
Mutation Operators for Agent-Based Models

Salem F. Adra and Phil McMinn
Department of Computer Science, The University of Sheffield

Regent Court, 211 Portobello, Sheffield, UK, S1 4DP
s.adra@sheffield.ac.uk p.mcminn@sheffield.ac.uk

Abstract—This short paper argues that agent-based models
are an independent class of software application with their
own unique properties, with the consequential need for the
definition of suitable, tailored mutation operators. Testing
agent-based models can be very challenging, and no established
testing technique has yet been introduced for such systems. This
paper discusses the application of mutation testing techniques,
and mutation operators are proposed that can imitate potential
programmer errors and result in faulty simulation runs of a
model.

Keywords-Mutation testing; agent-based modelling and
simulation.

I. INTRODUCTION

Computational models are computer programs designed
to simulate complex systems; for example financial markets
and natural systems such as skin tissue and insect colonies.
Scientists and industrialists use computational models to
help develop their understanding of the natural system being
modelled, to make forecasts, and to predict the impact of
some changes to the system. With this in mind, it is of
high importance that the models have been properly tested.
Recent scientific software errors have led to papers being
retracted from Science [1]. Empirical work by Hatton [2]
found an average of eight serious faults in every 1000 lines
of C code analysed in a series of large scientific programs.
In the banking sector, losses made by NatWest, Barclays
and Deutsche Morgan Grenfell totalling tens of millions of
pounds were blamed on decisions that involved economic
model errors [3].

Agent-based modelling is an increasingly popular
paradigm which has been successfully used to model a
wide variety of applications and abstract systems. The
agent-based approach focuses exclusively on modelling the
micro-behaviours of the system’s main actors (the agents).
Agents have been used to model individual people in a
crowd control simulation, cells in skin tissue [4], and the
main players in an economy; for example banks, countries,
households and firms [5]. During simulation, agents interact
to produce complex macro-behaviours, so-called ‘emergent’
behaviours, such as the self-organisation of blood vessel
membranes in response to a tumour [6], uprising of terrorist
activity [7] or voting trends in election campaigns [8]. Figure
I is a screenshot from a model of skin tissue from Sun,
McMinn et al. [4], for predicting optimal conditions for

Figure 1. An
agent-based model of
skin tissue, with cells
modelled as spheres
on a virtual culture
plate

maximal tissue growth; work of high relevance to scien-
tific researchers developing skin replacement therapies for
patients suffering heavy skin loss through burns or chronic
disease.

Despite the power of the agent-based approach, there
has been little work devoted to testing agent technologies.
Mutation analysis is one way which might aid the devel-
opment and comparison of suitable techniques. However,
as argued in this paper, agent-based models have several
different aspects that make their development unique com-
pared to most traditional programming paradigms. In agent-
based modelling, each agent is autonomous and the macro-
behaviour observed in a simulation run is heavily reliant on
their continuous inter-agent communication.

The contribution of this short paper is the introduction of
a set of mutation operator classes for agent-based models.
These operators are intended to target the type of faults
that may be introduced into the coding of an agent-based
model, with specific regard to the unique aspects that make
up the agent-oriented style of model development. While
there are many types of agent-based model and many types
of framework in which to implement and execute them (for
example MASON [9] or FLAME [10]), agent-based models
share the same set of common ‘ingredients’. With this in
mind, the operators proposed are introduced in an abstract
manner.

II. THE INGREDIENTS OF AN AGENT-BASED MODEL

Agent-based models are a form of multi-agent system
(MAS) [11] in which a system is composed from a number
of autonomous interacting entities or units, referred to as
agents. In the multi-agent system literature [12], agents
have been traditionally classified as being either deliberative,
reactive or hybrids of the two. A deliberative agent is usually

proactive and formulated in terms of explicit goals that the
agent is trying to achieve.

Reactive agents, on the other hand, are usually not goal-
oriented and only respond to environmental changes and
inter-agent communication and interaction. Based on their
local conditions and the conditions of their direct environ-
ment, reactive agents choose to perform certain actions based
on a series of rules. These are the types of agents used in
developing scientific models and running simulations.

