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Abstract. The test data produced by automatic test data generators are often ‘unnatural’ partic-
ularly for the programs that make use of human-recognisable variables such as ‘country’, ‘name’,
‘date’, ‘time’, ‘age’ and so on. The test data generated for these variables are usually arbitrary-
looking values that are complex for human testers to comprehend and evaluate. This is due to the
fact that automatic test data generators have no domain knowledge about the program under test
and thus the test data they produce are hardly recognised by human testers. As a result, the tester
is likely to spend additional time in order to understand such data. This paper demonstrates how
the incorporation of some domain knowledge into an automatic test data generator can significantly
improve the quality of the generated test data. Empirical studies are proposed to investigate how
this incorporation of knowledge can reduce the overall testing costs.
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1 Introduction

Software testing is a laborious, expensive and time consuming process that consumes approx-
imately 30 to 60% of the software development budgets [8]. The process of software testing
involves establishing a set of testing requirements, generating test cases that satisfy these re-
quirements, execution of the test cases and determining whether the corresponding outputs
are as expected. This process is performed in two essential phases; test data generation and
test data evaluation. Test data generation focuses on identifying the test cases. The evaluation
phase concerns with verifying the success or failure of the generated test data. Today, various
stages of the software testing are still performed manually. Manual testing usually requires a
large number of human testers to perform the expensive and time-consuming test procedures
by hand. Considering the complexity of advanced software applications today, manual testing
is a very expensive operation.

Automation of software testing promises to effectively verify software systems while saving
a considerable amount of time [I2]. Several techniques for automating the test data generation
have been proposed over the last decade; including symbolic execution [3], concolic execution
[1] [11], and search-based testing [4]. While these techniques have achieved great success in the
test data generation, they have paid no attention to the evaluation phase. As a result, in many
real cases, the system behaviour is evaluated manually by a human tester. On the other hand,
the automatic test data generators have no domain knowledge of the program under test, and
therefore the test data they produce are arbitrary-looking values that are hardly identified by
human testers. One of the benefits of such data is that they can force the program to experience
unusual yet possible input values and thus can produce unexpected outputs which reveal faults.
However evaluation of this type of data is suspected to have longer cognition time. This forms
a significant cost, frequently referred as the human oracle cost.

A potential solution to this problem is to incorporate knowledge about the program’s input
domain into the automatic test data generators [6]. Prior to application of this solution, it is
required to ensure whether the arbitrary-looking test data have additional cognition time. To
investigate this, we aim to recruit human testers and ask them to evaluate different types of test
data. The length of the time each tester spends on evaluating the test data is a key factor in
this experiment. The next step is to examine whether the ‘natural’ test data are less effective in
detecting the software faults in comparison to the ‘arbitrary-looking’ test data. To inspect this,
the fault-finding capability of the test data will be computed. If the test data with the lower
cognition time turns to have lower fault-finding capability, the test data generator should be



guided to consider the two possible constraints. This study is currently at preliminary stages,
and the initial experiments are under progress. Full details about the potential solutions and
experiments are presented in Section [3] Prior to this, a background to the test data generation
techniques and the oracle problem is given in Section 2] Finally Section [4 concludes the study.

2 Background
The principle of software testing is to apply a number of inputs (test cases) to the program

under test, observe and check whether the program response is as expected (see figure [1)).
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Fig. 1. Different Phases of Software Testing

Test data evaluation is a critical component in software testing. Without evaluating the test
data according to an existing oracle, testing does not achieve its goal of revealing failures or
assuring correct behaviour in a practical manner. Automatic evaluation is based on existence
of a testing oracle which can determine the correctness of the system’s behaviour against the a
set of test cases. There are various types of oracles, such as Heuristic Oracle [2], Specification-
Based Oracle [9] and Pseudo Oracle [2]. An oracle generated from the specifications will only
produce correct results if the specifications are correct. A pseudo oracle is as an independently
implemented program, that aims to perform the same task as the original but using a different
approach (i.e. computational algorithm, compiler, etc) [7].

For most software systems, the existence of an automated oracle that can accurately evaluate
the system’s behaviour is seldom available. This problem is referred as the oracle problem, and is
a major concern for the entire field of software testing. Due to this problem, in many real cases,
the system’s performance is evaluated by a human tester. When the test data are generated
automatically, the manual evaluation is not satisfactory for several reasons. One of the reasons
is that the volume of the test data is often overwhelming and therefore requires a large number
of human testers to concentrate for arbitrarily long periods of time. This forms a significant cost
which is referred as quantitative human oracle costs. To decrease costs, reduction techniques
[13]have attempted to reduce the size of the test data by identifying a representative set from the
original test suite, that satisfies all the testing objectives. These techniques have used various
reduction algorithms and have achieved great success in reducing the volume of the test data
[10].

Another basis for dissatisfaction in manual evaluation is the “quality” of the automatically
generated test data. The test cases produced by automatic test data generators are usually
of poor “quality” in terms of matching the program’s input domain. This issue mostly occurs
when the program makes use of human-recognisable values for input variables such as ‘email’,
‘url’, ‘date’, ‘name’ and so on. The scenarios that such data represent, are suspected to require
additional cognition time. This is referred as qualitative human oracle costs and contributes to
the overall testing costs. The quality of the test data is usually assessed based on coverage, fault-
finding capability and human recognisability criteria. The majority of test data generators have



focused only on the coverage and fault-finding capability criteria and have not considered the
human recognisability factor. For this reason, the test data they produce, are often strings that
appear to be random sequences of characters or arbitrary-looking values rather than meaningful
pieces of data. A sample of such data for is shown in Table

