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ABSTRACT
Many legacy financial applications exist as a collection of formulas

implemented in spreadsheets. Migration of these spreadsheets to a

full-fledged system, written in a language such as Java, is an error-

prone process. While small differences in the outputs of numerical

calculations from the two systems are inevitable and tolerable, large

discrepancies can have serious financial implications. Such discrep-

ancies are likely due to faults in the migrated implementation, and

are referred to as deviation failures. In this paper, we present a

search-based technique that seeks to reveal deviation failures auto-

matically. We evaluate different variants of this approach on two

financial applications involving 40 formulas. These applications

were produced by SEB Life & Pension Holding AB, who migrated

their Microsoft Excel spreadsheets to a Java application. While

traditional random and branch coverage-based test generation tech-

niques were only able to detect approximately 25% and 32% of

known faults in the migrated code respectively, our search-based

approach detected up to 70% of faults with the same test genera-

tion budget. Without restriction of the search budget, up to 90%

of known deviation failures were detected. In addition, three pre-

viously unknown faults were detected by this method that were

confirmed by SEB experts.
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• Software and its engineering → Software testing and de-
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1 INTRODUCTION
Spreadsheets are traditionally used in financial corporations to per-

form complex calculations. Demands on performance, precision,

support for automation, conformance with other in-house tools

and frameworks, changes to a corporation’s IT’s strategic plans,

and many other reasons may force a corporation to migrate from

spreadsheets to more generic solutions such as web-based services

or applications. The reimplementation of a legacy spreadsheet ap-

plication may, however, introduce faults. If such faults cause the

outputs of the calculations performed by the reimplementation to

deviate from the outputs of the calculations of the original spread-

sheet — i.e., a deviation failure occurs — then serious financial

implications may be at stake.

Testing is an important activity for identifying such issues [22],

but finding specific inputs that reveal deviation failures is a chal-

lenging task. In particular, financial calculations may involve small

and inconsequential deviations in the outputs due to the precision

differences of arithmetic operations in different languages. Compa-

nies define formula-specific thresholds of tolerable deviations (i.e.,

error margins), and as such the challenge lies in finding inputs that

produce deviations larger than the thresholds specified.

Automation is often used to support testers in challenging testing

activities. Techniques such as random testing [9, 19, 20], search-

based testing [1, 6, 12, 16], or those based on symbolic execution [3,

7, 8, 25] can effectively generate test inputs automatically. However,

a general limitation of automated test generation is that it relies on

the existence of a test oracle [2] that can decide whether the system

is behaving correctly for an automatically generated test input. This

is particularly challenging for complex applications such as those

in the financial domain, where it is difficult to determine what the

correct output should be for a specific input. However, in the case

of the reimplementation of legacy spreadsheet programs, the legacy

spreadsheets specify the expected behavior, and can thereby serve

as test oracles, making automated test generation possible.

In this paper, we introduce a new automated search-based test

generation approach that aims to find tests that maximize the devia-

tion failures between a given spreadsheet and its reimplementation.

Search-based approaches [18] use techniques such as genetic algo-

rithms to transform software engineering problems into optimiza-

tion problems, where the objective of the test generation process

is encoded by a fitness function that guides the search. The main

fitness function in our scenario is the difference between a root

(top level) formula’s return value in Excel, compared to its Java

implementation. We refer to this approach as the Output-based

Search Technique (OST). To improve fault finding, and to help lo-

calize faults, we also propose a novel spreadsheet-based technique,

https://doi.org/10.1145/3213846.3213861
https://doi.org/10.1145/3213846.3213861
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Figure 1: The Excel formula hierarchy for Invested Premium
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referred to as the Spreadsheet-based Search Technique (SST), which

recursively focuses the search on lower-level sub-formulas.

We evaluate these techniques using a total of 40 formulas with

known and previously unknown faults from two products devel-

oped by SEB Life & Pension Holding AB. The first product, a fi-

nancial calculator engine known as APP1, is a newly implemented

life insurance and pension products calculator engine written in

approximately 80,000 lines of Java code. The second product, called

APP2, is a pension funds calculator [13], also developed in Java,

and consists of approximately 170,000 lines of code. Both were

developed to replace legacy Excel spreadsheet calculators.

The original motivation for our research came from SEB re-

porting that a substantial amount of manual effort that had to be

invested to identify deviation failures in the Java reimplementations.

This was because deviation failures were typically missed by the

developer-written unit test cases, and could only be detected by a

series of manual acceptance tests that were expensive to construct

and conducted by business analysts.

The contributions of this paper are therefore as follows:

(1) A new search-based test generation approach, the Output-

based Search Technique (OST), which aims to detect devi-

ation failures using a fitness function that compares the

outputs of original spreadsheet formulas against their Java

reimplementations.

(2) A modified fitness function that utilizes a spreadsheet’s

nested formula structure, implemented into an approach

called the Spreadsheet-based Search Technique (SST). SST

aims to improve the detection of deviation failures and assist

in subsequent fault localization.

(3) The evaluation of the proposed OST and SST approaches us-

ing 40 complex formulas with real deviation failures (known

and previously unknown) in two commercial financial appli-

cations. As part of this evaluation we compare the success

rates and actual deviation values of our approaches with

automatically generated test cases for branch coverage of

the Java code, randomly generated test cases, as well as man-

ual, developer-written test cases. In addition, all reported

deviations were double checked and confirmed SEB experts.