The following formalism of an agent-based model is a
modified version of that due to Kidney [13] and Denzinger
[14]. An agent-based model ABM = (A, E) is composed
of a set of agents A in an environment E. An agent ai ∈ A
is defined as a quadruple ai = (Mem, Fn,Mo, Mi), where
Mem is a set of memory variables whose values define the
agent’s current state, Fn is a set of functions that an agent
can execute, Mo is a set of output messages that an agent
can send or broadcast, and Mi is a set of input messages
that an agent can receive. The environment E is a set of
global variables V which can be modified by the agents in
A (or be set externally).

A particular agent ai ∈ A, where i = [1, ..., n] and n =
card(A) is the total number of agents, can be represented by
the quadruple (Mem(ai), Fn(ai), Mo(ai), Mi(ai)) where
Mem(ai) is the set of memory variables memk, where
k = [1, ...,m] and m = card(Mem(ai)) is the number
of memory variables an agent ai has, Fn(ai) is a set
of functions that agent ai can execute, Mo(ai) is a set
of output messages that ai can send or broadcast, while
Mi(ai) is set of input messages that ai can receive. De-
pending on its current situation, agent ai can choose a
specific message mor from Mo(ai), where r = [1, ..., l]
and l = card(Mo(ai)) is the total number of different
messages in Mo(ai), to communicate with other agents.
Messages in Mo(ai) are therefore used by ai to send
requests or updates to some or all other agents in A.
On the other hand, every message miv ∈ Mi(ai), where
v = [1, ..., w] and w = card(Mi(ai)), represent specific
updates or requests that other agents use to communicate
with ai. At time (or iteration) t, agent ai can then decide to
execute a certain function fu ∈ Fn(ai), where u = [1, ..., z]
and z = card(Fn(ai)), based on its current situation at
time t, S(ai, t): S(ai, t) → fu ∈ Fn(ai). An agent ai’s
situation at time t, S(ai, t), is defined by ai’s state at time t,
Mem(ai, t), and any incoming messages Mi(ai, t) denoting
a new interaction: S(ai, t) = Mem(ai, t)×Mi(ai, t).

Using this formalism, the pseudocode for executing an
agent-based model can be stated as in Figure 2.

A. Agents vs objects

A common misconception with agent-based systems
is the confusion between agents and objects in object-
oriented systems. While there are a lot of similarities, one

for each time-step t do
for each agent ai ∈ A do

- Read any incoming messages Mi(ai, t) from agents
aj , (j = 1..n) and j 6= i
- Execute function(s) fu ∈ Fn(ai) and update state
Mem(ai, t) and E as determined by internal rules
and external signals Mi(ai, t)
- Send output messages Mo(ai, t) to update or send
requests to other agents aj

end for
end for

Figure 2. Pseudo-code describing the steps involved in running an agent-
based simulation

large difference lies in terms of an agent’s ability to be
autonomous [15].

While objects and agents both encapsulate some private
variables that might represent their different internal states,
agents usually possess a degree of control over their state,
choosing which action to perform next. An object, on the
other hand, is subject to changing its state on the basis
of one of its methods being called. While agents can send
messages to one another, any requests are not guaranteed to
be honoured, for example in scenarios where a request might
conflict with the goals or local state of the agent receiving
the request.

While object-oriented mutation testing operators (and
more classical mutation operators) can be used for certain
aspects of an agent-based model, they fall short of address-
ing the novel aspects of an agent-based model. Conversely,
agents may not necessarily be programmed using an object-
oriented language (for example the agents defined using
FLAME [10]), hence features like inheritance and poly-
morphism do not necessarily play a role in agent-based
modelling.

B. Concurrency

Similarly, concurrency may or may not cause issues for
an agent-based model. This often depends on the framework
being used. For example, the simulator may choose to
perform the inner-most loop of Figure 2 for every agent
at once, while others, for example FLAME [10], randomise
the order of the agents and process them one at a time.
Generally the modeller leaves such issues to the framework
and does not hardwire synchronisation mechanisms into the
development of a model [15]. As such, concurrent aspects
of a model are not considered by the mutation operators
proposed in this paper.

C. Testing Agent-based models

Galán et al. [16] described and classified the common
errors and artefacts that can occur when developing an agent-
based model. Galán et al. highlighted that such errors can

occur at any stage of the agent-based modelling lifecycle;
for example, abstracting properties from a natural system,
defining the model’s technical specification or coding the
model using a certain programming language. In order to
detect model errors, the authors suggest some informal
testing measures such as the application of the model to ex-
treme scenarios or the re-implementation of the model using
different programming languages, programming paradigms
or agent-based modelling frameworks.

