and run the test suite on them. Unde-

tected mutants reveal deficiencies in the test suite, and can be used

to inform improvements, via the nature of their faults and their

locations, which new tests should exercise more thoroughly.

6 CONCLUSION & FUTUREWORK
In this paper, we have demonstrated that artificial mutants gener-

ated by existing tools can simulate students’ faults, and recommend

that tutors use them in addition to code coverage metrics to ensure

that their grading test suites identify students’ mistakes. However,

more research must be conducted before the key limitations of

automated grading are addressed. Detecting mutants does not guar-

antee that a test suite is fair; redundant tests that exercise the same

functionality may introduce bias in a test suite. Existing mutation

operators only consider the functionality of programs, but do not

consider deficiencies in other aspects of automated grading, such as

style checking. Tests must also provide feedback to guide students’

growth; merely informing them of failures is not sufficient.
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