Our empirical studies with APP1 show that our top-level search-

based approach (OST) correctly revealed 47% of the deviation fail-

ures, which represents a substantial 22% improvement over a base-

line of random testing and 10% over test cases optimized for branch

public Double investedPremium(AppObj obj , Double targetAmount ,
String strategy) {

premium = Util.round(paidInsurance(obj) - (adminFees(strategy) +
riskFees(targetAmount)), 100);

return premium;
}

Listing 1: Java reimplementation of the “Invested Premium”
formula (F0)

public Double paidInsurance(AppObj obj) {
Double investmentReturnRate =

Double.valueOf(rateProperties("lv.return.rate"));
paidInsurance = futureMonthlyContrib(obj.getCurrentAmount (),

obj.getMonthlyPayments (), investmentReturnRate ,
obj.getRetirementTime (), obj.getSavingTime (),
obj.getFutureAssets ()) +
currentAssets(obj.getPensionAssets ());

return paidInsurance;
}

Listing 2: Java reimplementation of the “Paid Insurance”
formula (F1)

public Double futureMonthlyContrib(Double currentAmount ,
Double monthlyPayments , Double investmentReturnRate ,
Integer retirementTime , Integer savingTime ,
Double futureAssets) {

monthlyContrib = (currenAmount + monthlyPayment) *
((( Math.pow((1 + (investmentReturnRate / 12)),
(retirementTime - savingTime))) - 1)) /
(investmentReturnRate / 12) + futureAssets
* Math.pow((1 +( investmentReturnRate / 12)),
(retirementTime - savingTime));

return monthlyContrib;
}

Listing 3: Java reimplementation of the “Monthly Contribution”
formula (F1.1)

coverage. Using our advanced SST method, a further 23% of previ-

ously known deviation failures are detected. Finally, relaxing time

constraints and increasing the search budget led to 90% of known

deviation failures being detected. Applying this approach on APP2,
we also managed to detect three new deviation failures that were

not previously detected by the manual test cases.

2 MOTIVATING EXAMPLE
To provide a better understanding of the specifics of spreadsheet-

based financial applications and the challenges faced during their

reimplementation, we present an anonymized example. Figure 1

shows the hierarchy of the a legacy Excel formula to calculate

“Invested Premium” in our first case study (“APP1-f1” in our evalu-

ation of Section 4).

In Formula F0, P is the “Invested Premium”, I is the “Paid Insur-

ance”, A represents the “Administrative Fees”, while R corresponds

to the “Risk Fees”. The formula rounds to the nearest multiple of 100,

via the “MROUND” function. Listing 1 shows the reimplementation

of the formula in Java.

P = MROUND(I − (A + R), 100) (F0)

In the next formula, F1, I is the “Paid Insurance”,M is the “Monthly

Future Contribution”, while S represents the “Current Assets”. F1

computesM as a subformlua of F0. Listing 2 shows its reimplemen-

tation in Java.

I = M + S (F1)
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@Test(timeout = 4000)
public void test1() throws Throwable {

Pension pension0 = new Pension ();
AppObj appObj0 = new AppObj ();
Double double0 = new Double (30.0);
appObj0.setCurrentAmount(double0);
appObj0.setPensionAssets(double0);
Double double1 = pension0.investedPremium(appObj0 , 0.0, "S1");

}

Listing 4: Sample test case generated with the goal of obtaining
branch coverage

@Test(timeout = 4000)
public void test3() throws Throwable {

Pension pension0 = new Pension ();
AppObj appObj0 = new AppObj ();
Double double0 = new Double (10.0);
appObj0.setCurrentAmount(double0);
Double double1 = new Double (25.0);
appObj0.setMonthlyPayments(double1);
Double double2 = new Double (11.0);
appObj0.setSavingTime(double2);
Double double3 = new Double (100.0);
appObj0.setFutureAssets(double3);
Double double4 = new Double (40.0);
appObj0.setRetirementTime(double4);
Double double5 = pension0.investedPremium(appObj0 , 838.0, "S1");

}

Listing 5: Sample test case generated by our proposed search
technique

Formula F1.1 calculates the value of an asset at specific future

date based on its growth interest rate over a period of time.

M = FV (rate, nper, pmt, pv, type) (F1.1)

Here, FV (“Future Value”) represents monthly future contribu-

tions, rate is the interest rate per period, nper is the total number of

payment periods, pmt is the payment made in each period, pv is the
present value, and type indicates due payments. Listing 3 presents

the reimplementation of this formula in Java. In the reimplemented

code, rate is investmentReturnRate/12, which is the monthly in-

vestment return rate, nper is retirementTime−savingTime, which
is the remaining months until retirement, pmt is currentAmount+
monthlyPayment, which is the current contributed amount plus the

upcoming monthly contribution and pv is futureAssets, which
is based on the value of future assets. The Java reimplementation

of this formula contains a fault — the reference to the variable

futureAssets (shown in bold in Listing 3) is missing in the faulty

Java reimplementation. This causes it to produce a different out-

put compared to its Excel implementation. Thorough testing may

reveal this problem. However, finding a specific input that reveals

the failure is non-trivial. It is not enough to just execute the faulty

code, since the effect of the fault may not propagate to the output

and produce a failure.

For instance, Listing 4 presents the test case generated auto-

matically as part of a branch-coverage optimized test suite by the

EvoSuite tool [5]. This test case executes (covers) the fault, but

does not reveal a failure. The calculated Invested Premium (P) in
both programs is 1000, and therefore, based on the generated test

data, the difference between the output of the legacy Excel formula

and its Java reimplementation of Invested Premium (P) is 0.
Listing 5 shows a test case generated by our approach. This

test case results in a difference in the output of the Invested Pre-
mium (P) in the Excel and Java programs as presented in Table

1 (∆ = |1100 − 1200| = 100). The difference results from the the

Table 1: Invested Premium calculation using generated tests
case in Listing 5.

Variables P I A R S M

Excel 1100 1604.8 500 0 400 1204.9

Java 1200 1658.8 500 0 400 1258.8

faulty reimplementation of Invested Premium (P) in one of the sub-

formulas (i.e., the Monthly Contribution calculation, Formula F1.1)

and is (∆ = |1204 − 1258| = 54).

In this paper, we aim to automatically generate test cases that un-

cover such differences. We propose a two search-based approaches.

The first uses a fitness function that, in this example, would be

the delta between the results of the the “root” calculation (Invested
Premium (P)) in Excel and Java. The second uses a fitness function

that focuses on the delta between lower level sub-formulas. The

next section introduces the proposed approaches in detail.

3 SEARCH-BASED APPROACHES FOR
DEVIATION FAILURE DETECTION

In this section, we describe two search-based approaches that aim

to generate tests that maximize the deviation between an Excel

formula and its Java reimplementation. Our techniques focus on

one Excel formula and its Java implementation at a time, and the

tests are generated as JUnit tests for the Java implementation.