Another potential challenge of testing agent-based models
concerns the complexity of these models. It is quite common
to have a model simulating the interactions of thousands or
millions of agents. Such complexity makes it very hard to
understand everything going on in the system or trace back
certain model behaviour to a certain agent or event.

While there has been substantial dedicated research ad-
dressing the issue of testing object-oriented systems and
producing formal testing techniques for such systems, the
recognition of agent-based systems as an independent set of
systems with new challenges and properties - as well as the
development of testing tools for these models, are topics that
still need further research and investigation.

In the mutation testing community, object-oriented sys-
tems have been identified as a unique trend of software [17]
[18] and several tools (e.g. MuJava [18] and Javalanche [19])
and suitable classes of mutation operators (commonly known
as class mutation) addressing object-oriented properties such
as inheritance and polymorphism were produced to address
these systems. However, none of these tools or techniques
are sufficient for targeting the more unique aspects of an
agent-based model. As a result, the aim of this short paper
is to suggest new mutation operators that are more fine-
tuned for addressing the properties of agent-based models.
Thus, the operators suggested in the next section can also
be seen as further adaptations and refinements to previously
introduced traditional, interface [20] and class mutation
operators. The implementation of the suggested mutation
operators are ultimately aimed at creating mutation operators
that can automatically confine the scope of their correspond-
ing mutations to the unique properties of agent-based models
(i.e. agents’ memory variables, communications, different
functionality which can be linked to situatedness and the
agents’ environment).

III. MUTATION OPERATORS FOR AGENT-BASED MODELS

In this section, some mutation operators that specifically
address the unique aspects of an agent-based model are
proposed. The mutation operators suggested are meant to
deal with potential programming, or modelling syntactical
errors that can affect the behaviour and thus the reliability
of a model. The intention is that these operators be combined
with existing operators from the procedural and object-
oriented paradigm to obtain a complete set of mutation
operators for the model in hand. The mutation operators

proposed in this paper have a scope which focuses on
mutating the essential aspects of an agent-based model, i.e.:

• Agents’ communication (Mo and Mi);
• Agents’ memory variables (Mem);
• Agents’ function executions (Fn), and
• the environment (E)

To better illustrate the suggested mutation operators, an
example of an agent-based model, abm, with a total number
of agents n = 10, is deployed (i.e. A = a1, a2, . . . , a10). For
simplicity, and without any loss of generality, abm is consid-
ered to be composed of homogenous agents possessing the
same number of memory variables m, the same number of
agent functions z and the same number of output and input
messages l and w. For this example, the following values
are considered: m = 5, z = 5, l = 4 and w = 4. Hence, in
abm, an agent ai ∈ A is defined as ({mem1, . . . ,mem5},
{f1, . . . , f5}, {mo1, . . . ,mo4}, {mi1, . . . ,mi4}).

A. Mutation of agent communication

Miscommunication
Synopsis: Mutate the set of recipient agents R ⊂ A that are
meant to receive a certain message mor ∈ Mo(ai) from
agent ai: MisMutOp(ai

mor−−−→ R) = ai
mor−−−→ R′, where R

and R′ are subsets of A and R 6= R′.

Examples: Examples include mutating the identity, type(s),
location(s) or location ranges of an intended recipient agent.
Miscommunication mutations that might be introduced by
such operator are shown in Table 1 where ai, aj , aj1, aj2, aj3,
and aj4 ∈ A, aj 6= aj ′ ∈ A, mor ∈ {mo1, mo2, mo3, mo4}
and the underlined cells highlight the mutated values.

Table I
EXAMPLES OF MISCOMMUNICATION MUTATIONS (S = SENDER, M =

MESSAGE AND R = RECIPIENT AGENT(S))

Original Message Mutated Message

S M R S M R

ai mor aj ai mor aj ′

ai mor aj1, aj2, aj3 ai mor aj1, aj2

ai mor aj1, aj2, aj3 ai mor aj1, aj2, aj3, aj4

Rather than sending messages to specific agents, some
models incorporate agents that ‘broadcast’ messages to
other agents in the vicinity. The set of recipient agents R
is therefore the set of agents within a certain radius of
the broadcasting agent. In such circumstances a concrete
implementation of the miscommunication operator would be
for messages to be received by agents outside of this range,
as illustrated in Figure 3.