Branch Different random seed used to Same random seed used to Supplied test case
generate the starting point for the |generate the starting point for the| (1/1/2010, 1/1/2010)
test data search for each branch test data search for each branch |used as the starting point
1T -4048/-10854/-29141 3308/-25426/-11998|-1247/-17004/9006 3305/6393/-10930| 0/1/2010 1/1/2010
1F 4091/-31366/-23576  -9671/1283/-29866(15136/-17004/9006  3305/6393/-10930| 1/1/2010 1/1/2010
2T 10430/3140/6733 -14884/-8416/-18743|15136/-17004/9006  -790/6393/-10930| 1/1/2010 0/1/2010
2F -31846/-3340/4891 7021/-24358/13435(15136/-17004/9006  3305/6393/-10930| 1/1/2010 1/1/2010
3T 3063/31358/8201 9560/32094/-23160[15136/-17004/9006  3305/6393/-10930|16/1/2010 1/1/2010
3F -2459/13917/984 6289/31510/-21766|-1247/-17004/9006  3305/6393/-10930| 1/1/2010 1/1/2010

Table 1. Shows automatically generated test data produced a search-based tool for a method
called “days_between”.

The method “days_between”, is a part of a C program called Calender, which calculates the
number of days between two given dates. The search-based tool used, is commonly referred to
as Iguana, developed by McMinn [5]. In the first column of Table |1} T and F refer to the true
and false branches respectively. The second column shows test cases that are generated for each
branch using a different random starting point. The subsequent column shows similar test data,
where the same random seed is used to initiate the search for each branch. In the final column,
a human supplied test case (1/1/2010, 1/1/2010) was used as the initial point for the search.
The majority of values shown in Table 1| correspond to obscure dates (i.e negative numbers or
dates that are several millennia in the past or future). This is because the initial input values
are selected from the program’s input space by random and thus poorly match the program’s
input domain. The input space for this method is a set of values that range from -32,768 to
32,767 (which is the range of short int type). However the test cases provided in the fourth
column are of higher quality in terms of conforming to an accurate data value. This is because
the human supplied test case provides the search mechanism with some domain which leads to
production of realistic test values for the date variable. This demonstrates providing the search
with some realistic initial values can significantly improve the quality of the resulting test cases.

3 Proposed Solutions

A possible way of improving the quality of the test data is to supply the test data generators
with reasonable amount of information about the program’s input domain. As discussed in
section [2| providing a search based test data generator with even a small amount of information
about the program’s input domain can dramatically produce simplified and more recognisable
test data (see Table[l]). Prior to developing techniques that can automatically provide the search
mechanism with some domain knowledge about the program under test, confirming the following
hypothesises is essential.

To examine whether the arbitrary-looking test data have additional cognition time, this
project aims to recruit software developers from Genesys company (an internal software com-
pany in Sheffield). The software developers are both employed programmers and students (both
undergraduate and postgraduate) who work on real software development projects. They will
be asked to evaluate two types of test data; one that is generated from a random initial seed,
and one that is generated from a human supplied initial seed. The length of time each student
takes to evaluate each set of test data is the main factor in this part.

To examine whether the proposed approach may have an effect on the fault-finding capability
of the resulting test data, mutation analysis should be performed on the test data. This part




can assess and compare the capability of both ‘natural’ and ‘arbitrary’ test data in detecting
faults.

The initial experiment is currently being run in the form of an online questionnaire. The
questionnaire is designed in two phases. The first phase is aimed to gather human provided seeds
for a number of methods. In this phase, the user is asked to provide a test case for each method
together with its corresponding return value. Each method is a segment of Java program, which
takes at least one argument and has a return value. The are 15 methods in total, 6 of which
have primitive input types, the rest make use of string input types. These methods are selected
as they cover the majority of primitive input types, they are simple enough for users to compute
the corresponding terurn values, yet complex enough with regards to the number of branches.
The users are primarily asked to generate an initial simplified test case for each method (see

figure .

Factorial Question 1 of 15

The following method computes the factorial of a non-negative integer n.

public static Tong factorial(final int n) {
)

Supplementary Information: Computing Factorials

Please provide a test case for this method and provide the expected output.

Previous Next Skip

Fig. 2. A screen shot of the online questionnaire for the first stage. For each method the user
is asked to provide a test case with the expected output.

Next, the data the users provide are passed to the Iguana tool. The search mechanism
employed in Iguana, uses these human provided seeds to initiate the search and thus provides
additional test cases that are close to the initial seeds in terms of matching the program’s input
domain. In the second phase of the questionnaire, the user will be asked to take the role of a
human oracle by evaluating the test data achieved from the previous stage (see figure [3). The
time each student takes to evaluate each type of the test data will be noted, the complexity of
each method, and the programming ability of each student will be considered.

This experiment is currently under progress. 15 people have answered the first questionnaire
to date. The questionnaire will be send to more people to obtain more data. As an alternative,
Mechanical Turk can be used if additional data are required. The Amazon Mechanical Turk
(MTurk) is a internet marketplace that allows computer programmers to ask workers to perform
human intelligence tasks by fulfilling the provided questions.

4 Conclusions

This report has reviewed the oracle problem and investigated how quantity and quality of the
test data can effect the overall testing costs. While a number of techniques have attempted to
alleviate the quantity issues, there has been been seldom work focusing on the quality aspects



Factorial Question 1 of 15

The following method computes the factorial of a non-negative integer n.

public static Tong factorial(final int n) {
)

Supplementary Information: Computing Factorials

Click next to answer the guestions abaolt this method.

The valle of factorial {3} i5 6.
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Fig. 3. A screen shot of the online questionnaire for the second stage. Theser is timed while
answering each question.

of the generated test data. This is an important problem which needs to be resolved in order
to increase the reliability of software system while saving a great deal in time and budget.
Reduction of qualitative human oracle cost can significantly contributes to software testing and
therefore it is an essential matter.
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