3.1 Deviation Failures
Deviation failures are failures where two alternative implementa-

tions produce different outputs. In financial applications, like many

other domains, not all deviations are immediately considered as a

failure, that is, some degree of variation in the outputs is tolerable.

These tolerable variations are specified in the form of threshold lim-

its, or error margins, defined for each formula and its sub-formulas.

These error margins are business-specific and are inputs for the

automated techniques. For instance, in our study, we were provided

with a list of error margins, from the company expert. Consequently,

a deviation failure is deemed to have occurred when the output of

two programs differ by a value equal to or more than its specified

error margin (threshold limit):

Definition 1 (Deviation Failure). A deviation failure occurs

when the numerical output o1 from a program p1 differs from the

output o2 for a similar programp2 by a difference equal to or greater
than a tolerable threshold (i.e., error margin) t . That is, |o1 −o2 | ≥ t .

Note that, in practice, the differences smaller than the threshold

are ignored since they tend to be rooted in small precision differ-

ences in arithmetic operators in the two implementation languages,

and are not due to defects. Their actual effect on the final output of

the system tends to be negligible.

For ease of understanding, we normalize deviation failures in

this paper, such that violations are represented by numbers ≥ 1.0,

regardless of the actual formula-specific tolerable threshold values

t (which we cannot report due to the confidentiality reasons):

Definition 2 (Normalized Deviation Failure). A normalized

deviation failure occurs when the numerical output o1 from a pro-

gram p1, and the output o2 from a similar program p2, divided by a

tolerable threshold t , is equal to or exceeds 1.0; i.e.,
|o1−o2 |

t ≥ 1.0.
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3.2 The Output-based Search Technique (OST)
Search-based test generation techniques, in general, formulate the

test objective as an optimization problem and apply meta-heuristic

search algorithms, such as genetic algorithms, to find an optimal

solution [18]. Typically, the fitness function drives the search to

generate test cases that cover as much of the code as possible. In

this study, however, we focus on the detection of deviation failures.

We therefore first propose a search-based method that guides the

search for test cases towards deviations between program versions

that exceed defined tolerable thresholds.

We refer to this method as the Output-based Search Technique

(OST). Assume the Excel formula under test (F0) is re-implemented

by a method called M0, in Java. Let M0 and F0’s input parameters

be x0, . . . ,xn . Each test case may therefore be represented by the

vector < x0, . . . ,xn >, and a fitness function can be defined as:

FF_OST = |F0 −M0|

To implement OST, we used the search-based test generation tool

EvoSuite [5], and extended it with our own fitness function. OST’s

stopping criterion can be any typical criterion such as a timeout,

maximum number of generations or fitness evaluations, etc.

The other search operators such as crossover, mutation, selection

strategy, etc. are the same as default settings in EvoSuite (i.e.,

the crossover operator combines different parents (P1 and P2) to
generate new offspring (O1 and O2) which is then mutated by

adding, modifying or deleting statements. Once the reproduction is

over, there will be new parents ready for selection).

We identified the corresponding Java method (M0) per Excel

formula (F0) manually in this study. It can be potentially automated

for instance using keyword matching, but it may become very

imprecise. Therefore, we did not attempt to automate this step.

3.3 Spreadsheet-based Search Technique (SST)
OST explores the top level formula of a spreadsheet only. The

Spreadsheet-based Search Technique (SST) delves into sub-formulas.

Assume F0 from the previous section consists of two sub-formulas

F1.1 and F1.2, which are implemented inM1.1 andM1.2, respectively.

M1.1 and M1.2 are called in M0 and have the input parameters

< a1, . . . ,ai > and < b1, . . . ,bj >. Now, assume the defect that

results in a deviation failure is in M1.2 and it will be detected

only with a specific value sets for < b1, . . . ,bj >. Following OST,

the search algorithm’s inputs are < x1, . . . ,xn > thus there is no

specific guidance towards values for < b1, . . . ,bj > during the

search. The FF_OST fitness function is detached from the sub-

formula inputs, and only looks at the final output.

To overcome this problem we need to isolate the underlying

deviated sub-formula at each level, starting from root formula all

the way to its leaves. The Spreadsheet-based Search Technique

(SST), implements this idea by starting from root-level deviations

but narrowing it down to the defective method over time. At a high

level, our proposed SST algorithm is a recursive version of OST, as

follows:

(1) It applies an OST on a level i formula Fi .x (where i is the level
starting from 0 — the root level — and x is the sequential ID

for each sub-formula in the given level) (see Figure 1).

(2) The OST searches through the input space of Mi .x param-

eters. Mi .x is a Java method that corresponds to the Fi .x
formula.

(3) The search continues until a deviation between the outputs

of Fi .x and Mi .x is detected.

(4) After finding a deviation, the search continues for t seconds
(default is t = 60), while still in level i , to potentially increase
the already detected deviation.

(5) If the algorithm manages to increase the deviation in t sec-
onds, step 4 is repeated.

(6) The algorithm stops exploring level i and moves to level i+1,
when the best deviation could not be improved in t seconds.

(7) To move to level j = i + 1, the Fi .x ’s sub-formulas (Fj .1, . . . ,
Fj.y) are analyzed to find out which one is the “most con-

tributing” sub-formula. The “most contributing” sub-formula

is the one with the highest local deviation, where a local de-

viation is the delta between the sub-formula’s output and its

corresponding Java method’s output, in level j.
(8) The algorithm repeats steps 1–7, until it reaches a global

stopping criterion (e.g., it times out).

3.3.1 Preparation Step. There are at least three preparation

steps that are required before running any of our SST techniques,

as follows:

• Identifying the hierarchy of sub-formulas per Excel
formula. We have automatically collected this information

and recorded it in a matrix using a custom Excel macro.

• MappingExcel formulas to Javamethods. Asmentioned

before, we performed this task manually. The first co-author

of the paper mapped all identified Java and Excels calcula-

tions by hand. Note that the thresholds per sub-formula was

already available to us as “error margins” in the applications.