Corrupt message
Synopsis: Mutate a certain message mor that an agent
ai can send to a set of recipient agents R ⊂ A:

[18], suitable ABM mutation operators should have a scope
which focuses on mutating the essential aspects of an ABM:

• Agents’ communication (Mo and Mi),
• Agents’ memory variables (Mem)
• Agents’ functions executions (Fn) and
• the environment (E)

In the following, we present suggestions that can be used to
design mutation operators that address the essential aspects
of an ABM highlighted above. To better illustrate the
suggested mutation operators, an ABM example, abm, with a
total number of agents n = 10, is deployed (i.e. A = {a1, a2,
…, a10}). For simplicity, and without any loss of generality,
abm is considered to be composed of homogenous agents
possessing the same number of memory variables m, the
same number of agent functions z and the same number of
output and input messages l and w. For this example, the
following values are considered: m = 5, z = 5, l = 4 and w =
4. Hence, in abm, an agent ai A is defined as ({mem1, …,
mem5}, {f1, …, f5}, {mo1,..., mo4},{mi1, …, mi4}).

1) Mutating Agents’ Communication
Mutation operators which focus on mutating agent’s
communications should ideally address the following issues:

• Miss-communication:
Motivation: These kinds of mutations should ultimately
result in messages being sent to the wrong recipients or
some communications being missed and can lead to
uncovering model misbehaviour.

Synopsis: Mutate the identity, type(s), location(s) or location
ranges of an intended recipient agent. Miss-communication
mutations that might be introduced by such operator are
shown in Table 1 where ai, aj, aj1, aj2, aj3, and aj4 A, aj’! aj

A, mor {mo1, mo2, mo3}, miv {mi1,…,mi4} and the
shaded cells highlight the mutated values.

Example: In Fig. 2, an example illustrating the effect of
mutating the range of a communication message, mor

{mo1,mo2,mo3}, for agent ai. Fig. 2 shows an ABM of
keratinocyte colony formation [2], where the different
colored circles represented different types of skin cell
agents. From Fig. 2, one clear consequence of such mutation
operator was that the mutated message range allowed agent
ai to communicate with a previously unreachable type of
agents, a mutation which can cause the model to misbehave
and exercise the strength of a test set.

• Wrong message
Motivation: These kinds of mutations should ultimately
result in wrong agents’ interactions and a divergence from
the expected model behaviour.

Synopsis: Mutate the content of a certain type of message by
(1) skipping some message data or (2) mutating the type of a

message variable, or (3) mutate the choice of message to be
sent in a certain situation. These 3 types of mutations results
in sending the wrong communication message and are
illustrated in Table 2 where mor, mor1, mor2 {mo1,...,
mo4}, miv miv1, miv2 {mi1,…,mi4}, mor’ and miv’ denote
mutated versions of the original messages mor and miv
respectively.

Example: Examples of a mutation operator mutating the
content of communication message can be realized by
skipping the ‘z’ coordinate information from a location
update message or changing the type of message content
variable (e.g. double x_location ! int x_location). On the
other hand, an example of an economical ABM affected by
a mutation operator mutating the choice of message to be
sent by certain agent ai can be seen when agent ai sends a
request for agent aj to sell stock instead of buy stock.

TABLE I. MISS-COMMUNICATIONS MUTATIONS (S= SENDER,
M=MESSAGE AND R = RECEPIENT)

Original Message Mutated Message
S M R S M R
ai mor aj ai mor aj’
ai mor aj1, aj2, aj3 ai mor aj1, aj2

ai mor aj1, aj2, aj3 ai mor
aj1,aj2,
aj3,aj4

aj miv ai aj’ miv ai

Figure 2. Mutating the range of message mor for agent ai

Original Range of
mor Mo(ai)

Mutated Range of
mor Mo(ai)

a
i

a
i

ai

ai

Mutation
Operator

Figure 3. Mutating the range of message mor for agent ai

CorrupMutOp(ai
mor−−−→ R) = ai

mor′−−−→ R, where mor′ is
a mutated version of mor. Note that the suggested mutation
operators affecting agent communication can be equally used
to mutate input messages that an agent ai can receive since
input messages represent output messages sent by other
agents ∈ A.

Examples: Examples of mutations mutating a communica-
tion message might include: (1) skipping some message
data, (2) mutating the type of a message variable, or (3)
mutating the choice of message to be sent in a certain
situation. These three mutation cases result in sending the
wrong choice of communication message, or sending a
corrupted message, and are illustrated in Table 2 where
mor, mor1, mor2 ∈ {mo1, . . . ,mo4}, miv, miv1, miv2 ∈
{mi1, . . . ,mi4}, mor′ and miv′ denote mutated versions of
the original messages mor and miv respectively.

Table II
EXAMPLES OF WRONG MESSAGE OR WRONG MESSAGE CONTENT

MUTATIONS (S= SENDER, M=MESSAGE AND R = RECIPIENT
AGENT(S))

Original Message Mutated Message

S M R S M R

ai mor aj ai mor ′ aj

ai mor1 aj ai mor2 aj

aj miv ai aj miv ′ ai

aj miv1 ai aj miv2 ai

Corrupt message mutations can be realised for example by
skipping a z coordinate information from a location update

message or changing the type of a message content variable
(e.g. from a double to an int). On the other hand, a
mutation operator mutating the choice of message to be sent
by a certain agent ai can be realised for example when an
agent ai sends a request for agent aj to sell stock instead
of buy stock:

B. Mutation of an Agent’s Memory

Synopsis: Mutate the memory structure or
content of an agent ai at time (or iteration) t:
MemMutOp(Mem(ai, t)) = Mem(ai, t)′, where
Mem(ai, t)′ 6= Mem(ai, t).

Examples: Examples of agents’ memory mutations might
include: (1)mutating the type of memory variable (e.g. from
a double to an int), or (2) mutating the values of certain
constants held in memory, e.g. an enumerated agent type
such as 1 = buyeragent, 2 = selleragent etc.

These mutations are illustrated in Table 3 where the
mutation illustrates a particular memory variable being
mutated (memj1 → memj1′).

Table III
EXAMPLES OF AGENT MEMORY MUTATIONS

Original Memory Mutated Memory

Agent Mem(ai, t) Agent Mem(ai, t)

ai {memj1, . . . , memj5} ai {memj1′, . . . , memj5}

C. Mutating Agents’ Function Execution

Synopsis: Mutate agent ai functionality at a certain time (or
iteration) t: FnExecMutOp(S(ai, t) → fu) = S(ai, t) →
f ′u, where f ′u is a mutated version of fu and fu ∈ Fn(ai).

Examples: The functionality of an agent ai which is in
a certain state Mem(ai, t) and receiving a certain input
message Mi(ai, t) can be mutated by mutating the choice
of function to be executed in such situation. Furthermore,
the agent ai’s function can be mutated itself by applying
traditional mutation (or if appropriate, class mutation) op-
erators on specific lines of code defining it. Table 4, where
fj1, fj2 ∈ Fn(ai), S(ai, t) present a certain situation that
agent ai can be in at time t, and fj1′ presents a mutated
version of function fj1, illustrates these kinds of agent
function mutations.

Table IV
EXAMPLES OF AGENT FUNCTION MUTATIONS

Original Function Mutated Function

Agent Situation Function Agent Situation Function

ai S(ai, t) fj1 ai S(ai, t) fj1′

ai S(ai, t) fj1 ai S(ai, t) fj2

An example showing a mutation affecting the choice of
function to be executed by a certain agent ai in a certain
situation can be depicted in the following: IF Stock Price
is up THEN sell → IF Stock Price is up THEN buy.

D. Mutating the Environment

Synopsis: Mutate the environment E of an agent-based
model: EnvironMutOp(E) = E′, where E′ is a mutated
version of E.

Examples: Mutating the environment E can be realised
for example by mutating the types or values of any
environmental constant V . Table 5 illustrates such
environmental mutations using an agent-based model
example where the environment E is composed of 6
environmental global variables {V1, . . . , V6}. In Table 5,
the mutation illustrates a particular environmental variable
being mutated (V1 → V1′).

Table V
EXAMPLES OF ENVIRONMENT MUTATIONS

Original Environment Mutated Environment

Environment Variables Environment Variables

E {V1, . . . , V6} E {V ′
1 , . . . , V6}

An example of environment mutations can be depicted for
example when a certain environmental constant V defin-
ing the size of a grid containing all interacting agents or
defining a concentration of a certain soluble factor which
affects the agents’ functionality is mutated (e.g. gridsize =
100 → gridsize = 80 or calciumconcentration = 0.1 →
calciumconcentration = 1.0).