• Dealing with external dependencies. In order to avoid

external dependency issues, such as access to properties files,

we have replaced all the variables retrieved from property

files with the actual values, in the Java code.

4 EMPIRICAL STUDY
In order to evaluate our proposed search-based test generation tech-

niques for detecting deviation failures, we conducted an empirical

study on two real financial applications. This section describes the

details and results of this study.

4.1 Research Questions
The objective of the study has been broken into four research ques-

tions as follows:

RQ1 How effective are the output-based (OST) and spreadsheet-
based search techniques (SST) compared to baseline test generation
at detecting deviation failures? The aim of this research question

is to evaluate how a focused search-based approach for deviation

detection compares to common existing test generation techniques

at defecting defects. We also evaluate the improvement of the SST

over OST approach, given the same search budget.

RQ2 How often do tests generated for deviation faults violate im-
plicit preconditions? Automated test generation techniques, in gen-

eral, may create invalid inputs. That is, in our study, there may be

cases where a generated test exceeds the tolerable threshold, but
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violates domain and business related implicit preconditions that

the test generator is not aware of. The aim of this question is to

compare different techniques with respect to their invalid test input

generation.

RQ3 What is the deviation failure finding potential of the
Spreadsheet-based Search Technique? The aim of this research ques-

tion is to assess the overall fault finding ability of SST, without tight

constraints on the search budget.

RQ4 Can the Spreadsheet-based Search Technique detect new, pre-
viously unknown deviation failures? The aim of this research ques-

tion is to evaluate whether results on SST generalize and can detect

previously unknown deviation failures.

4.2 Subjects of Study
Our experiments are based on two real financial applications. The

first application is a life insurance and pension products calculator

engine known as APP1. It is a medium-sized standalone software

component with approximately 80,000 lines of code, and consists of

complex critical pension products calculations with many business

rules. Its implementation started in early 2015, and was been re-

leased to production in early 2016. The second application is APP2,
a pension funds calculator engine [13] with approximately 170,000

lines of code. Both applications are developed and owned by SEB.

Initially, APP1 and APP2 were implemented using Excel sheets

and have been used by the company for several years. For many

internal strategic reasons, including better automation support and

technology compatibility with their other products, these products

have been reimplemented in Java. Throughout the implementation,

the original Excel sheets have been used as the specification for the

implementation of the new applications.

For RQ1–3, the company’s developers provided uswith 20 spread-

sheet formulas from APP1. For each of these formulas they further

provided uswith a deviation failure report of the Java-based reimple-

mentation, which had been resolved in their issue tracking system.

They selected these formulas and failures arbitrarily, trying to in-

clude examples from different times throughout the lifecycle of the

project. For each spreadsheet formula, we extracted the correspond-

ing Java program version along side with any manual tests that had

been used in order to detect and fix the particular fault.

For RQ4 (detection of unknown faults) we could not use the

same formulas, since we already know that each of them contains

contains a fault. Therefore, we further randomly selected 20 spread-

sheet formulas from APP1 and APP2 (ten each), without knowing

whether they contain any deviation failures. We did not have access

to any manually written test cases for these formulas.

Table 2 reports characteristics of the studied 40 formulas in terms

of some Excel and Java metrics. The “Levels” (number of nested

levels in the hierarchy of the formula starting from 0 for the root

formula) and “Sub-formulas” (total number of sub-formulas in all

levels) are extracted from the Excel formula directly. However, the

“Variables” (the total number of unique variables in corresponding

Java methods for all sub-formulas in all levels) and “LOC” (the

total number of lines of Java code for all sub-formula of the root)

are extracted from the Java code
1
. These statistics show that the

1
http://metrics.sourceforge.net

Table 2: Characteristics of 40 formulas in terms of #Unique
variables (V), #Nested levels in the formula hierarchy (L),
#Total sub-formulas within all levels (S) and total #Lines of
Java code (C).
(a) 20 known faulty formulas

Formula V L S C

APP1-f1 8 2 3 41

APP1-f2 15 3 9 165

APP1-f3 12 4 7 109

APP1-f4 6 2 3 56

APP1-f5 24 3 12 270

APP1-f6 19 6 10 307

APP1-f7 26 2 8 120

APP1-f8 21 3 11 235

APP1-f9 12 2 8 154

APP1-f10 5 1 4 89

APP1-f11 31 6 16 534

APP1-f12 18 3 9 192

APP1-f13 36 5 13 389

APP1-f14 7 1 5 104

APP1-f15 3 1 1 13

APP1-f16 10 1 2 29

APP1-f17 8 4 5 95

APP1-f18 7 2 3 45

APP1-f19 27 5 10 216

APP1-f20 15 6 9 182

(b) 20 NEW formulas

Formula V L S C

APP1-f21 23 4 9 233

APP1-f22 13 3 7 112

APP1-f23 11 3 5 77

APP1-f24 9 3 6 117

APP1-f25 14 4 9 203

APP1-f26 33 7 14 309

APP1-f27 25 5 13 230

APP1-f28 17 2 4 78

APP1-f29 11 4 7 145

APP1-f30 18 3 6 97

APP2-f1 29 3 7 142

APP2-f2 15 3 7 134

APP2-f3 11 4 9 234

APP2-f4 7 1 3 80

APP2-f5 13 2 5 71

APP2-f6 19 4 8 173

APP2-f7 5 2 4 101

APP2-f8 8 1 3 42

APP2-f9 22 4 10 217

APP2-f10 11 3 7 88

studied formulas cover a wide range of complexity, with “Variables”

ranging from 3 to 36, and “Sub-formulas” ranging from 1 to 16.

Note that in all the cases, the deviation failure has been revealed

using the manual test cases written by the developers after the
bug had been reported by business analysts. In other words, the

initial test cases written by the developers were not able to detect

these faults. The business analysts’ manual acceptance testing is the

last resort before releasing the product. Therefore, late detection

of deviation failures is expensive and risky. Hence, our goal is to

provide an automated test generation approach that can detect such

faults with smaller budget and earlier in the development phase.