IV. RELATED WORK

Testing agent systems with goal-oriented agents have been
investigated and has been attracting increasing attention. The
approach to testing such agents has mainly revolved around
the idea of injecting a mock or faulty agent in the system
in order to assess how the other agents being tested would
interact with it. In [13] and [14] for example, the authors
injected mock agents to test multi-agent systems where the
agents’ goal was to rescue survivors in a virtual world
simulating a city struck by an earthquake. The agents hence
had clear objectives, and the mock agent was designed to
conflict with the agents being tested to assess their behaviour
in unexpected scenarios.

However, there has been very little work targeting the
testing of the reactive-type of agents found in agent-based
models. Merelli and Young [21] for example, suggested the
injection of mutations into a biological agent-based model
to assess the model’s fidelity. Merelli and Young’s approach
was non-generic and consisted of injecting an agent-based

model with domain specific mutations (e.g. calcium con-
centration [Ca++] = 0.09 mM instead of the physiological
concentration [Ca++] = 2 mM) that are known to cause
certain expected, mutated, behaviour in the modelled system.
The behaviour of the mutated model was then compared with
the behaviour of the mutated target system to validate the
functionality of the agent-based model. Shan and Zhu [22]
on the other hand introduced a more generic mutation testing
tool that is specifically designed to test graphical software
applications which are used to model agent-based systems.
Their suggested technique was however concerned with data
mutation, i.e. mutating the input data to a certain agent-based
model design rather then the model itself, and the automatic
generation of test cases.

V. CONCLUSIONS AND FUTURE WORK

This short paper argued that agent-based models are
an independent class of software applications with unique
properties and testing challenges. A simple formal definition
for an agent-based model was defined and some design
ideas for mutation operators which specifically address this
class of software applications were proposed. The suggested
mutation operators may help establish formal testing tech-
niques and hence increase the reliability and correctness of
such complex models. In addition to their testing purposes,
such mutation operators may also help shed more light on
the functionality and abstraction of some models, and may
usefully steer the direction of further scientific experiments
and investigations.

Future work will include the implementation of such mu-
tation operators and their potential investigation in popular
agent-based frameworks such as MASON [9] or FLAME
[10]. Introducing mutations into an agent-based models can
take place at the template level which defines the structure
and functionality of all agents (or at least a certain type
of agents) or at the agent level (i.e. mutating the structure
and/or functionality of a specific agent or subset of agents).
Investigating these two mutation levels is an interesting
and important aspect that will be investigated in future
work. While mutating at the template level seems more
straightforward, mutating at the agent level might be more
difficult to detect and more representative of agent-based
models faults that might be related to situatedness. Adopting
an agent-level approach for mutation testing involves some
challenges such as investigating when and which agent to
be mutated.

On the other hand, in order to kill mutants, agent-based
models need to be simulated for a certain amount of time.
This raises some challenging issues such as: how long
should a model be simulated for, and how to differentiate
between desired (yet previously unknown) model behaviour
and model misbehaviour. Search-Based Software Testing
(SBST) [23] and reverse engineering tools are some sug-
gested approaches that might be adopted to search for agent-

based models’ parameters that can detect (kill) mutants and
learn model behaviour which can be reinforced by expert
decision making and human interaction.

The combinatorial explosion that might be caused by the
use of SBST and the most probably enormous number of
agent interactions might be addressed by using a divide and
conquer strategy that aims to test smaller portions of an
ABM or substituting the agent-based model with a simpler
prototype or metamodel. This last approach will most likely
entail a loss of precision and model fidelity in most scenarios
and would require more investigations.

ACKNOWLEDGMENTS

This research is supported by EPSRC grant EP/G009600/1
(Automated Discovery of Emergent Misbehaviour).

REFERENCES

[1] G. Chang, C. B. Roth, C. L. Reyes, O. Pornillos, Y.-J. Chen,
and A. P. Chen, “Retraction of Pornillos et al., Science 310
(5756) 1950-1953. Retraction of Reyes and Chang, Science
308 (5724) 1028-1031. Retraction of Chang and Roth, Sci-
ence 293 (5536) 1793-1800,” Science, vol. 314, p. 1875, 2006.

[2] L. Hatton, “The t experiments: errors in scientific software,”
IEEE Computational Science and Engineering, vol. 4, pp.
27–38, 1997.

[3] K. Simons, “Model error - evaluation of various finance
models,” New England Economic Review, pp. 17–28, 1997.

[4] T. Sun, P. McMinn, S. Coakley, M. Holcombe, R. Smallwood,
and S. MacNeil, “An integrated systems biology approach
to understanding the rules of keratinocyte colony formation,”
Journal of the Royal Society Interface, vol. 4, pp. 1077–1092,
2007.

[5] J. H. Holland and J. H. Miller, “Artificial adaptive agents in
economic theory,” The American Economic Review, vol. 81,
no. 2, pp. 365–370, 1991.

[6] K. Bentley, H. Gerhardt, and P. Bates, “Agent-based simula-
tion of notch-mediated tip cell selection in angiogenic sprout
initialisation,” Journal of Theoretical Biology, vol. 250, pp.
25–36, 2008.

[7] W. M. Bulleit and M. W. Drewek, “An agent-based model
of terrorist activity,” in Proceedings of the North American
Association for Computational Social and Organizational
Science (NAACSOS 2005), 2005.

[8] K. Kollman, J. H. Miller, and S. E. Page, “Adaptive parties
in spatial elections,” The American Political Science Review,
vol. 86, no. 4, pp. 929–937, 1992.

[9] S. Luke, C. Cioffi-Revilla, L. Panait, and K. Sullivan, “Mason:
A new multi-agent simulation toolkit,” in Proceedings of the
2004 SwarmFest Workshop, 2004.

[10] “FLAME: Flexible Large-scale Agent-based Modelling Envi-
ronment, http://www.flame.ac.uk.”

[11] M. Wooldridge and N. Jennings, “Intelligent agents: Theory
and practice,” Knowledge Engineering Review, vol. 10, no. 2,
pp. 115–152, 1995.

[12] M. Wooldridge, An Introduction to MultiAgent Systems. Wi-
ley, 2002.

[13] J. Kidney and J. Denzinger, “Testing the limits of emergent
behavior in mas using learning of cooperative behavior,” in
Proc. of the 17th European Conference on Artificial Intelli-
gence (ECAI), 2006, pp. 260–264.

[14] J. Denzinger and J. Kidney, “Evaluating different genetic
operators in the testing for unwanted emmergent behavior
using evolutionary learning of behavior,” in Proc. of the
International Conference on Intelligent Agent Technology
(IAT), 2006, pp. 23–29.

[15] N. R. Jennings, K. Sycara, and M. Wooldridge, “A roadmap
of agent research and development,” Journal of Autonomous
Agents and Multi-Agent Systems, vol. 1, no. 1, pp. 7–38, 1998.

[16] J.-M. Galán, L.-R. Izquierdo, S.-S. Izquierdo, J.-I. Santos,
R. del Olmo, A. López-Paredes, and B. Edmonds, “Errors
and artefacts in agent-based modelling,” Journal of Artificial
Societies and Social Simulation (JASSS), vol. 12, no. 1, 2009.

[17] S. Kim, J. A. Clark, and J. A. McDermid, “Class mutation:
Mutation testing for object-oriented programs,” in Proceed-
ings of the Net.ObjectDays Conference on Object-Oriented
Software Systems, 2000.

[18] Y.-S. Ma, J. Offutt, and Y.-R. Kwon, “Mujava : An auto-
mated class mutation system,” Journal of Software Testing,
Verification and Reliability, vol. 1, no. 2, pp. 97–133, 2005.

[19] D. Schuler and A. Zeller, “Javalanche: efficient mutation
testing for java,” in Proc of the 7th joint meeting of the
European Software Engineering Conference (ESEC)and the
ACM SIGSOFT Symposium on the Foundations of Software
Engineering (FSE), 2009, pp. 297–298.

[20] M. E. Delamaro, J. C. Maldonado, and A. P. Mathur, “In-
terface mutation: An approach for integration testing,” IEEE
Transactions on Software Engineering, vol. 27, no. 3, pp.
228–247, 2001.

[21] E. Merelli and M. Young, “Validating MAS models with
mutation,” in First International Workshop on Multi-agent
systems for Medicine, Computational biology and Bioinfor-
matics. AAMAS, 2005.

[22] L. Shan and H. Zhu, “Testing software modelling tools using
data mutation,” in International workshop on Automation of
software test, 2006, pp. 43–49.

[23] P. McMinn, “Search-based software test data generation: A
survey,” Software Testing, Verification and Reliability, vol. 14,
no. 2, pp. 105–156, 2004.