4.3 Experiment Design
In this section, we discuss the design of our experiment to answer

each research question.

4.3.1 Normalization. For each execution of a technique in our

experiments, we record themaximum deviation detected in the root-

level. Remember that deviations are considered a failure only if they

are above certain tolerable threshold associated with the formula.

Therefore, to help with readability of the tables, the deviations

are normalized by dividing them by the actual thresholds as per

Definition 2. As per the definition, zero means no deviation, values

in (0, 1) are tolerable deviations, and any value greater than or equal

to 1.0 is considered a detected deviation failure.

Our main goal is to detect any deviation equal to or greater than

1.0. However, the higher the deviation the better, assuming that

higher values of deviations may correspond to more serious effects.

For example, suppose the system’s threshold for an annual pension
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value is $0.001, and so a $0.002 deviation is a non-tolerable failure

but may not affect the customer satisfaction by large if not detected

and fixed right away. However, a deviation of $10 or $100 will create

a much bigger impact and dissatisfaction among clients. Note that

we follow the assumption of the company on the thresholds and

do not report less than threshold deviations as failures since they

would be simply ignored by the practitioners.

4.3.2 Invalid Test Cases. Automated test generation techniques

can create invalid inputs. For example, in APP1-f16 an input value

must not be more than 100,000.0 and a generated test with a value

184,414.16 is not acceptable based on business assumptions. These

business assumptions can only be automatically derived and pre-

served if they explicitly exist in the form of constraints in the code.

Otherwise, an automated test data generator like ours can gener-

ate invalid test inputs. Therefore, the only reliable way for us to

validate the results is to ask domain experts. For all results in our

experiments we therefore validated the solutions (test cases) with

SEB’s domain experts.

4.3.3 Metrics. The metrics used in our results are as follows:

• Median Root Deviation: The median of normalized de-

viations in the root-level, over 30 runs, per technique per

failure.

• Median Sub-Formula Deviation: The median of normal-

ized deviations in a specific sub-formula, over 30 runs, per

technique per failure. Note that this metric will only be used

for SST techniques in RQ3.

• Success Rate: The ratio of detecting a deviation ≥ 1.0, over

all 30 runs per formula per technique.

• Validated Success Rate: The ratio of detecting a “valid”

deviation ≥ 1.0, over all 30 runs per formula per technique

(validated by company’s experts).

• Invalid Test Case Ratio: The ratio of reported deviations

that are due to “invalid” test data over total reported de-

viations, in 30 runs per formula (validated by company’s

experts).

4.3.4 Statistical Tests. Whenever we compare deviation values

directly, we not only look at the median values, but also run a non-

parametric statistical significance test (using the Mann-Whitney

U test) to make sure the differences between two techniques are

not due to chance. We also report the median Success Rates and

median Validated Success Rates, over all formulas under study.

4.3.5 RQ1 Methodology. This research question compares OST

and SST against two baseline test generation approaches:

• Random testing: Random search is used as a sanity check.

If OST is not better than random testing, then there would

be no need for a search-based approach, because the search

problem is either very simple, or too challenging. We used

EvoSuite’s random test generation to do a random search

with the same search budget as OST (with the minimization

option disabled).

• Branch coverage testing: Code coverage criteria such as

statement and branch coverage are quite common in indus-

try, and they are commonly targeted by search-based test

generation. We compared our approach with the coverage-

based test generation implemented in EvoSuite. Since cov-

erage based test generation is also search-based, this allows

us to focus only on the different fitness functions (from max-

imizing code coverage to deviation values).

As all studied test generation approaches, in this paper, are im-

plemented in EvoSuite, the comparisons have fewer confounding

factors related to the implementation and optimization.

In this RQ, we use the 20 known faulty formulas of APP1 (ex-
plained above) as our targets. Each technique (R: Random Tech-

nique, BR: Branch Coverage Technique, OST: Output-based Search

Technique, and SST Spreadsheet-based Search Technique) was exe-

cuted 30 times per faulty formula, resulting in a total of 600 execu-

tions. For SST, we used a timeout of t = 60 seconds for each level. As

each formula is implemented in a single Java class, each execution

consisted of applying EvoSuite on the corresponding class with

either random test generation, branch coverage optimization, or

the OST fitness function. We set a global stopping criterion for all

four algorithms as five minutes.

4.3.6 RQ2 Methodology. This RQ investigates how often the

solutions provided by any of the discussed approaches violates

company’s implicit business rules. To measure this we asked the

company’s experts to manually investigate our solutions. Note that

as discussed, such invalid test cases are unavoidable when the rules

are not explicit.

4.3.7 RQ3Methodology. In order to explore themaximumpower

of the SST-based approach regardless of the underlying cost, this RQ

uses the same time interval as SST (t = 60 seconds) at each level, but

it does not impose a global timeout (e.g., the 5 minutes used in RQ1).

Instead, the algorithm searches until there are no sub-formulas left.

To distinguish this configuration from the configuration used in

RQ1 and RQ2, we call this version Extended SST (ESST). Obviously,

this algorithm is going to be more expensive than RQ1 techniques,

which is why RQ3 is instead focused on analyzing the ultimate

effectiveness of an SST approach.

4.3.8 RQ4Methodology. For RQ4, we compared ESST with man-

ual testing, as a baseline. We used 20 new spreadsheet formulas,

which were different from those used in RQ1–3. These formulas

were not given to us as formulas known to be faulty; we selected

them randomly from two applications APP1 and APP2 (10 formulas

each). This means that at the time of experimentation 1) we did

not know which formulas contained faults, if any, 2) for the de-

tected deviations we did not know if manual testing had uncovered

a deviation there as well or not, and 3) we did not know if ESST

had missed any deviation. Therefore, this dataset was perfect for

analyzing the effectiveness of ESST in detecting unknown deviation

failures. After generating tests, we validated all deviations found

with the developers.

4.4 RQ1: How effective are OST and SST
compared to baseline test generation at
detecting deviation failures?

Table 3 summarizes the Median Root Deviations for R, BR, OST, and

SST for the 20 known failures of APP1. All Median Root Deviations
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Table 3: Comparing the Median Root Deviations over 30
executions per 20 formulas of APP1 using R (Random),
BR (Branch Coverage), OST (Output-based Search), and SST
(Spreadsheet-based Search) Techniques. Those highlighted
are detected deviations above threshold per technique.

Formula R BR R SST

APP1-f1 1.18 1.25 2.62 1.53

APP1-f2 0.64 0.88 0.99 1.72

APP1-f3 0.40 0.54 0.82 1.10

APP1-f4 0.78 1.15 1.63 1.87

APP1-f5 0.84 1.14 0.99 1.82

APP1-f6 0.46 0.64 0.96 1.50

APP1-f7 0.86 0.90 1.36 1.88

APP1-f8 0.73 0.57 0.99 1.25

APP1-f9 0.42 0.43 0.57 0.83

APP1-f10 3.24 4.26 5.74 3.88

APP1-f11 0.61 0.98 0.97 1.39

APP1-f12 0.65 0.55 0.88 1.83

APP1-f13 0.69 0.68 0.84 1.13

APP1-f14 1.06 1.09 1.50 1.75

APP1-f15 2.01 1.38 2.30 1.80

APP1-f16 1.97 1.68 2.11 1.53

APP1-f17 0.55 0.60 0.79 1.37

APP1-f18 0.94 0.82 0.88 1.96

APP1-f19 0.61 0.70 0.96 1.33

APP1-f20 0.61 0.66 1.03 1.81

Median 0.71 0.85 0.99 1.63

Mean 0.96 1.05 1.45 1.67

≥ 1.0 are highlighted as well. Overall, in 19 out 20 cases SST’s

Median Deviations are above thresholds. In contrast, OST, BR, and

R only exceed the threshold in only 8, 7, and 5 cases out of 20,

respectively.

Looking at the actual Median Root Deviation values, in most

cases, BR is better than R (14 out of 20 cases) and OST is better than

both (18 out of 20). Finally, SST is better than OST in 16 cases out

of 20. Since the raw comparison of medians may be misleading, we

also ran a statistical significance Mann-Whitney U test (α = 0.05),

which shows that OST’s results are significantly different (with

higher medians) in 14 cases out of 20 compared to Random and 13

cases out of 20 compared to Branch.

Comparing SST and OST, with respect to the Mann-Whitney U

Test in 4 out of 20 cases (APP1-f1, f10, f15, and f16) the differences are
not significant. Therefore, overall, in 16 out 20 cases SST approaches

outperforms OST.

Calculating the root-level deviations of SST requires manual

propagation of SST to root-level, which is very labor intensive.

In the propagation process, developer inputs were used where

inputs were not generated for a lower level formula that could be

propagated up through the formula hierarchy. In our case, 50 hours

of manual work was required to apply it on 600 solutions of SST

(20 formulas each 30 runs). Note that the manual propagation is

not part of the SST algorithm. We apply this just to calculate the

extra evaluation metric.

Table 4: Invalid Test Case Ratio (ITR) and Median Vali-
dated Success Rates (SR) for Random (R), Branch Cover-
age (BR), Output-based (OST), and Spreadsheet-based Search
(SST) Techniques for 20 known faults in the APP1. The un-
detected deviations are represented by (-).

Formula R (%) BR (%) OST (%) SST (%)

APP1-f1 40.00 22.73 19.05 17.39

APP1-f2 14.29 21.43 6.67 4.76

APP1-f3 - - 20.00 4.55

APP1-f4 22.22 31.58 15.79 17.39

APP1-f5 18.18 11.11 20.00 17.86

APP1-f6 27.27 22.23 0.00 10.00

APP1-f7 33.33 14.29 10.00 16.67

APP1-f8 40.00 - 0.00 14.81

APP1-f9 - - 0.00 0.00

APP1-f10 46.15 40.00 33.33 26.67

APP1-f11 0.00 26.67 0.00 3.85

APP1-f12 0.00 0.00 0.00 0.00

APP1-f13 14.29 25.00 10.00 18.52

APP1-f14 6.67 27.78 19.05 5.00

APP1-f15 43.48 10.53 19.23 8.70

APP1-f16 25.00 10.00 14.29 12.5

APP1-f17 - - 0.00 6.25

APP1-f18 25.00 20.00 23.08 16.67

APP1-f19 - - 7.14 8.00

APP1-f20 0.00 - 13.33 22.22

Median ITR (%) 16.23 12.69 11.67 11.25

Median Validated SR (%) 25.00 31.66 46.67 70.00

It is also important to note that SST not only finds higher root-

level deviations and detects more failures, but it also localizes the

fault by identifying an exact low-level sub-formula with high devi-

ation. The more test budget, the better localization one can achieve.

We explore this in more details in RQ3.

Overall, our results suggest that neither test generation based

on random search nor on branch coverage are sufficient to detect

deviation failures. However, the basic search-based approach seems

interesting and may have some potential. But the best results are

for the spreadsheet-based approach. The results also conform with

the motivational example given in Section 2.

In 16/20 cases, SST provides the highest Median Root Deviation
values compared to R, BR, and OST.

4.5 RQ2: How often do tests generated for
deviation faults violate implicit
preconditions?

Deviations may in practice be created by invalid test inputs. While

this is unavoidable if preconditions are implicit, there is the poten-

tial concern at towhether optimizing deviationswith a search-based

approach leads to more violated implicit preconditions. Therefore,

we asked the business experts to manually validate the created test

cases. Table 4 summarizes the Invalid Test cases Ratio per each

technique. Looking at R, BR, OST, and SST, in Table 4, we can see

that Invalid Test Ratios, in general, are not very high (∼11% for SST
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Table 5: Sub-formula Deviation (D),Method ID (M) and Level
(L) of detected failures using SST and ESST in the 20 known
faults in APP1.

Technique SST ESST

Formula L M D L M D

APP1-f1 2 1 1.81 2 1 3.28

APP1-f2 2 2 1.25 2 2 2.40

APP1-f3 3 3 1.26 4 4 2.53

APP1-f4 2 5 1.61 2 5 3.83

APP1-f5 2 6 2.04 2 6 4.24

APP1-f6 4 7 1.95 4 7 6.86

APP1-f7 2 9 1.82 2 9 4.70

APP1-f8 2 10 1.97 2 10 2.36

APP1-f9 2 11 0.94 2 11 1.47

APP1-f10 1 12 4.68 1 12 10.67

APP1-f11 4 13 1.45 6 15 2.64

APP1-f12 2 16 1.16 2 16 1.91

APP1-f13 4 17 1.44 5 19 3.05

APP1-f14 1 20 1.15 1 20 2.93

APP1-f15 1 21 1.53 1 21 7.37

APP1-f16 1 22 1.22 1 22 6.64

APP1-f17 2 23 1.17 3 24 2.68

APP1-f18 2 25 1.80 2 25 2.92

APP1-f19 4 26 1.54 5 28 3.02

APP1-f20 4 29 2.10 6 31 3.81

Median Validated SR (%) 70.00 90.00

and OST). Therefore, the developers’ time that is spent to inspect

the reported deviations are in most case well paid off. We also ob-

serve that the number of Invalid Test cases produced by SST and

OST are in the same range as random search and branch coverage

techniques. In other words, the Invalid Test cases problem is shared

among all automated test generation techniques, but seems to have

limited negative effect, overall. Thus we can confirm that SST does

not lead to more invalid test cases.

Table 4 also summarizes the effect of Invalid Test cases on suc-

cess rates as Median Validated Success Rates. It shows that SST’s

validated success rate is at 70% whereas OST’s is at 46.67%, and R

and BR are far behind at 25% and 31.66%.

11% to 16% of deviations detected are due to invalid test data.
However, SST does not increase the number of invalid test data, and

provides a very high (70%) Validated Success Rate.

4.6 RQ3: What is the deviation failure finding
potential of the Spreadsheet-based Search
(i.e., ESST)?

Since RQ1 considered SSTwith limited search budget, there remains

the questionwhethermore faults could have been foundwith higher

search budget, or if the experiments have already shown the full

potential of SST. Table 5 summarizes the “Validated Success Rates”

for SST and ESST.

As the table shows, ESST manages to find deviation failures

above the threshold for all formulas, whereas SST misses one case.

After considering invalid test data, ESST outperforms SST by 20%

Table 6: Average execution time used (minutes) over 30 exe-
cutions for each failure, using ESST.

Formula Avg. Time

APP1-f1 8

APP1-f2 12

APP1-f3 14

APP1-f4 8

APP1-f5 22

APP1-f6 23

APP1-f7 15

APP1-f8 16

APP1-f9 13

APP1-f10 6

Formula Avg. Time

APP1-f11 27

APP1-f12 15

APP1-f13 20

APP1-f14 7

APP1-f15 5

APP1-f16 5

APP1-f17 11

APP1-f18 7

APP1-f19 17

APP1-f20 19

(70% vs. 90%), over the 20 formulas under study from APP1 (same

setup as RQ1).

This substantial improvement of ESST over SST is due to the in-

creased search budget. Table 6 summarizes the average cost of ESST,

over 30 runs, for each of the 20 formulas. The costs are presented

as minutes spent on average to finish one run of ESST. They range

from 5 (e.g., APP1-f15) to 27 minutes (APP1-f11). Since different

SSTs may go into different levels and find deviations in different

sub-formulas, direct comparison of deviation values is not possible.

However, it is interesting to see whether ESST has managed to

localize the faults better than SST or not. We can measure this by

counting the cases where ESST identifies a faulty sub-formula in a

deeper level than SST.

Table 5 also lists the “Median Sub-Formula Deviations” for SST

and ESST techniques together with their identified methods ID and

level. As we can see in 5 out of 20 cases ESST has better localized

the fault (deeper level faulty method is identified). In the other 15

cases out of 20, the two techniques identified the same method as

faulty but ESST detected a higher deviation (all p-values are also
less than 0.05). Therefore, we can conclude that the deviation failure

finding potential of the Spreadsheet-based Search, as it is reflected

in ESST, is much higher than the approach’s basic setup (SST).

Although the maximum (27 minutes) is almost 5.5 times that of

the SST and OST budget, it still looks quite reasonable compared

to the time that is needed for manual testing: The faults that were

identified as “detected” by manual testing, were only reported when

in a separate sprint(s) business analysts went through a thorough

and expensive set of manual acceptance testing. The analysts would

use the domain knowledge and datasets that typical developers

won’t know about. Hence, in general, creating a failure deviation

detecting test case by a developer required a round of unit level

testing by the developer followed by at least one round of manual

acceptance testing by the analysts to report the symptoms of the

bug, which finally would result in a unit test case by developers to

be added into regression test suite. It also worth mentioning that

the required budget in ESST varies across formulas and is highly

correlated with the size and complexity metrics reported in Table 2.

Given enough time, the Spreadsheet-based approach (ESST) found
deviation failures for all formulas, and 90% of the deviations were

validated by the developers.
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Table 7: Invalid Test Case Ratio (ITR) and Sub-Formula De-
viation (D) using ESST for the 20 new formulas.
(- / ✓/ ✗) represents no failure/detected/not detected using
Manual techniques.

Technique ESST Manual

Formula ITR D Detected?

APP1-f21 - - -

APP1-f22 6.66 93.34 ✓

APP1-f23 - - -

APP1-f24 13.33 86.64 ✓

APP1-f25 6.66 93.34 ✓

APP1-f26 - - -

APP1-f27 23.33 76.64 ✓

APP1-f28 - - -

APP1-f29 - - -

APP1-f30 - - -

APP2-f1 16.66 83.34 ✗

APP2-f2 20.00 80.00 ✗

APP2-f3 - - -

APP2-f4 - - -

APP2-f5 - - -

APP2-f6 - - -

APP2-f7 - - -

APP2-f8 - - -

APP2-f9 10.00 90.00 ✗

APP2-f10 - - -

Median Validated SR (%) 86.67 57.14

4.7 RQ4: Can ESST detect new and unknown
deviation failures?

In total, deviation failures were found for 7 out of the 20 new

formulas at least once. Among the 7 faulty formulas, three of APP2
had not been detected by Manual testing but were detected by ESST.

After validating the results, the SEB confirmed that these faults are

new and are due to their limited manual acceptance testing for the

new product. Four faults were detected in APP1, and these were

confirmed as known faults. Note that APP1 is an older application

with a lot of time already spent on manual acceptance testing by

the business analysts. No known faults were missed by ESST.

Table 7 presents the Ratio of Invalid Test cases for the new 20

formulas of the two applications under study (APP1 and APP2), for
ESST. It also shows which formulas were identified as faulty by

manual testing. Note that the information of which formulas con-

tain known faults was not available at the time of test generation;

we obtained this information after test generation, when validating

our tests with the domain experts.

To summarize, Table 7 also shows the “Validated SR” for ESST

(86.67%) and Manual testing (57.14%) in the second 20 formulas,

which were randomly selected. Manual testing misses all three

deviations that ESST detected in APP2, which indicates that more

manual acceptance testing is required for that application.

All failure detecting manual unit test cases were written after the

faults were reported by the analysts. This means that the original

manual unit test cases’ “Validated Success Rate” was zero. It also

means that getting the reported success rates by manual testing

requires the business analysts involvement in manual acceptance

testing and thus is very expensive, compared to the automated

ESST’s approach which can be integrated with developers unit

testing framework.

ESST detected 86.67% of deviation failures (including three
unknown failures), whereas the expensive manual testing detected

57.14%, in the second set of 20 formulas.

4.8 Threats to Validity
The main threat to the validity of this study is the generalizability

issues. Given that the evaluation is done based on a case study in

one company, we can not generalize the results to other applica-

tions. However, our case study is based on two real-world industry

applications with real deviation faults, which might be considered

as representative. In addition, even if the applications themselves

might be representative, the selection of the first 20 formulas by

the company, might have been biased. However, random selection

of the second 20 formulas reduced that threat. In addition, we be-

lieve that the approach is quite generic for spreadsheet application

migration and thus we encourage replication of this study.

In terms of conclusion validity, we have conducted each exper-

iment 30 times and reported medians and statistical significance

results. Ideally we would like to rerun the experiment with more

executions to gain more confidence in the results.

We keep internal validity threats as low as possible, by using

a common framework (EvoSuite) to implement all techniques.

However, evolutionary algorithms for our objectivemay be required

and there might have been errors in the tools and scripts.

Another threat here is the fact that a real bug may be missed if a

technique can detect a minor deviation due to the bug but could

not find a scenario that results in an above threshed deviation. Such

cases will be simply missed by our approach due to ignoring devia-

tions less than the threshold. However, the alternative (reporting

all deviations regardless) would potentially end up in a lot of false

positives. Thus we opted for the approach detailed in Section 3.

Finally, in terms of construct validity, we have reduced the threat

by defining very basic and clear measures for deviations and success

rates. We also validated our solutions by the company experts.

However, the domain experts may have given incorrect answers.

5 RELATEDWORK
Differential testing [15] such as regression testing and N-version

testing aims to demonstrate the behavioral differences between two

versions of a program executed with the same test inputs. Evans

and Savoia [4] presented differential testing with the intention of

detecting more changes as compared to regression testing alone.

It generates tests for both original and alternative systems and

compare both versions with these two test suites. Furthermore,

Tao Xie et. al [24] extended differential testing for object-oriented

programs. They proposed a framework called Diffut in which it

simultaneously executes methods of two versions of the program

with the same inputs and compare their outputs.

Another related work in the context of automated regression

testing is BERT (BEhavioral Regresstion Testing) [14]. BERT tries

to provide more insight to the developers as compared to the tradi-

tional regression tests by focusing on subset of code and identifying
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the behavioral differences between two versions of a program. Dif-
fGen is another approach presented by Taneja and Xie [23] which

tries to reveal the behavioral differences of two version of Java

programs by instrumenting the code and adding new branches

to expose the differences between two version of class if these

branches are covered by test generation tools.

McMinn [17] introduced a novel pseudo-oracle by utilizing testa-

bility transformation. Testability transformation is source-to-source

program transformation to make the program under test more

testable [10, 11]. Basically, the original program, which has no test

oracle, will be automatically transformed into another program

with the same functionality. Then the test cases aim at fining differ-

ences in the outputs of the two programs. In a recent work, Matthew

Patrick et al. [21] utilized pseudo-oracles in their new search-based

technique for testing various implementations of stochastic models

with the intention of maximizing the differences between the orig-

inal implementation and its respective pseudo-oracle. They used

Kolmogorov-Smirnov tests to compare the distributions of outputs

from each implementation and concluded that their technique re-

duces the testing effort and also enables discrepancies, where they

could have been overlooked.

6 CONCLUSIONS
Detecting deviation failures in financial applications is difficult

because of the potentially large input domain of financial formu-

las. We have introduced a new search-based approach to address

this problem by generating tests to maximize the discrepancies

between the newly implemented program (Java implementation)

and its legacy version (an Excel spreadsheet). Our approach ex-

plores not only the final outputs of formulas but also the respective

sub-formulas. The exploration time of each sub-formula level and

the global stopping criterion can be tuned (t seconds).
We have evaluated our proposed techniques on two complex pen-

sion product calculators, APP1 and APP2, using real financial devia-
tion failures. The new proposed approach outperforms random and

branch coverage test generation approaches. Furthermore, we com-

pared both of our proposed approaches, multi-level sub-formulas

search-based approach with the Output-based Search approach,

in which spreadsheet-based approach produced up to 23.3% better

detection rate as well as better fault localization. Finally, we showed

that our results is quite cost-effective in practice, given the higher

validated success rates (86.7%) compared to the expensive manual

testing (57.1%). In terms of future work, one direction is to auto-

matically map the spreadsheet formulas to Java methods, to fully

automated the proposed test generation process. Another direction,

is to investigate other methods of designing an SST, for example,

by choosing to explore sub-formulas differently. Finally, we would

also like to more thoroughly evaluate the fault localization aspect

of SST compared to other localization techniques.
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